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The energy landscape as a unifying theme
in molecular science
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The potential energy surface (PES) underlies most calculations of structure, dynam-
ics and thermodynamics in molecular science. In this contribution connections
between the topology of the PES and observable properties are developed for a
coarse-grained model of virus capsid self-assembly. The model predicts that a thermo-
dynamically stable, kinetically accessible icosahedral shell exists for pentameric
building blocks of the right shape: not too flat and not too spiky. The structure of
the corresponding PES is probably common to other systems where directed searches
avoid Levinthal’s paradox, such as ‘magic number’ clusters, protein folding and crys-
tallization.
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1. Introduction

The purpose of this overview is to illustrate how the potential energy surface (PES)
provides a common ground for theories of structure, dynamics and thermodynamics
in molecular science (Wales 2003). For a system of N atoms the potential energy,
V , depends on 3N Cartesian coordinates, X1, X2, . . . , X3N . The most interesting
features of this high-dimensional function are usually the stationary points, where
the gradient vanishes. At such points the leading terms in a Taylor expansion of V
are quadratic, and the potential energy can be written as
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3N∑
α=1

ω2
αQ2

α

in terms of 3N normal coordinates, Qα, correct to second order. Here ω2
α is an

eigenvalue of the mass-weighted second derivative matrix, and a displacement in the
corresponding coordinate Qα raises or lowers the energy if ω2

α is positive or negative,
respectively. The number of negative eigenvalues, or Hessian index, can therefore be
used to further classify stationary points of the PES.

At a local minimum ω2
α � 0 for all α, and small displacements must raise the

energy, unless they correspond to normal coordinates where ω2
α = 0, such as overall

rotations and translations of an isolated molecule. Geometrically, a transition state
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is defined as a stationary point of Hessian index one (Murrell & Laidler 1968), and
the unique negative Hessian eigenvalue is associated with displacements that lower
the energy. The corresponding Hessian eigenvector corresponds to the reaction coor-
dinate.

Empirical observations and theoretical arguments suggest that the number of local
minima with distinct structures, nmin(N), will generally grow exponentially with N ,
i.e. nmin(N) = exp(aN) (Doye & Wales 2002; Stillinger & Weber 1984). Similarly, the
number of transition states, nts(N), is predicted to increase as nts(N) = aN exp(bN),
where both a and b are system-dependent constants. The number of higher index sad-
dles increases combinatorially (Wales & Doye 2003), and additional factors, depend-
ing factorially on the number of atoms, must be included to account for permutational
isomerism (Wales 2003).

For small molecules local minima of the PES can often be identified with distinct
isomers, which are generally treated as separate free energy minima. Similarly, geo-
metrical transition states can be used to define dividing surfaces of dimension 3N −1
that represent dynamical bottlenecks, or free energy maxima, between local minima.
Statistical rate theories can then be formulated to calculate the corresponding rate
constants (Evans & Polanyi 1935; Eyring 1935; Pelzer & Wigner 1932).

For larger systems the connection between local minima and transition states of
the free energy and stationary points of the underlying PES is generally more com-
plicated. In discussing free energy surfaces it is always necessary to define order
parameters of some sort, and in this process the dimensionality of the 3N atomic
degrees of freedom is usually reduced to just one or two coordinates. Minima and
transition states of the free energy then subsume many stationary points of the PES.
This connection may be quantified using the superposition approach to thermo-
dynamics (Wales 1993, 2003), in which the total partition function is written as a
sum over local minima of the PES. A similar philosophy has recently been used in
the discrete path sampling (DPS) approach to dynamics (Wales 2002).

The necessity to think of ensembles of pathways between free energy minima in
large systems is included in various theoretical models (Bryngelson & Wolynes 1989;
Bryngelson et al. 1995; Camacho & Thirumalai 1993; Dill et al. 1995; Doye & Wales
1996; Gō 1983; Onuchic et al. 2000), and in the notion of a ‘folding funnel’ as a set of
kinetically convergent pathways (Leopold et al. 1992). The latter definition was first
introduced in the context of free energy surfaces, but can also be realized in terms
of pathways on the PES, as described in § 3 and § 4. The term ‘energy landscape’
was probably first used for free energy surfaces (Bryngelson & Wolynes 1987, 1989,
1990; Bryngelson et al. 1995; Dobson et al. 1998; Leopold et al. 1992; Onuchic et al.
1995, 1997), and subsequently extended to potential energy surfaces (Wales 2003). In
the protein-folding literature the concept of an ensemble of pathways became known
as the ‘new view’, and was contrasted with the ‘old view’ in terms of ‘an ordinary
chemical reaction that has a defined series of intermediates and a single rate-limiting
step’ (Baldwin 1994). In fact, we can still continue to think of a reaction path for
large systems if we simply extend the definition to include an ensemble of related
paths, all leading to some given free energy minimum (Lazaridis & Karplus 1997;
Wales 2003).

The following sections provide illustrations of how stationary points of the PES can
be used to visualize the potential energy landscape, and to calculate thermodynamic
and dynamic properties of interest. In particular, some new results for a coarse-
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grained model of virus capsid self-assembly are used to illustrate how landscapes
with a ‘palm tree’ topology lead to efficient structural relaxation. This topology
provides a fundamental connection between the non-random searches that result in
‘magic number’ clusters, crystallization, protein folding and self-assembly. In each
case the form of the underlying PES results in a directed search, thereby circum-
venting Levinthal’s paradox (Levinthal 1969).

2. Locating stationary points and pathways

Calculating thermodynamic and dynamic properties from stationary point data can
provide access to much longer time-scales than conventional molecular dynamics.
Ergodic results can also be achieved for systems where relevant portions of con-
figuration space are separated by large potential energy barriers (Doye & Calvo
2002; Doye et al. 1998, 1999a). Such calculations are feasible because large steps
can be taken when sampling stationary points, and the geometry optimization tech-
niques involved are not generally subject to trapping in deep potential wells. All the
vibrational degrees of freedom are then treated using standard tools from statistical
mechanics and rate theory, which introduces additional approximations into the cal-
culations. In particular, treatments based upon samples of stationary points often
employ harmonic densities of states, which are usually straightforward to calculate,
but can result in systematic errors. However, various techniques can be used to allow
for anharmonicity, sampling errors and quantum effects (Calvo et al. 2001a,b; Clary
2001; Doye & Wales 1995; Miller & Clary 2003; Miller et al. 1999; Wales 1993).

The two principal tools employed for searching the potential energy surface in the
present research were Gmin for global optimization and Optim for general geometry
optimization. Global optimization is often a useful first step before investigating
more general properties of a PES, since the global potential energy minimum will
become the global free energy minimum at sufficiently low temperatures. The Gmin

program, for which a public domain version is available on the World Wide Web
(Wales et al. 2004), is based on the basin-hopping approach (Li & Scheraga 1987,
1988; Wales & Doye 1997). Optim, on the other hand, can locate local minima,
transition states and characterize steepest-descent pathways using a wide variety of
different algorithms.

The simplest geometry optimization problem is the location of a local minimum,
and the most efficient method currently available seems to be Nocedal’s L-BFGS
algorithm (Liu & Nocedal 1989; Nocedal 1980). Finding transition states is signifi-
cantly harder, because the potential energy has a local maximum in one degree of
freedom, but is a minimum in all the other (3N − 1) degrees of freedom. The system
is therefore balanced on a knife-edge along the reaction coordinate. Characterizing
such regions away from local minima therefore presents more difficult challenges to
theory, while experiments such as high-resolution spectroscopy of tunnelling states
(Pugliano & Saykally 1992; Saykally & Blake 1993) and ultrafast electron diffrac-
tion (Thomas 2004; Vigliotti et al. 2004) can now provide detailed information for
comparison.

Many different schemes have been suggested to find transition states (Schlegel
2003; Wales 2003), and they can usefully be divided into single-ended and double-
ended approaches. Single-ended methods locate a transition state given a single start-
ing point geometry, while double-ended methods seek a transition state or a more
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general path between two end points. In Optim all the single-ended transition state
search strategies are based upon eigenvector-following (Cerjan & Miller 1981; Panćı̌r
1975; Wales 1994), which provides a systematic way to move uphill in one direction,
while minimizing with respect to all the other degrees of freedom. Hybrid eigenvector-
following schemes enable transition states to be located without diagonalizing the
second derivative matrix, or without calculating second derivatives at all (Kumeda
et al. 2001; Munro & Wales 1999). Double-ended searches in Optim now employ the
doubly nudged elastic band (DNEB) algorithm (Trygubenko & Wales 2004).

For every transition state of the PES two distinct steepest-descent paths are
defined in terms of a first-order differential equation (Wales 2003). These paths,
like all the stationary points themselves and their properties, are independent of
mass, temperature and the coordinate system (Banerjee & Adams 1992; Wales 2000).
The two steepest-descent paths usually terminate at two local minima, which can be
located by energy minimization following small displacements parallel and antiparal-
lel to the reaction vector. Such calculations generally deviate from the true steepest-
descent path, and can occasionally lead to different local minima. More accurate
characterization of the steepest-descent paths is certainly possible but is not usually
necessary for simply determining the connections. These connections between local
minima, mediated by transition states, provide the starting point for visualization
of the global PES using disconnectivity graphs, as described in the next section.

3. Disconnectivity graphs

The problem of visualizing the 3N -dimensional potential energy function, without
misrepresenting the connectivity and topology, has been addressed in several ways
(Ball et al. 1996; Becker & Karplus 1997; Berry & Breitengraser-Kunz 1995; Kunz
& Berry 1995). Here we will follow the disconnectivity graph approach of Becker &
Karplus (1997), who first applied it to a database of minima and transition states
calculated for the tetrapeptide isobutyryl-(ala)3-NH-methyl by Czerminski & Elber
(1990). Many different systems have since been analysed in this way (Wales 2003),
and graphs based upon free energy have also been described (Evans & Wales 2003;
Krivov & Karplus 2002).

Given a database of local minima, transition states and pathways from the PES,
a disconnectivity graph is constructed as follows. For a given total energy, E, the
local minima can be divided into disjoint sets, or ‘superbasins’. The members of each
set can all be interconverted by one or more rearrangements without exceeding the
threshold energy, while the minimum energy required to interconvert members of
different sets is greater than E. The superbasin analysis is performed for specified
energies, E1 < E2 < E3 < · · · , and each distinct superbasin is represented as a point,
or node, on the horizontal axis. The vertical axis corresponds to energy, and lines
are drawn upwards starting from the potential energy of each local minimum, Va, to
the node corresponding to the appropriate superbasin for the closest Ei > Va. Lines
are also drawn to connect nodes at adjacent energies if they correspond to the same
superbasin or to superbasins that merge together.

Some examples are shown in figure 1. Graphs such as these are termed trees, and
this nomenclature suggests a helpful way to describe the various patterns that emerge
(Wales et al. 1998). A PES with a well-defined global minimum and relatively small
downhill barriers, which is associated with efficient relaxation, resembles a ‘palm
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(a)

(b)

(c)

Figure 1. One-dimensional potential energy functions (left) and the corresponding disconnec-
tivity graphs (right). The dotted lines indicate the energies at which a superbasin analysis was
performed. (a) ‘Palm tree’; (b) ‘willow tree’; (c) ‘banyan tree’.

tree’ (figure 1a). This motif has been identified as a potential energy ‘funnel’ in
previous work, in accord with the notion of a ‘folding funnel’ for a protein as a
set of kinetically convergent pathways (Leopold et al. 1992). The second, ‘willow
tree’, pattern, in figure 1b, results when the barriers between successive local minima
are larger; the long dangling branches result from the higher activation energies
involved. This pattern has been identified in C60 fullerenes (Kumeda & Wales 2003;
Wales et al. 1998); efficient relaxation to the global minimum is still possible if the
system has sufficient energy to overcome the higher barriers. However, for the final,
‘banyan tree’, pattern, in figure 1c, the energy barriers are large compared with the
separation of connected local minima, and the two distinct barrier heights produce
a hierarchical structure. In contrast to the palm and willow motifs, cutting a single
edge in this graph separates a number of local minima from the rest of the tree.
Relaxation to the global minimum for such surfaces is expected to be much slower,
and this structure has been identified in the (H2O)20 cluster modelled by a rigid
water monomer empirical potential (Wales 2003; Wales et al. 1998, 2000). In this
system the hierarchical structure probably results from the interplay between centre-
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of-mass and orientational degrees of freedom, which also makes global optimization
significantly harder in water clusters than for most atomic clusters of comparable
size (Wales & Hodges 1998).

The calculation of thermodynamic and dynamic properties from databases of sta-
tionary points generally requires additional information, such as vibrational frequen-
cies, in order to evaluate partition functions and rate constants (Wales 2003). How-
ever, some of the resulting features can be predicted quite easily from the corre-
sponding disconnectivity graphs, without detailed calculation. A particularly impor-
tant case occurs when the PES supports more than one ‘palm tree’-like feature.
These separate potential energy funnels generally result in rapid relaxation to one
of the corresponding minima. However, relaxation to the true global minimum may
be much slower if the system first falls into one of the other funnels, which act as
kinetic traps. Distinct palm tree features in the disconnectivity graph can therefore
be associated with competition between different morphologies, and a separation of
time-scales for relaxation. Many examples of such competition have been identified,
including binary salt clusters (Doye & Wales 1999a,b) and the three-colour, 46-bead
model protein (Evans & Wales 2003; Honeycutt & Thirumalai 1990, 1992; Miller &
Wales 1999).

The 38-atom cluster bound by pairwise Lennard-Jones interactions (Jones & Ing-
ham 1925) provides a particularly clear example of a double-funnel PES (Calvo et al.
2000; Doye et al. 1999a; Frantz 2001; Neirotti et al. 2000; Wales 2003; Wales et al.
1998). The two funnels correspond to local minima based upon either icosahedral
or face-centred-cubic (FCC) packing, and the global potential energy minimum is
the FCC truncated octahedron (figure 2). At low temperature the global free energy
minimum is also the truncated octahedron, but icosahedral structures are favoured
by entropy, and a solid–solid transition occurs at higher temperature (Calvo et al.
2000; Doye et al. 1999a; Frantz 2001; Neirotti et al. 2000). This transition is marked
by a noticeable feature in the heat capacity (Calvo et al. 2000; Neirotti et al. 2000),
which is somewhat exaggerated in a harmonic superposition calculation (figure 3).
The two-stage relaxation is clear from figure 4, where the occupation probabilities
of the icosahedral and FCC minima are plotted as a function of time starting from a
high-energy non-equilibrium distribution (Doye & Wales 1998; Doye et al. 1998). The
first direct phase of relaxation corresponds to a time of around 109 reduced units,
but equilibrium is only achieved on a time-scale of about 1014 units. The slower com-
ponent corresponds to initial relaxation into the icosahedral region of configuration
space, followed by subsequent escape into FCC structures.

4. Self-assembly of a virus capsid

Reversible self-assembly has been demonstrated for a number of different virus cap-
sids (Fraenkel-Conrat & Williams 1955; Kiselev & Klug 1969), and the corresponding
thermodynamics is an active area of research (Bruinsma et al. 2003; Ercolani 2003).
Crick & Watson (1956) initially proposed that virus capsids might consist of identical
subunits, and Caspar & Klug (1962) provided a geometrical theory for the construc-
tion of capsids with icosahedral symmetry. Electron microscopy, X-ray diffraction
and electron-diffraction experiments have since provided direct evidence for such
packing, although other structures are certainly possible (Ehrlich et al. 2001; Ganser
et al. 1999). This work has also identified two levels of structure within most virus
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Figure 2. Disconnectivity graph for the LJ38 cluster including the lowest 200 local minima. The
global potential energy minimum lies at the bottom of the ‘palm tree’ feature highlighted in
red. The energy is in reduced units for the Lennard-Jones potential.

capsids in terms of capsomers, which are each composed of five or six subunits. The
intermolecular forces both between the capsomers and between the subunits are non-
covalent, but the capsomer–capsomer interactions are probably weaker (Davis et al.
1980; Eiserling & Dickson 1972). Hence, the present model considers rigid pentameric
units as the fundamental building blocks.
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Figure 3. Canonical heat capacity of the LJ38 cluster calculated using the harmonic
superposition approximation. kT is measured in reduced units for the Lennard-Jones potential.
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Figure 4. Relaxation of LJ38 from high-energy minima at a total energy of −160, showing the
fast and slow contributions to the final probability of the FCC funnel. All quantities are in
reduced units for the Lennard-Jones potential.

The simplest capsid structure corresponds to 12 pentamers in an icosahedral
arrangement, as exemplified by satellite tobacco necrosis virus. The first objective
of this preliminary study was to determine minimal requirements on the interaction
potential between the pentameric building blocks for efficient relaxation to an icosa-
hedral global minimum. Each pentamer was therefore treated as a rigid pentagonal
pyramid of height h and radius r, as shown in figure 5. The total potential energy
was defined in terms of pairwise additive terms between sites fixed within each rigid
body. The objective was to provide the simplest possible representation of the pen-
tamer’s shape, and the total potential energy for each pair was therefore written
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Figure 5. Definition of the geometrical parameters h and r that define the pentagonal pyramids
used to model pentameric capsomers: (a) h = 0.35r; (b) h = 0.50r; (c) h = 0.75r. The potential
energy for two such pyramids is illustrated in both surface and contour plots as a function of
the angle φ and edge-to-edge distance x defined on the right. This PES varies systematically as
the height of the repulsive site changes, as shown in the lower panels. For the largest value of h
an unphysical secondary minimum appears corresponding to interpenetrating pyramids.

as

V = εrep

(
σ

Rax

)12

+ ε
5∑

i=1

5∑
j=1

(eρ(1−Rij/Re) − 2)eρ(1−Rij/Re),

where Rax is the distance between the apices of the two pyramids and Rij is the
distance between basal sites i and j in different pentamers. ε and Re, the pair well
depth and equilibrium separation for each of the Morse contributions in the sum, will
henceforth be used as the units of energy and distance. The Morse form was chosen
for the attractive terms because it includes a steep repulsive wall and an attractive
well, and allows the units to dissociate. The parameter ρ governs the range of the
Morse interaction (Braier et al. 1990; Wales 2003; Wales et al. 2000), and was fixed
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Figure 6. Disconnectivity graph for 12 pentagonal pyramids with h = 0.35r.
A side-funnel associated with more open shells is highlighted on the right in blue.

at ρ = 3 for the present calculations, while the radius was fixed at r = 5 and εrep
was fixed at ε/2. Similar results were obtained for different values of these three
parameters, while the height of the pentamer, h, has more interesting effects.

Without the axial repulsive site the pentamers would simply aggregate with their
faces together. However, the presence of the repulsive site at a non-zero height endows
the pentamers with a three-dimensional shape. For two pentamers arranged as shown
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Figure 7. Disconnectivity graph for 12 pentagonal pyramids with h = 0.5r.

in figure 5, the repulsive interaction is minimized for h = r/2 when

φ = 2 sin−1

√
2

5 −
√

5
= 116.57◦,
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Figure 8. Disconnectivity graph for 12 pentagonal pyramids with h = 0.5r.

which corresponds to icosahedral packing. The separation of the repulsive sites is
then

R

Re
= 1 + r

√√
5 + 5
2

,

where r is measured in units of Re, and the length parameter σ was fixed at this
value.

Previous work suggests that closed shells with icosahedral symmetry are kinetically
accessible (Wales 1987), and such structures have been found for discs or pentagons
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constrained to move on the surface of a sphere (Marzec & Day 1993; Tarnai et al.
1995). Other simulations include models where subunits can shift between binding
and non-binding conformations (Berger et al. 1994; Schwartz et al. 1998), as well
as treatments involving a contact potential (Endres & Zlotnick 2002; Zlotnick et al.
1999), a lattice representation (Horton & Lewis 1992; Reddy et al. 1998), and discs
with adhesive edges interacting via a harmonic angular potential (Bruinsma et al.
2003).

To construct disconnectivity graphs for the present model a general scheme for
rigid bodies involving isotropic site–site potentials was implemented in both the
Gmin and Optim programs. This scheme simply requires the distance derivatives
of the site–site potentials along with the site positions in a reference orientation for
each rigid body. All the formulae for the energy and derivatives can then be written
in a general way, as described in the appendix.

Databases of stationary points were created using systematic transition state
searches (Wales 2003; Wales et al. 2000) for a range of different height parame-
ters. Results for three values of h are illustrated in figures 6–8; only the lowest
2000 local minima are shown in each case, although all the minima were included
in each superbasin analysis. The graph for h = r/2, where the repulsive interac-
tion between adjacent pentamers is minimized in the icosahedral global minimum,
exhibits a well-defined ‘palm tree’ structure. We therefore expect efficient relaxation
to the icosahedron over a wide range of temperature (Wales 2003). The icosahedron
is also the global potential energy minimum for h = 0.35r and 0.75r, but in each
case the PES possesses features that will hinder self-assembly. For h = 0.35r (flatter
pyramids) the potential energy gradient and driving force towards closed shell struc-
tures are diminished. There is also a side-funnel containing structures with more
loosely packed pyramids, which might act as a kinetic trap. For smaller values of
h the global potential energy minimum, located using basin-hopping (Li & Scher-
aga 1987, 1988; Wales & Doye 1997; Wales & Scheraga 1999), is non-compact. For
h = 0.75r an additional minimum appears on the two-dimensional cut through the
six-dimensional dimer surface shown in figure 5. The resulting disconnectivity graph
now contains low-lying local minima with perturbed icosahedral geometries where
one or more pyramid bases overlap.

These results indicate that the icosahedral geometry will be thermodynamically
stable and kinetically accessible for pentameric building blocks that are not too flat
and not too spiky, which provides sufficient conditions for self-assembly. Of course,
this is a very simplistic model of a virus capsid, but it does illustrate how self-
organization can arise under relatively weak conditions.

5. Conclusions

It is the ‘palm tree’ topology of the underlying PES in figure 7 that permits effi-
cient self-assembly, and it seems likely that this structure underpins many other
non-random searches in molecular science. For example, ‘magic numbers’ in mass
spectra, protein folding, and even crystallization, all involve the location of a few
particular low potential energy structures from an exponentially large number of
alternatives (Ball et al. 1996). The palm tree topology enables Levinthal’s paradox
to be circumvented in each case, by effectively guiding the system towards the target
structure. We therefore identify this topology with nucleation and growth in a crystal,
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with the principle of ‘minimal frustration’ (Bryngelson & Wolynes 1987, 1989; Bryn-
gelson et al. 1995; Onuchic et al. 1997), and with a free energy surface that exhibits
funnelling properties (Leopold et al. 1992). The potential energy funnel represented
by the palm tree graph would produce a free energy surface involving a systematic
decrease in the vicinity of the global potential energy minimum over a wide range
of temperature. The corresponding order parameter could be any reasonable metric
that measures distance from the global minimum. The palm tree topology is also
consistent with a large value for the ratio Tf/Tg, where Tf is the ‘folding’ tempera-
ture, below which the potential energy and free energy global minima coincide, and
Tg is the ‘glass’ temperature, where relaxation slows beyond some given time-scale
(Socci & Onuchic 1994; Socci et al. 1996). If Tf/Tg is large, then the surface pos-
sesses a global free energy minimum that is also kinetically accessible (Bryngelson &
Wolynes 1987; Goldstein et al. 1992; Karplus & S̆ali 1995).

The main purpose of the simple model described in § 4 is to show how the ‘palm
tree’ motif can provide a unifying basis for self-assembly, ‘magic numbers’, protein
folding and crystallization. However, it is also interesting to note that Crick & Wat-
son (1956) originally proposed that virus capsids might be composed of repeated
subunits by considering how a limited amount of genetic information could be used
most efficiently. The present analysis suggests that viruses may also exploit special
properties of the energy landscape for subunits of the right form, in order to realize
such structures.

I am very grateful to Professor Chris Dobson for his suggestion to investigate the energy land-
scape of a model virus capsid.

Appendix A. Optimization in rigid-body coordinates

The method adopted in the present work to provide a general framework for geome-
try optimization of rigid bodies interacting via isotropic site–site potentials exploits
Chasles’s theorem and the rotation formula (Goldstein 1980). Chasles’s theorem
states that the most general displacement of a rigid body is a translation plus a
rotation. The rotation formula tells us that the position vector of a point X0 after
rotation through an angle α about an axis defined by the unit vector p̂ is

X = X0 cos α + p̂(p̂ · X0)(1 − cos α) + X0 ∧ p̂ sin α, (A 1)

where ∧ denotes the vector product. The six degrees of freedom for a (nonlinear) rigid
body can therefore be defined in terms of the centre-of-mass coordinates, X, Y and
Z, and the three components of a vector, p = (n, l, m), which specify both a rotation
axis through the centre of mass, and the magnitude of rotation, α =

√
n2 + l2 + m2.

For a given set of rigid-body coordinates X, Y , Z, n, l and m, the site at R0 in the
reference geometry is mapped to

R = (X, Y, Z) + R0 cos α + p̂(p̂ · R0)(1 − cos α) + R0 ∧ p̂ sin α. (A 2)

If we denote the coordinates of two different rigid bodies using the subscripts I
and J , and the sites within each rigid body by subscripts i and j, then for isotropic
site–site potentials the total energy is

V =
∑

I

∑
J<I

∑
i∈I

∑
j∈J

fij(Rij), (A 3)
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where Rij = |Ri − Rj |, and fij(R) is the pair potential between sites i and j. Rij

is a function of the 12 rigid-body coordinates of molecules I and J , as well as the
reference site positions R0

i and R0
j . If ζ represents a rigid-body coordinate of molecule

I, then the first derivative of the potential energy is

∂V

∂ζ
=

∑
J �=I

∑
i∈I

∑
j∈J

f ′
ij(Rij)

∂Rij

∂ζ
, (A 4)

where f ′
ij(x) = dfij(x)/dx. Second derivatives can also be derived using the chain

rule in a straightforward way.
Using equation (A 2), the rigid-body derivatives of Rij can all be programmed once

and for all as functions of the reference site positions and the rigid-body coordinates.
The Mathematica program (Wolfram 1996) was used to construct these analytical
derivatives. It is then only necessary to provide the position vectors of the sites in the
reference geometry, R0

i , and the derivatives f ′
ij(x) and f ′′

ij(x) to code both first and
second derivatives of the potential energy. This procedure could also be generalized
to deal with anisotropic site–site potentials.
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Discussion

D. C. Clary (Department of Physical and Theoretical Chemistry, University of
Oxford, UK ). Could you summarize the advantages and disadvantages of your
approach compared with molecular dynamics (MD) calculations.

D. J. Wales. The main advantage of the discrete path sampling (DPS) approach is
that it can provide rate constants for processes that lie beyond the reach of conven-
tional simulations. Discrete paths consisting of local minima and the transition states
that connect them can be calculated rapidly, and trapping is not a problem, because
transition states for processes corresponding to high barriers are generally no harder
to characterize than those with lower barriers. Using appropriate partition functions
for the local minima, and statistical rate theory for dynamics, means that the effects
of high-frequency vibrational motion, which limit the time-step for MD simulations,
are treated implicitly. This coarse-grained approach to the energy landscape in terms
of stationary points also provides useful insight into thermodynamic and dynamic
properties, since vibrational ‘noise’ is removed, and the observed values are resolved
into contributions from distinct local minima and pathways. The main source of
error in the simplest DPS rate calculations stems from the harmonic approximation
used for the densities of states. However, once a database of stationary points has
been obtained, all the partition functions and individual minimum-to-minimum rate
constants can be recalculated using more accurate methods, as required.

J. C. Schön (Max Planck Institute for Solid State Research, Stuttgart, Germany).
It is very interesting that you have observed for the landscape of the Lennard-Jones
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crystal that the major side minima correspond to defects in a basically close-packed
atom arrangement. When studying the energy landscape of the three- and two-
dimensional noble gases employing a Lennard-Jones-type potential (Schön & Jonsen
1994; Schön et al . 1996), we have found the same phenomenon: the structures were
always close-packed arrangements of spheres (both HCP and FCC variants), with
the neighbour minima corresponding to close packings of spheres that contained one
or more holes.

When studying the equilibration among these minima using Markov matrices on
multiple-lump tree-graphs of the two-dimensional system (Schön et al . 1996), we
found that the density of states within the basins can have a certain influence on the
order of equilibration among the basins.

Have you observed any influence of the local density of states (beyond the harmonic
approximation) on the transition rates as a function of temperature?

D. J. Wales. Previous investigations of defect migration in FCC solids using empir-
ical potentials indicate that 〈100〉-split-interstitials are favourable for systems bound
by longer-range potentials, and Oh-interstitials are unfavourable, while the converse
holds for systems bound by short-range potentials (Wales & Uppenbrink 1994). Equi-
libration amongst the various local minima is determined by the densities of states
of both transition states and local minima in all our calculations. Anharmonicity can
certainly have a significant effect (Calvo et al. 2001a).

J. C. Schön. We have used the threshold algorithm (Schön et al . 1996), in order to
measure the transition probabilities among the basins in the system MgF2 (Weavers
et al . 1999). In particular, we observed that strong entropic barriers can be present
that are felt above the lowest saddle points connecting two basins, even sometimes
stabilizing regions on the landscape that do not contain local minima, but are shielded
from the rest of the landscape by the ‘difficulty of finding an exit path’ (Schön et al .
2003).

What is your experience regarding the contribution of complicated paths to the
total transition probability? What about competition between ‘simple’ paths at high
energy and complicated paths at low energy?

D. J. Wales. The coarse-graining employed in our calculations is based upon a
rigorous division of the potential energy surface into the basins of attraction of local
minima, while minimum-to-minimum transitions are described in terms of transition
states that lie on basin boundaries. We have not considered further subdivision of
the configuration space within the basin of attraction of a single minimum. However,
entropy effects should be accounted for within this picture. The complexity of the
underlying mechanism could be considered in two ways, namely the number of dis-
crete paths required to obtain a good estimate of the rate constant, and the average
length of these paths. The relative contributions of different discrete paths changes
as a function of temperature. At higher temperatures we generally find that shorter
discrete paths involving higher potential energy make an increasing contribution. In
contrast, at low temperature, where minimizing the potential energy barriers is more
important, the dominant contributions come from longer paths with lower barriers.
For processes involving at least one extended phase we will generally have to sample
over an exponentially large number of possible paths.

P. G. Wolynes (Department of Chemistry and Biochemistry, Department of
Physics and Center for Theoretical Biological Physics, University of California, San
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Diego, USA). For extended systems we usually see the two limits of your trees: fun-
nels for first order transitions, banyans for glass transitions. The fullerene has high
barriers even for small changes, this suggests a very non-additive force. Is this con-
nected with the aromaticity of fullerenes? What is the landscape for positive and
dipositive ions?’

D. J. Wales. The covalent bonding in fullerenes is indeed non-additive, and rather
anisotropic, with aromatic character deriving from the delocalized π system. The
high barriers, relative to the energy difference between connected minima, result
from disruption of both the σ and π systems, which can be separated to a first
approximation in the roughly spherical structures that correspond to local fullerene
minima (Stone & Wales 1986). The significant delocalization energy of the π system,
which is partly lost in the transition state, certainly accounts for part of the observed
barriers.

To the best of my knowledge, the landscape has not yet been analysed for C+
60

or C2+
60 . I would expect the lowest energy fullerene for these ions to be based upon

icosahedral buckminsterfullerene, but with Jahn–Teller distortions. If the positive
charge were localized on the same atoms that move to facilitate fullerene rearrange-
ments, then the barriers may be reduced, since these atoms are undercoordinated in
the transition state. This effect would change the willow tree pattern observed for
neutral C60 towards the palm tree form, which would result in more efficient relax-
ation to the global minimum. However, it is also possible that the mechanism itself
might change.
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