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Candidates for global minima of the Thomson problem for N charges on a sphere are located for N�400
and selected sizes up to N=972. These results supersede many of the lowest minima located in previous work,
with particularly large improvements for N�400. Our analysis reveals interesting topological defects, which
are likely to play an important role in determining the mechanical and electrical properties of systems confined
to a spherical geometry. We also find low-energy rearrangements for the Thomson model, an observation which
suggests that suitable mesoscopic systems with analogous coarse-grained structure may exhibit fluxional
dynamics.
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The nature and concentration of defects governs charac-
teristics such as mechanical strength, electrical conductivity,
optical properties, and crystal growth rates. Flat two-
dimensional surfaces can adopt a defect-free triangular lat-
tice, where every particle has six nearest neighbors. How-
ever, for a spherical topology defects are an unavoidable
consequence of geometry. If we write the particle coordina-
tion number as C, then the topological or disclination charge
is defined as Q=6−C. Euler’s theorem states that the total
disclination charge must be 12 for the triangulated structure
defined by a set of particles constrained to a spherical sur-
face, but says nothing about how this condition is achieved.
Hence characterizing the most favorable defects for systems
with spherical topology is likely to play a key role in under-
standing and designing such materials.

The presence of 12 five-coordinate particles �fivefold dis-
clinations� provides the simplest way for a spherical system
to obey Euler’s rule. However, as the number of particles
increases, so does the strain energy associated with such ar-
rangements. One way to reduce the strain energy is to intro-
duce additional defects such as dislocations, which consist of
adjacent vertices with fivefold and sevenfold coordination.1–3

Many examples of particles constrained to a roughly
spherical or curved surface are known.4–10 However, detailed
atomistic modeling for most of these applications is not fea-
sible. Instead, we can derive insight into possible generic
features of systems with spherical topology, such as the most
likely defect configurations, by considering N unit charges
constrained to a sphere. The potential energy is therefore
�i�j1/ �ri−r j�, with �ri � =1 for all particles i and j. This
model was first introduced by J. J. Thomson in 1904 in an
effort to describe atomic structure.11 Even for this simpler
“Thomson problem” it is still quite challenging to determine
the most favorable structure when N is of order 1000. In fact,
the Thomson problem has served as a benchmark for global
optimization algorithms in a number of previous studies.12–19

General arguments suggest that the number of local
minima should increase exponentially with N.15,20,21 How-
ever, this increase is slowest for long-range potentials,15,20,21

because the corresponding minima are wider, and hence less
numerous in configuration space. The present results indicate
that basin-hopping global optimization22–25 can provide very
good candidates for global minima in the range N�1000.
For N�200 we identify a minimum at N=188, which im-

proves the previous energy by 0.027 atomic units.17,26 For
201�N�400 we find lower minima for 150 of the 200 sizes
compared to previous results,18,19,26 with energy differences
up to around 0.3 atomic units. For larger sizes our structures
are up to 2.5 atomic units lower in energy than previous
suggestions16,18,19,26 �Table I�. Clearly, predicting details of
the favorable geometry for larger systems requires system-
atic global optimization.

The present study employed the basin-hopping
approach22–25,27 using the GMIN program,28 where Monte
Carlo type steps are used to sample local minima on the
potential energy surface. This approach is particularly attrac-
tive because it has very few adjustable parameters, and is
therefore readily transferable between different systems.24,25

We employed five basin-hopping runs for each size starting
from different random configurations of positive charges on
a unit sphere. Our initial survey used a fixed temperature of
T=0.05 and 1000 basin-hopping steps in each run �atomic
units are employed throughout�. All five runs agreed up to
N=299, except for N=272, which may have a multifunnel
potential energy surface,25 and could therefore provide a
good benchmark for future work. These results confirm that
the Thomson problem is significantly easier than global op-
timization for atomic clusters with a comparable number of
degrees of freedom, as anticipated above.

We then refined the temperature parameter and the num-
ber of steps to try and ensure reliable results for larger sizes,
and settled upon T=0.045 and 100 000 steps. Above N
=400 we considered selected sizes where previous results are
available for comparison.18,19 For N�400 even 100 000
steps was not always sufficient to obtain agreement between
all five runs, and we expect that some of these results may be
improved in future work. However, we are confident that all
the lowest-lying minima we have obtained are close enough
to the global minima for our structural predictions to be rel-
evant. All the results will be tabulated in the Cambridge
Cluster Database.29 Many of the structures have nontrivial
point-group symmetries, in agreement with the conjecture
that higher symmetry structures will either have particularly
high or particularly low energies.25

Most global minima in the size range considered exhibit
at least 12 five-coordinate ions �fivefold disclinations�, while
many also exhibit four- or seven-coordinate ions. The struc-
tures are best presented using a Voronoi construction, based
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on polygons that partition the surface into regions where
each point is closest to a given ion. Our results are broadly in
agreement with trends predicted in previous work.10,30–33

However, we have characterized several new defect motifs,
and can now provide accurate energetics for the favored
structures.

Minima with point groups O, D4d, D2d, and C2v usually
contain defects other than fivefold disclinations. For ex-
ample, the pentagonal icositetrahedron found for N=24 has a
Voronoi representation consisting of “tetrapentagon patches”
arranged to give O symmetry �Fig. 1�. Here the Voronoi pen-
tagons are colored red and the hexagons green. These
Voronoi constructions include four-connected vertices, and

correspond to a face dual polyhedron with one or more
square faces. Hence the topological charge calculated by
summing the number of pentagonal faces is not equal to 12.

For larger systems we identify a defect based upon a 3
�3 square of ions; examples occur for N=141, 166, 169,
170, 172, and 179 �Fig. 2�. For this 3�3 defect the Voronoi
assignment around the central ion is very sensitive to small
changes in the geometry, and a real-space view may be more
appropriate �Fig. 2�. The heptagons shaded in blue for N
=126 have two very short edges, which is why they look
more like pentagons in the figure. This Voronoi construction
has only three-connected vertices, and therefore corresponds
to a topological charge of 12. There are two
3�3 defects, each with a overall charge of two, plus eight
additional isolated pentagonal faces. For N=141 and
N=172 the Voronoi representations include four-connected
vertices, and Q�12.

The next defect we identify can be described as an ex-
tended dislocation, or scar,31 and consists of a heptagon and
two adjacent pentagons in the Voronoi representation. This
defect carries a net topological charge of 1, and has been

TABLE I. Improved global minima for the Thomson problem at
selected sizes. The number of polygons refers to faces with 5, 6, and
7 sides in the corresponding Voronoi construction.

N
Energy

�atomic units�
�2E−N2�

N3/2

Point
group

Polygons

5 6 7

188 16249.2226789 −1.103901 D2 12 176 0

206 19585.9558565 −1.103980 C2 12 194 0

218 21985.2639489 −1.103998 C2 12 206 0

229 24307.5993133 −1.104000 C1 13 215 1

234 25401.9317866 −1.104099 C2 12 222 0

241 26975.1902840 −1.104052 C3 12 229 0

246 28128.0514643 −1.104070 D2 12 234 0

252 29543.5228681 −1.104135 C2 12 240 0

258 30994.2135775 −1.104119 C2 12 246 0

264 32479.9081412 −1.104136 D2 12 252 0

269 33744.8007328 −1.104143 C1 12 257 0

312 45629.3138040 −1.104219 C2 12 300 0

327 50199.5714196 −1.104287 C2 12 315 0

362 61719.0519098 −1.104301 C1 17 340 5

432 88353.7096820 −1.104425 D3 24 396 12

482 110317.9966044 −1.104511 C2 22 450 10

492 115005.0932623 −1.104528 C2 24 456 12

522 129655.3224067 −1.104563 C2 24 486 12

572 156036.2192910 −1.104626 D3 24 536 12

612 178909.7952490 −1.104647 C1 24 576 12

632 190936.2620761 −1.104684 T 24 596 12

642 197097.1993002 −1.104679 C1 24 606 12

672 216169.9939945 −1.104693 C1 24 636 12

732 256972.4358872 −1.104748 T 24 696 12

752 271360.9889196 −1.104754 C2 24 716 12

762 278703.0608815 −1.104750 C2 24 726 12

792 301319.8733917 −1.104779 T 24 756 12

812 316890.4580541 −1.104789 C2 24 776 12

842 340985.6576387 −1.104785 C1 24 806 12

912 400657.6165027 −1.104821 C1 33 858 21

932 418594.2339500 −1.104834 C1 35 874 23

972 455651.0809351 −1.104867 Th 36 912 24

FIG. 1. �Color online� Voronoi representations of global minima
for selected sizes that exhibit pentagon patches. N=47 also has a
pentagon pair defect.

FIG. 2. �Color online� Global minima for selected sizes that
exhibit the 3�3 defect. Both the Voronoi construction and a real-
space view are shown for N=172.
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observed before in local minima.19,31 In the global minima
reported here, such features are prevalent for intermediate
sizes, in agreement with recent predictions from a continuum
elastic model.31 The structures with 24 pentagons and 12
heptagons in Table I all feature this defect. Selected ex-
amples are illustrated in Fig. 3, including N=71, where ad-
ditional pentagons are present and the two extended defects
may be viewed in terms of distorted 3�3 patches. Our re-
sults indicate that extended dislocations are generally pre-
ferred over heptagon+pentagon pairs for most of the size
range considered.

Extended dislocations could also be viewed as embryonic
grain boundaries, which consist of pentagon-heptagon-
pentagon-¯ repeats.32,33 The smallest size considered in the
present study that exhibits a longer grain boundary is
N=792, where pentagon pair defects and extended disloca-
tions are also present �Fig. 4�. All the larger global minima
contain such features, but we also note the appearance of an
alternative “twinned” defect �with a local mirror plane� in
N=912, 932, and 972. Here two heptagons share an edge in
the Voronoi construction, with three pentagons on the periph-
ery. Each of these defects carries a net topological charge of
1. In previous experiments, grain-boundary scars were ob-
served for self-assembled beads containing more than around

360 particles.4 For the Thomson problem our results suggest
that extended dislocations of the pentagon-heptagon-
pentagon variety are still favorable in this size range, and
that grain boundaries and twinned grain boundaries become
the preferred defects for N�400. Systematic global optimi-
zation therefore complements continuum models by provid-
ing accurate data for the defect energetics, and by revealing
structures such as the 3�3 patches and twinned grain
boundaries.

To characterize rearrangements between different local
minima we have calculated transition states using hybrid
eigenvector-following techniques,34,35 as implemented in the
OPTIM program.28 Two examples are illustrated in Fig. 5 for
migration of an extended dislocation in N=732 and intercon-
version of twinned and conventional grain boundaries in
N=972. Our results indicate that low-lying minima for the
Thomson problem can generally interconvert via relatively
facile defect rearrangements. We therefore conclude that me-
soscopic systems exhibiting coarse-grained structure corre-
sponding to the Thomson problem could exhibit significant
fluxionality. Hence suitable annealing could produce materi-
als with uniform properties, a key goal of nanotechnology.
The mesoscopic systems that might be relevant here would
involve building blocks interacting via relatively isotropic
forces, which might include multielectron bubbles in super-
fluid helium,5,36 cell surface layers in prokaryotic
organisms,6,37 “colloidosomes,”4,7,38 colloidal silica
microspheres,8 superconducting films,10,39 and lipid rafts de-
posited on vesicles.9 Rearrangements between fullerene
cages, which have a dual topology to the Thomson problem
and involve strong anisotropic covalent bonds, are known to
have relatively high barriers.40–42 Nevertheless, the organiza-
tion of the energy landscape42–44 is such that even here
suitable annealing can produce a specific structure, i.e.,

FIG. 3. �Color online� Global minima for selected sizes that
exhibit extended dislocations consisting of a heptagon and two
pentagons.

FIG. 4. �Color online� Global minima for selected sizes that
exhibit grain boundaries and twinned grain boundaries.

FIG. 5. �Color online� Defect migrations linking the global
minimum to a low-lying local minimum for N=732 �top� and two
low-lying minima for N=972 �bottom�. The forward and reverse
barriers in atomic units are 6.60�10−4 and 4.22�10−4 for
N=732 and 4.24�10−3 and 1.04�10−3 for N=972.
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icosahedral C60 �buckminsterfullerene�.45,46

It is remarkable that the venerable Thomson problem is
probably more relevant today than at any time since its in-
ception as a model of atomic structure. Our study reveals

defect structures and dynamics that are likely to be important
in a variety of materials. In particular, the favored defects
and their rearrangements will play a key role in determining
observable mechanical, electrical, and optical properties.
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