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A method for calculating thermodynamic properties of clusters from knowledge of a sample of
minima on the potential energy surface using a harmonic superposition approximation is extended
to incorporate anharmonicity using Morse correction terms to the density of states. Anharmonicity
parameters are found for different regions of the potential energy surface by fitting to simulation
results using the short-time averaged temperature as an order parameter. The resulting analytical
expression for the density of states can be used to calculate many thermodynamic properties in a
variety of ensembles, which accurately reproduce simulation results. This method is illustrated for
13-atom and 55-atom Lennard-Jones clusters13®5 American Institute of Physics.

I. INTRODUCTION figuration of a system can be mapped onto a minimum of the
PES, an “inherent structure,” by a steepest-descent path or

Before Monte Carlo(MC) and molecular dynamics uench.” This mapping allows the partition function to be
(MD) simulations became computationally feasible, consid- 4 ' bpIng P

erable attention was given to the calculation of thermody-separated into a term due to the energy spectrum of the in-
herent structures and a term due to thermal motion within the

namic properties of clusters from knowledge of the vibra- . . .
tional spectrum of a low energy structure using a harmonié’ve”S of the inherent structures. This approach can give much

approximatiort—> McGinty and Burton realized that if their greater physical insight into a process such as melting, be-

results were to have relevance for more than low temperatur(éause_ the thermodynamics_ can be related to the _structures of
behavior other configurations needed to be included in theif’® Minima on the PES. Similarly, an understanding of how
partition function?=*but without the means to systematically the structure and topology of PES's differ can be used to
search the potential energy surfa@ES they were unable €xPlain differences in thermodynamic properties.

to implement this extension of their approach. The objective ~ 1h€ success of Berry and co-workers in elucidating the

behind these studies was to get free energies in order to studﬁe!ting of small Lennard-Jones clusters was partly based on
homogeneous nucleation. their emphasis on understanding the thermodynamic and dy-

Once MC and MD simulations became feasible, work on"@mic properties in relation to the qualitative features of the
the thermodynamics of clusters concentrated on obtainingES->**In particular they used systematic quenching to find
thermodynamic information from the simulations, as the in-the important low energy minima on the surface. This pro-
formation gained is “exact” within the statistical errors of cedure has now become a standard tool in understanding the
the simulation. In particular, it includes the thermodynamicthermodynamics and dynamics of clusters and has been ap-
effects of anharmonicity. This approach has been most sudllied to LJ;° argon;® alkali halide;"** metal;® water?® and
cessful. The multihistogram methbused by Labastie and Ceo Clusters:?* Similarly, a knowledge of the transition
Whetten extracts the configurational density of states frontates on the PES can provide a greater insight into the dy-
simulation® Convolution with the kinetic energy density of hamics of a systerft This information was first obtained by
states gives the total energy density of stafe¢E), from the application of the eigenvector-following and “slowest
which many other thermodynamic functions can be calcuslides” methods, and has been used in combination with
lated. Labastie and Whetten applied the method to the firsjuenching to understand the melting dynamics of smaffLJ,
three icosahedral Lennard-Jonés)) clusterss unequivo-  alkali halide!’” metal}® water?® and G, clusters?*??
cally showing that there ar&-bends(or Van der Waals Bixon and Jortné¥ considered the effect of model en-
loops in the microcanonical caloric curves of dsJand  ergy spectra of the inherent structures on thermodynamic
LJ, 4. This method has since been used to calculate the confroperties, in particular on the microcanonical and canonical
plete phase diagrahfor LJss and to investigate the melting caloric curves. They showed that a large energy gap between
transition for Lz and(H,0).1° The multihistogram method the global minimum and a manifold consisting of a large
obtains Q(E) to within an unknown multiplicative factor, number of higher energy minima was necessary to produce a
and this is sufficient for most applications. Weerasinghe angignificant feature in the caloric curves.

Amar used an adiabatic switching method to fix the absolute ~ Subsequently, we have developed an approach in which
value of Q(E), and subsequently used(E) to calculate Q(E) is directly calculated from knowledge of the PE'S?
rates of evaporation of LJ clusters using phase spacA sample of minima is generated by systematic quenching
theory*! from a high energy MD runQ(E) is then calculated by

Although numerically successful, the above approactsumming the harmonic density of states for each minima.
gives little physical insight into the processes being simu-This approach has been called the harmonic superposition
lated. Stillinger and Weber in their studies of bulk melting method. It has been applied to #%?® water?® and model
introduced the idea of “inherent structure®”Every con- metal clusterS to calculate the microcanonical caloric
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curve, the heat capacity, the Helmholtz free energy, the CaraBLE I. Details of the two samples of minima used forsk JE' is mea-
nonical total energy distribution functid?>?®Landau free  sured with respect to the global minimum icosahedron.
energy barriers® and thermodynamic properties for different

. : . E'/ Number of mini
regions of the PES, defined by a suitable order parameter. ¢ umber of minima
Frankeet al. have independently applied the same ideas to A 64.7485 989
small LJ clusters? B 70.2485 1153

In Sec. Il we briefly review the harmonic superposition
method. In Sec. Il we consider possible ways of including
anharmonicity, and in Sec. IV we apply the resulting expres-
sions for the density of states to calculate a variety of ther- Q(E) = 2
modynamic properties. Ldand L} are used as examples to
evaluate the effectiveness of the method. These are the two
smallest icosahedral clusters and have been much studig¢here the sum is now over a representative sample of

gsnf (E—E~ 1

l—‘(l()l_[]f‘zlhvi5 ' ©

0
EQ<E

theoretically because of their special stability. minima. The effect ofgs can be incorporated by using the
quench statistic& If the system is ergodic and the MD run
Il. THE HARMONIC SUPERPOSITION METHOD is performed at constant energy, the number of quenches to a

. i _ minimum, vy, is assumed to be proportional to the density of
The total energy density of states associated With &iates of the set o), minima, i.e., Y(E').*gQ(E')..
single minimum on the PES s, in the harmonic yance

approximationt

Q(BE)s
(E—EO)<? o QE)x X YE)s 5= 4
= 7 - Q(E
{HE) L (I jhy; 6(E-ED. @ Eg<E (Es
whereE® is the potential energy of the minimung,is the [ E-EJ\**
Heaviside step function, and, the number of vibrational = 2 y(E)s E'—EJ : ®)

0
degrees of freedom, isNB—6. To calculate the density of Es<E

states for the whole system, all the minima on the PES nee@hereE’ is the energy of the MD run.

to be considered. We make a superposition approximation If all the low energy minima are known, the& formula
and sum the density of states over all the minima low enoughvill be accurate at low energies. Therefore, the proportional-
in energy to contribute. This approximation is equivalent toity constant in the above equation can be found by matching
assuming that the phase space hyperellipsoids associatgdo the low energy form of the* formula. For LJ; and

with each minimum do not overlap. This gives LJss, the term due to the icosahedron is dominant at low
n*(E—E%)<1 energies, and other terms in the sum can be neglected. Com-
QO(E)= E S s 2) paring the first terms of Eq%2) and (5) gives for the pro-

[0 hvs’

EO<E portionality constant,
where the sum is over all the geometrically distinct minima . ng(E'- EQ) !
on the surfacen} , the number of permutational isomers of c= y(E’)OF(K)HlethQ' ©®)

minimums, is given byn} = 2N!/hg, whereh, is the order N )
of the point group of. A critical test of these formulas fof)(E) is the pre-

The difficulty with Eq. (2) is that for all but the very ~dicted microcanonical caloric curve, which forgshas ars-
gend” Using the thermodynamic definition of the microca-

smallest clusters this sum involves an impractically larg _
nonical temperaturet , ,

number of minima. Hoare and Mclnn&sand more recently
Tsai and Jordait have enumerated lower bounds to the num- 1 (@ In Q) 1 (59)
I N V’

Q

JE ™

ber of geometric isomers for LJ clusters from 6 to 13 atoms. |7 = | " g
This number rises exponentially with. Extrapolating this
trend gives for LJ an estimate of X10?* geometric iso- an expression fof , can be derived® For L1 we have two
mers. In such a case, as it is not possible to obtain a complegamples of minima produced by systematic quenchfirg-
set of minima, a representative sample is needed. A large s#dils of which are given in Table I. Sample A is from a MD
of minima can be obtained by systematic quenching from aun at an energy in the upper end of the coexistence region,
high energy MD trajectory. However, this gives a greaterand B at an energy just into the liquidlike region. The results
proportion of the low energy minima than of the high energyfor samples A and B using the* and y formulation$® are
minima. Consequently, if the sample is used in B).itis  given in Fig. 1. From this it can be seen the formula fails
likely to underestimate the density of states due to the higloadly, predicting only an inflection in the caloric curve which
energy minima, and so be inaccurate at high energies. is too high in energy, because it underestimates the contribu-
A method is needed which corrects for the incompletetion to Q) (E) from the higher energy minima. Theformula
nature of the sample of minima. This correction can beis much more successful, reproducing Bend at the ob-
achieved by weighting the density of states for each knowrserved energy? That the harmonic superposition method
minimum by g5, the number of minima of energil for  produces a caloric curve with the correct features shows, as
which the minimums is representative. Hence, Bixon and Jortner suggestéfl,that the distribution of

N,V
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Comparison of the caloric curves from simulation and the
harmonic superposition meth@#ig. 1) shows that the har-
monic superposition method does indeed underestimate
Q(E) and so the harmonic approximation is likely to be the
main source of error.

0.50

0.45 1

0.40 1

£ 0351
% 030
2 I1l. ANHARMONICITY
0.25 1
020- Most attempts to model anharmonicity have concen-

trated on small systems. As the size of the system increases
3 40 0 € 70 8 90 the difficulty increases greatly. For example, it would be im-

eneegy /e possible to do the necessary multidimensional phase space
integrals in the definition of)(E),

b

FIG. 1. Microcanonical caloric curves for 5] The solid lines were calcu-

lated from they formula, the dashed lines were calculated from ttfe 1

formula, and the dashed line with diamonds shows the simulation points. . P

The sample of minima used in the calculations is marked on the graph. For Q(E)= F f f S(H— E)dq d p- ®
details of the simulation see Ref. 31.

Most approaches either attempt to calculate the anharmonic
element using known information from the PES, such as the

minima is critical in determining the form of the caloric third and fourth derivatives of the potential at the minima
curve. However, theS-bend is too shallow and lies at too and the dissociation energié®r assume the PES has a cer-
high a temperature. The temperature difference is due to th@in topology for which the partition function is knowf-3®
harmonic approximation. The temperature rises linearly withA normal mode approximation is often used because the
energy for a single harmonic well. The anharmonic wells ofmultidimensional partition function is then the product of the
the cluster, however, are flatter than the harmonic case espene-dimensional normal mode partition functions. However,
cially around the transition state regions. Consequently, theo obtain the density of states the partition function must be
cluster spends more time in these high potential energy, lowhverse Laplace transformed. This problem does not neces-
temperature regions of the PES, and so the true temperatusarily have an analytic solution, but there are a number of
is lower than that given by the harmonic approximation.  numerical method&>4°

For smaller clusters it was found that the performance of  The only attempt that we know of to evaluate analyti-
the n* formula improved?® This improvement occurs be- cally the anharmonic density of states of clusters is due to
cause there are fewer minima on the PES of a smaller cluste&Thekmarev and Umirzako¥. Their expression contained a
and so the set of minima obtained from quenching is moréwumber of unknown parameters, which they had to estimate.
complete. This approximate approach was partly due to their lack of

The harmonic superposition method has three main posnformation about the PES of Lg the cluster they consid-
sible sources of error. The first is from the systematicered. They showed their form was able to produce the types
quenching and the resulting sample of minima and quencbf feature seen in the Lgcaloric curve, if not to reproduce
statistics. These errors can be mostly eliminated by having & accurately. The approach we use here is similar. We are
long enough quench run to ensure ergodicity and choosinfpoking for a relatively simple method that will provide an
an appropriate energy for the run so that the relevant regiongnalytical expression for the anharmonic contribution to
of phase space all have significant probabilities. When studye) (E). We also want to examine how far it is possible to use
ing the thermodynamics of melting it is most appropriate toinformation extracted from the PES in this task. We will
chooseE’ to lie in the coexistence region, as in the case offocus on LJs as a test of the methods developed. Fag ke
sample A, so that quenches to solidlike, liquidlike, andhave a sample of 3481 transition states which were found
surface-melted states are frequent. The second possibl®m a random selection of 402 of the minima in sample B
source of error is the assumption that the phase volumes fafefined abové? We have also calculated the analytical third
each minima can be summed independently, i.e., the hypederivatives for this potential.
ellipsoids in phase space do not overlap. If they did the over- "
lap would causé€)(E) to be overestimated. Of course, aboveA' The effect of transition state valleys
an energy threshold the true phase volumes of each mini- Transition states are crucial to the dynamics of a system,
mum are interconnected, but this interconnection is normallyput how much effect do they have on the thermodynamics?
due to the extension of the phase volumes due to anharméssociated with a transition state is a flat valley on the PES
nicity to form necks in phase space along the transition statehich connects two minima. These transition state valleys
valleys. The third possible source of error is the harmoniavill make a contribution ta()(E). To consider their effect
approximation. Near the bottom of the well this is a reasonwe need an expression for the density of states of a transition
able assumption, but as the energy is increased some partssiate valley.
the well become increasingly flat. Consequently the har- We write the partition function for the transition state
monic approximation causeQ(E) to be underestimated. valley as a product of a vibrational partition function for the
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(k—1) modes orthogonal to the transition vector and a trans- nt [ (E-EY)~? > m
lational partition function for motion along the transition QE)= = + —
. . . o h | T’ [(k—1/2)
state valley. This separation gives Es<E =27
L [27m e FBs OsiLs(E—EJ—Ag )32
““h N7p T g © x 3 e @
i=1P1 EQ+Ag<E i=1%

wherelL is the length of the transition state valley. Inverse
Laplace transforming this expression gives for the density Of/vhereAst is the barrier height of transition statefrom

states of the transition state valley, minimumss, and the reaction path degeneracy,=hg/h, or
o7 L(E E,o)3/2 2hg/h; for nondegenerate and degenerate rearrangement
Q(E)=— = O(E—Ey). (10  mechanisms, respectivély. A degenerate transition state
h I T (k= 1/2) . . : s
= connects different permutational isomers of the same mini-
Our expression for the total density of states is then mum. In they formulation we now have

(E—EQ M (k)T v+ V2T (k= 1/2)2g0y s <Eo-stht(E—Eo o) YA vt
(E'—EQ" YT ()L v+ N2 mmiT (k— 1/2)2g0: s <pr0sibsi(E' = —EQ—Ag ) I vt
(12)

QE)= X y(E')s

0
EQ<E

Geometrically, the phase volume associated with the transthe harmonic curve and th&-bend to be displaced down-
tion state valley is an elliptical hypercylinder. There is also awards, but these effects are small. Even if the number of
term due to the phase space overlap of this hypercylinderransition states connected to a minimum is assumed to be
with the hyperellipsoid associated with the minimum. It cangreater than 20 the effects are only slightly increased. The
be evaluated? however it is a small term and so we neglect addition of the density of states of the transition state valleys
it, especially as initially we are only trying to determine the only accounts for a small part of the difference between the
magnitude of the effect of the transition state valleys. harmonic and the true caloric curves. This result occurs not
The set of transition states previously calculated is nobecause the contribution of the transition state valleys to the
an exhaustive set for the sample of minima. Its incompletedensity of states is small compared to that of the minima—in
ness could cause an underestimation of the density of statéact the transition state valleys make a larger contribution
arising from the transition state valleys. We therefore perthan the minima above about &5Rather it occurs because
formed a more exhaustive search for transition states from 18e density of states for the transition state valleys is not very
minima representing a wide range of energies. This searctlifferent from that of the minima; the valleys are modeled as
indicated that a reasonable estimate of the average number lo&rmonic in all but one dimension. We therefore conclude
low energy transition states per minimum was(86t count-  that a method of modeling the anharmonicity of the wells on
ing permutational isomersFor each minimum the density of the PES is needed to obtain an accufafg). This agrees
states of the known transition state valleys was multiplied bywith Stillinger and Stillinger’s conclusion that intrawell an-
20/ng,, whereng, is the number of known transition states harmonicity is dominant for Ls} because the caloric curve
for minimum s. If the sample of transition states contained significantly deviates from the harmonic form at energies
none connected to a particular minimum, it was assigned 2@here the cluster always resides in the icosahedral Well.
transition states with the average barrier height and average
frequency. The length of the transition state valley was estip The effect of well anharmonicity

mated using
Here we follow the method of Haarhdff*°to calculate

1 2A an anharmonic correction term to the density of states. The
Lst=Dst— 55 Ve (13)  energy levels for a Morse oscillator are given by
1 2 (hv)?
where Dy, is the displacement in configuration space be- E= n+§ hv— n+§ 4D (14
s e

tween minimums and transition staté, and »® is the geo-
metric mean normal mode frequency ©fThe second term This quadratic can be solved for The root corresponding to
is the geometric mean radius of the harmonic well in con-2 bound state is
figuration space at an energyabove the minimum. 1 2D, E

From the expression fd(E) in Eq. (12) the tempera- n-+ 5= ( —\/1- D—)
ture can be calculated using Hg). It can be seen from the v
microcanonical caloric curves given in FigaRthat the tran-  Assumingn is continuous and differentiating with respect to
sition state valleys cause the caloric curve to bend away frork gives a classical density of states,

(15

e
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9663
042 Morse oscillator, but for the case of a cluster isomerization
0.0 Q(E) remains finite aE— A from below, whereA is the
' barrier height. As we are seeking a correction term for well
0381 anharmonicity, it seems reasonable to truncate(Eg). and
PR examine the effect of the first term in this series. Laplace
g 0341 transformation then gives for the partition function
g 0.32 1 ( 1 1 (17)
g 0301 7=— | —+ ——|.
- h 2AB°
0.28 + v 'B '8
026 1 The multidimensional partition function is then
02417 . —
45 50 55 60 65 70 75 80 2 H 1 14 1 18
(a) energy /€ = - ﬁhv] ZAlﬁ . ( )
0.36 =
Making the approximation that an average value df &¢an
4 be used then gives
0.321 |
L 1 5 Cfa
£ 0301 7= 2 I (19
% i hwy 7 B
g 0.28
g 026 wherea=(1/2A) is an anharmonicity parameter a@¢ is a
' binomial coefficient. Inverse Laplace transforming gives
0.24
1 K IKaIEK+|7l
e Q(E)= > : (20
45 50 55 60 65 70 75 80 K
(b} energy /€ szlhyj F(K+I)

=0

FIG. 2. Microcanonical caloric curves for i5lusing(a) the y formula with The_ total (_1e_n5|ty of states is found by summing over all the
(solid line) and without(dashed lingthe contribution from transition state MINIM&, giving
valleys, and(b) using the y formula including anharmonic terms with

minima samples Asolid line) and B(dashed ling In both (a) and (b) the

calculated caloric curves are compared to simulatdashed line with dia- Q(E)= 2
monds.

n* < Cray(E—EQ)~+~t

S
I, hvy Eo I'(k+1)

(21)

0
Eo<E

Converting the above equation to theformulation using

dn 1 Eq. (4) gives
QE)=z=—F——
(E) dE hvy1-E/D, “ cral(E—EYr+I-1
QE)* D HEN D ————

1 1 E E\? 16 e 5 T(k+1)

“m |ttt elD,) T @9 :
where the square root has been expanded binomially. The EK: ClayE'—E)«+'~? 05
expansion is valid ifE/Dg is small. The first term in the T'(x+1) ' (22
series is the harmonic term. The full series will diverge as =0

E—D,. This divergence is the correct behavior for the The temperature follows from Eg7),

zEg<Ey(E'>s[zro[craL<E—E2>K+'-1/r<f<+l>] /E.“o[craL<E'—E8>K+'-1/F(K+|>J]

T,=

. (23
kEEg<Ey<E'>S[Ero[craL(E—Eé’)K“—Z/r(KH—1)] /zro[cra's(E'—ES)K*'—1/P<K+|>]]

This anharmonic correction term has a similar form to thatof a 1D Morse oscillator can be found from the second and
used by Chekmarev and Urmirzak8wut has been derived third derivatives of the potential by
in a different way.
We consider two possible ways of calculatiag from
the potential energy surface of 45J First, we consider using _ (V)3 24)
the third derivatives of the potential. The dissociation energy e (V" (
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If off-diagonal elements in the multidimensional case are ig-good quantitative measure of the anharmonicity of an indi-
nored, the above equation can be used to calculate the barrieidual minimum. This method was therefore not considered
heights associated with each normal mode. Using analyticdurther.
third derivatives of the LJ potential, the Cartesian third de-  Therefore, instead of trying to obtam, from the PES,
rivatives for the Lds icosahedron were calculated and trans-we considered how it could be obtained by comparison with
formed to obtain the diagonal elements in the Hessian eigerthe simulation results. I is taken to be independent of the
vector basis. This scheme underestimates the anharmonicignergy of the minimum, then a value af can be found
and gives values which when substituted into E2) have  which reproduces th&-bend in the caloric curve at the ob-
an insignificant effect o) (E), because the off-diagonal el- served temperature and energy, but the temperature differ-
ements, which far outnumber the diagonal elements, shouldnce between the two turning points is still too small. How-
not be neglected. However, there is no obvious way to calever, one would expect the anharmonicity to depend upon
culate the effect of the off-diagonal elements and for a systhe energy of the minimum; the higher energy minima are
tem such as Lsi the transformation of the third derivatives likely to have a greater anharmonicity than the solidlike
into the Hessian eigenvector basis is too computationally exminima.
pensive for the off-diagonal elements. In an accompanying paperwe have shown how ther-
The second method considered was to use the barrienodynamic properties can be calculated for different regions
heights of our transition state sample. An average barrieof the PES defined by a suitable order parameter by restrict-
height was calculated for each minimum, but for someing the sum of Eq(22) to minima in these regions. This
minima it led to a gross overestimation of the anharmonicityprocedure gives fol;, the temperature of regian
and unphysical caloric curves. The barrier heights are not a

EEg<E,s€iy<E'>s[Er_o[cra's<E—E2>K+'—1/F<K+I)] /Er_o[cra's<E'—ES>K+'-1/F<K+|>]]

Ti= (25

szg<E,SEiy<E'>s{2ro[craL<E—E2>K+'-2/F<K+I—1)] /Ero[cra's(E'—ES)K*'—1/F<K+I>J]

In the other paper the short-time averag8d@A) temperature V were chosen that were intermediate between the values for
is used as an order parameter to distinguish regions of theegions Ill and VI, but as these regions only make a small
LJs5 PES, and it is shown that these regions are associatambntribution to€)(E) the exact value chosen will only have a
with minima in the different potential energy ranges given invery small effect on the overall caloric curve. The values of
Table II. Region | corresponds to the solidlike state, regions; are given in Table Il. As would be expected the anharmo-
Il and Il to surface-melted states, and region VI to the lig- nicity increases with the potential energy of the minima.
uidlike state. Consequently, the temperatures associated with The microcanonical caloric curve was calculated using
the minima in the energy ranges |, Il, 1ll, and VI are known. these values o4, . Figure Zb) shows that for sample A the
Different values of the anharmonicity parametay, were calculated curve is in remarkable agreement with the simu-
therefore assigned to minima in the six different energylation results. The calculate8-bend now has the correct
ranges. Values were chosen for regions 1, I, 1ll, and VIdepth, because the effect of the greater anharmonicity of the
which reproduced the simulation results in Fig. 13 of Ref.liquidlike state is to increase the difference in temperature
31. The caloric curves for each region accurately fitted thdetween the two branches of the caloric curve. The success
simulation curves showing that our anharmonic correctiorof this method can be understood from the equation

term has an appropriate form. Valuesapffor regions IV and

1 pi
= =, 26
T E| T (26)
TABLE II. Partition of the minima of Lds into energy ranges and values of
the anharmonicity paramete,, for each range. Values for |, Il, lll, and VI wherep; is the probability that the cluster is in regionThe
were found by fitting the temperatures for these regions to the simulatiorbrobab”ities alE’ p_(Er) are fixed by the quench frequen-
results. . T H ’
cies,
Region Lower energy bound/ Higher energy bound/ a;/e* ,
N Zscivs(E)
| —279.248 47 —279.248 47 0.50 pi(E")= SolE) (27)
I —276.604 29 ~276.199 35 0.51 s7s
:i'/ _Zg-ggg 88 _Zi-ggg 88 8-22 Furthermore, we show elsewhere that calculated from
Vv —271.500 00 —268.840 00 0.70 sample A are in excellent agreement with simulation over a
Vi —268.840 00 0.73 wide range of energ3} The values of; have been chosen to

reproduce the simulation temperaturgs, and so the overall
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temperatureT, is bound to be very accurate. Sample B pro-TABLE IIl. Details of the two samples of minima for L5l E' is measured

duces worse results because there are fewer quenches to i respect to the global minimum icosahedron.

solidlike and the surface-melted states, and so their quench

frequencies are subject to larger statistical errors than far

Samp|e A. C 13.7768 95
For LJ 5, the STA temperature distribution is bimodal. D 18.3268 295

The high temperature peak corresponds to solidlike clusters

associated with the icosahedral global minimum, and the low

temperature peak to liquidlike clusters. The residence times

in the solidlike and liquidlike states are much shorter than for 2(Ex)

LJss and so the information provided by short-time averaging Tk ==~ (30

for LJ;; is less well-resolved. We partitioned the minima _ L ) )

distribution into these two regions, and assigned valueg of T_h|s expressloglls exact in the canonical (_ansemb_lg,TlRut

to each. The values & were higher than for Ly} and the differs by @(N™ ") frpm the .thermody.namlc definition of

curvature of theT, curves differed from the simulation re- €mperature, Eq7), in the microcanonical ensemiteFor

sults. The apparently greater anharmonicity can be explaine’ss the difference between the thermodynamic and kinetic
by the larger number of surface atoms fog4.Jrhe incorrect  €MPeratures is negligible. For flit is still small but not
curvature suggests that the energy dependence of the densiigignificant, and sd rather than, is fitted to the simu-
of states is inappropriate and so the second-order Morse cdftion results. Bixon and Jortner found both temperatures
rection term to the density of states was included. The resulroduced very similar results in their model calculations of

ing T, curves fitted the simulation results much more aCCU_the microcanonical caloric cun?é.T, has been obtained for

rately. The partition function for a single minimum including "€ Superposition method by Frankeal. using the equipar-

E'le Number of minima

this term is tition theorent? however this method cannot be applied
when anharmonicity is included. We obtaify through a
2-11 1 14 3+3 EHK different method. First, we note that
o Bher [T BB :
<EK>ZJO P(Ex)Ex dEk
k  k—I
1 3mal+2m
=2 2 D oeremm (29 1 (E
i hyy 7o = "B " V5] Jo ExQc(E—Ex)Qx(Ex)dE, (3D

where whereQ(Eg) is the kinetic density of state§).(E.) is the

K= _ configurational density of states, and the potential engrgy
Motml (k=1 —m)! is given byE .= E—E . DeconvolutingQ«(E) from Q(E)
Inverse Laplace transforming and summing over all minimagives

gives for the total density of states,

* K| O (Ep)=

K!

n 2m KIZHK_ i
Q(E)= E HK—ShSE (27rm) j=1VYj
E0<g =1} =0 m=0 -1 1+2 -
s K K DX 3ma m(E_EO)K/2+I+2m 1
B % E E I,m S S
Di‘m3Mag “M(E—Eg)*H! At [(x/2+1+2m)
’ (29 =0 m=0
I'(k+14+2m)
In a MD simulation one calculates the kinetic tempera- (32
ture, T¢, from the kinetic energyEy , via the generalized Integrating Eq(31), summing over all minima and substitut-
equipartition theorem, ing into Eq.(30) gives

Seoce NIy 1§ 5{0 E50 Dify 3Mag" ™ (E-EQ* 2T (k+1+2m+1)

Tk= _ .
K kZgoog g/, S SE T Dl 37l 2 (E—E)< 2N T (k14 2m)

(33

Sample C(Table IIl) was used to calculate the caloric minima. The values o&; assigned to solidlike and liquidlike
curve of L5 for the y formulation because it was produced clusters are given in Table IV. From Fig. 3 it can be seen that
from a MD run in the coexistence region and so should havéhe caloric curve given by the* formulation agrees very
more accurate quench statistics for the low energy minimaywell with simulation, because it is possible to obtain a near-
and sample D was used for thé formulation because itis complete set of minima for LJ. The y formulation, how-
from the liquidlike region and so has a larger sample ofever, has too high a transition temperature. This error arises
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TABLE IV. Values of the anharmonicity parametex,, for the solidlike(l) Harmonic and anharmonic results for the caloric curves,
and liquidlike (1) regions of the PES. Region | is the potential well of the the heat capacit¢, , the Helmholtz free energk, the tran-
icosahedron and region Il consists of all other minima. sition temperaturé'l,z, and the latent heaIm are Compared

Region ale ! in Figs. 4 and 5 and Table V. We defiiig,, as the tempera-
ture for which the two states have an equal Landau free
|I| g'ggg energy,F(E.). L, is the internal energy difference between

the two states af,;, and was obtained by extrapolating the
caloric curves for each state 1q,, using Eq.(25). For LJ;3,
this procedure simply givek,,=U,—U,, whereU; is the
because the probability that the cluster is in the solidlikeinternal energy of regioni. For Lks;, we have used
state derived from quenching is higher than the correspond-m=Uy_y—U,_v, WhereU,_,, is the internal energy for
ing probability derived from the STA temperature distribu- the region of the PES formed from the combination of re-
tions. In they formulation the probabilitiesp;, at E’ are  gions I-1V, and solL, does not include the latent heat of
fixed by the quench statistid€q. (27)], and so this con- surface-melting. Just integrating, over the transition re-
straint leads to the higher transition temperature. The differgion would overestimaté ;, because it would also include
ence between the probabilities derived from quenching anthe energy needed to raise the temperature of the cluster.
the STA temperature distributions may be because there are The anharmonic caloric curves are displaced downward
regions of the PES which are in the basin of attraction of theand away from their harmonic equivalents because of the
icosahedron but which have thermodynamic properties simiincreased densities of states associated with higher potential
lar to a liquidlike well, or because the short-time averagingenergy, lower temperature regions of the PES. The anhar-
does not distinguish between the solidlike and liquidlikemonic heat capacity curve of Lglis in very good agreement
states with the same resolution as foggd.JThis difference ~ With results from the multihistogram MC meth8dhe peak
does not stem from the quench method since we obtainei® the heat capacity curve is larger and sharper when anhar-
similar quench statistics with steepest-deséémionjugate  monicity is included. This change can be understood by con-
gradient}® and eigenvector-followirfty methods. sidering a two level system, which is a reasonable model to
describe the equilibrium between solidlike and liquidlike
states of the cluster. The partition function can be written as
Z=%,Z;, where the sum is over the two distinct regions of
The accurate expressions fa(E) developed in the pre- phase space. It follows that
vious section can be used to give a wide range of thermody-
namic functions, in fact, all except those that depend on de- = d1n Z) __1 > (a_z') => pU,
rivatives of N or V. The exceptions arise because the By ZTNBl, TV
thermodynamic properties of small clusters are discontinu-

IV. THERMODYNAMIC PROPERTIES

(34)
ously dependent oN and because the volume of a cluster is B _
hard to defind. The formulas for the functions illustrated in "WHerePi=Zi/Z andU;=—(dIn Zi/dB)y,y . Hence,
this section are given in the Appendix. They have, for the Ju ap;
most part, been derived in previous work within the har-C,= 9T :E PiCy it U, T
monic approximatiod®=>° the extension to incorporate an- (A NV
harmonicity follows simply from the expressions given in ap, 1
Sec. lll. The results are given for the most accurate partition = > (C,1tC,2)+Ln (9—_'_) when p;= P2=7,
functions; the first-order correctegdformula for L%g and the N,V
second-order correctatt formula for LJ5. (35)
Whel’eLm= UZ(Tl/Z) - Ul(TIIZ) andCU’i = (0')U|/(9T) N,V - AS
Ip; 1\2(dz 1/ 9Z; i
R A E 3 e,
aT kT4 z7\ 9B Z\ 9B kT
N,V N,V N,V
. (36
P (9P2) P1P2 L 1
= —| == (U,—U;j)=—=— when p;=p,=5.
E ( oT |y KTZ 172 U AKT, 122
£ (37)
Substituting this result into Ed35) gives
C L (C C, ) —ern (39
3 ¥ I I I ; y v o v,l+ v,2 + 2
8 10 12 energ)l]éi/ﬁ 16 18 20 2 4kT1/2

FIG. 3. Microcanonical caloric curves for LgJusing then* formula (solid The greater anharmomcny of |IQUId|Ike minima cau to

line), the y formula (dashed ling and from simulation(dashed line with
diamonds$. Both then* and y formula curves include anharmonic terms.

be larger when anharmonicity is included. This change has
two effects; it increases the area under the heat capacity
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FIG. 4. Comparison of harmonic and anharmonic thermodynamic functionssgf (&) the microcanonicalsolid line) and canonicaldashed ling caloric
curves;(b) the isopotential caloric curvéc) C,(T); and(d) A(T). In all except(a) the anharmonic curve is denoted by a solid line and the harmonic by a
dashed line. Energies are measured with respect to the global minimum icosahedron.

peak, and causes the cluster to change between the two stafes a narrower range of the independent variable, i.e., the

more rapidly with temperature, decreasing the width of thecontribution of the liquidlike states overtakes the surface-

peak. melted states at an earlier stage in the surface-melting tran-
From Fig. 6 it can be seen that the probability ogd-J sition.

being in a surface-melted state is lowest in the canonical The Landau free energf(Q), is the free energy of a

ensemble and highest in the isopotential ensemble. This re&ystem for a particular value of an order param&ert is

sult is due to the dependence of the partition function on thelefined by

independent variable3,, E, andE,., of the three ensembles.

In the canonical ensembl&, is exponentially dependent on

T, and is the most steeply varying of the three partition func-

tions. In the microcanonical and isopotential ensemifes, F(Q)=Ac=KT In po(Q). (39

and (). are dependent on powers BfandE,, respectively.

As the exponent ok, is lower than that folE, () is the

slowest varying of the partition functions. For 4J wherepg(Q) is the canonical probability distribution of the

n/ng=ng/Ng (Table VI, whereng, ng,,, andn, are the order parameter. The presence of two minimé& {i®) indi-

number of minima in the solidlike, surface-melted, and lig-cates that there are two thermodynamically stable states at

uidlike states. Consequently, as the partition function bethis temperature. Whek, is used as an order parameter,

comes more steeply varying, the surface-melted state is sesimulations have shown that 45Jhas two Landau free en-

ergy minima which correspond to the solidlike and liquidlike

states’ Bimodality in the canonical energy distribution

TABLE V. Transition temperatures and latent heats fofzlahd Ls. function, f (E), implies that there are two Landau free energy

Ly, Lles minima as a function of the order parametér, Figures 7
— . and 8 show that both Ldand L3s have a range of tempera-
11/2; ftfl (znharmf’”'?: gégig 8-5223 ture for which two Landau free energy minima are observed.
Ll’f:(a nh;rfnr;?g'o 3695 15,801 The predicted free energy curves forsk.are in very good
L:,E (harmonig 2.887 12.837 agreement with simulatioff. The solidlike and surface-

melted states both contribute to the low energy minimum in
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FIG. 5. Comparison of harmonic and anharmonic thermodynamic functions,gf (&) the microcanonicalsolid line) and canonicaldashed ling caloric
curves;(b) the isopotential caloric curvéc) C,(T); and(d) A(T). In all except(a) the anharmonic curve is denoted by a solid line and the harmonic by a
dashed line. Energies are measured with respect to the global minimum icosahedron.

F(E,). For LJ 5 the free energy barrier is much smaller andof the PES can be obtained from the quench frequencies.
has not been observed in simulations. This may be becausgsing Egs.(3), (4), and (6) an expression fog, can be
only three temperatures were tested in the simulations, thderived,

barrier is too small to be detected by simulation or the barrier

is an artifact of inaccuracies in our analytical partition func-

tion. .  Y(ENNJT S E Cfap(E' —Eg)**'~? /
The turning points inF(E;) and f(E) correspond to - ¥(E')oholli= 1] ¢ I(k+1)
points on the isopotential and the microcanonical caloric
curves, respectively. This can be demonstrated:((’ﬁc) by K CIKa!S(E/ _ Eg)K+|—1
solving the equation dF/JE;)yy=0. The solution is T D) (40
1/kT=(dIn QJIE;)Ny, Which is simply the definition of 1=0 K

the isopotential temperature. The maximaHR(E;) corre-

spond to the segment of the caloric curve with negativeFromg,, the sum [5,,(E)] and associated energy density of
slope, and the minima to segments with positive slopestates {),,(E)] of geometrically distinct minima can be cal-
Therefore the temperature range for whiefE.) has two culated using

minima is the same as the depth of tBdend in the isopo-

tential caloric curve, as can be seen from Figb) 4nd 7c),

dGp,
and 5b) and 8b). Gn(E)= 2 g5 and Qn(E)=—=. (41)
Comparing the results for Lgand L35 we see that the ES<E

effects of size are apparent. Forskthe melting transition is
much more pronounced; it has a sharper peak,jn more  This approach has been applied tgd.JFrom Fig. 9 it can be
pronouncedS-bends in the microcanonical and isopotentialseen that the number of minima for JsJises exponentially
caloric curves, a larger Landau Free energy barrier, a largewith the energy. The total number of minima in the energy
temperature range for which solidlike and liquidlike clustersrange probed by the MD quenchiljgotential energies up to
coexist, a larger latent heat per atom, and a higher melting-259) is 8.3<10. This is much less than the total number
temperature. This behavior is closer to the first-order phasef minima predicted by extrapolating Tsai and Jordan’s re-
transition of bulk matter. sults and so suggests that the number of minima will con-
Estimates of the number of minima in different regionstinue to rise exponentially above259%. The present method
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(a) and (b) the contributions of the different regions of the PES are also
indicated.

can also be used to estimate the number of minima in the
energy ranges |-V[Table VI). The number of minima in
TABLE VI. Estimated numbers of geometrically distinct minima of4 ih range Il is knowr® to be 11. The results from the guench

the six energy ranges given in Table Il calculated from the quench frequenfn:‘,quencies agree well with this figure.
cies for sample A.

Number of minima

Region anharmonic harmonic V. CONCLUSIONS
[ 1 1 Accurate analytic expressions for the density of states
I 113 6.3 that include anharmonicity have been produced fgi ahd
l'{'/ 9;;‘56 24;771-92 LJss, which primarily use information obtained from the po-
Vv 1.26%10° 1222108 tential energy surface. From these expressions, many ther-
Vi 8.30%x 10 3.11x 1012 modynamic properties can be calculated. The analytical re-

sults accurately reproduce values obtained from simulation,
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could also, in principle, be applied to periodic models of

5661 bulk matter. However, there would then be the added diffi-
j ‘ culty that the PES, and consequently the minima on the PES,
o % i .ﬂ will depend on the pressure. The expressions for the density
P ol I LI of states could also be used to calculate accurate rate con-
g stants using RRKM theory/**and so aid quantitative eluci-
% smd / dation of dynamic properties from a knowledge of the tran-
z / sition states on the PES.
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) APPENDIX
g 0044
3 In this Appendix, the formulas for some of the thermo-
002 dynamic quantities that can be calculated by the superposi-
tion method are given. The thermodynamic functions are de-
- Y . . rived from the following definitions.
0.280 0285 0290 0295 In the isopotential ensemble,
(b) temperature /ek !
Qci(Ee) 1 dIn Qg
FIG. 8. Plots for LJ; of (a) F(E,) at T=0.2869, andb) the free energy Pi(Ec)= O, KT.(E) =( JE, )NV- (A1)

barrier heightgsolid lineg and the free energy difference between solidlike
and liquidlike stateqdashed ling for F(E.). In (a) the contributions of

liquidlike and solidlike states are shown. In the microcanonical ensemble,

Qi(E)

pi(E)= aE (A2)

and give greater physical insight into the thermodynamics b)l/n the canonical ensemble,

allowing the roles of different parts of the PES to be ana-
lyzed. An alternative approach in which the partition func-Pi(T)=
tion was corrected by allowing for transition state valleys
showed little improvement from the original harmonic super- dlnzZ
position approximation. The methods developed here shoulf (T)= —< B )
be applicable to other types of clusters, although, as in our

examples, the form of the anharmonic terms would probably U
depend on the type and size of cluster considered. The§,(T)= ((ﬂ)

1
:Z_o (Z1,0tZo,1)s

! i(z +2Zy 1+Z02) — 21,0t Zo.)"
ﬁf ZO,O 2,0 1,1 0,2 '

124 ZO,O
(A3
e A(T)=ES—kTIn Z,
)
6 f(E)=Q(E)exp( - BE),
1 F(E.)=E.—kT In Q.(E.),
% where inZ, s the derivative of the exponential function of
041 B in Z has been takem times and the derivative of the
280 275 270 265 260 inverse power of3 in Z & times. ThereforeZ=2, ,.
energy /€

Below, we give the thermodynamic functions for the
FIG. 9. Plot ofG,,(E) for LJgs as a function of the potential energy of the formulation with a first-order anharmonic correction which
minimum calculated from the quench frequencies of sample A. was used for Lsk,
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Se0-g WE)Z o[ Clay(Ec—E) /> T (k/2+1)] / SiCo[CrayE' —E) YT (k+1)]

Te(Eo)=

kZgog Y(E')sZ{C ol Clag(Ec—E 2" AIT (k/2+1-1)] /E| o[Ciag(E" —E)* "' YT (k+1)]

, o T(k+1+0) Cral < Cral(E'—EY~t!-t
Z,5=C2 Y(EJ(E] e PED ; : >

k+1+6 2 ’ (A4)
R o I'(k+1) B o I'(k+1)

1 c K CIKaIS(EC_Eg)K/ZJrlfl K Clkals(Er_Eg)KJrlfl
F(E)=Ec— 5N oz 2 ¥(E')sX > ,

B B e, o L'(k/2+1) = I'(k+1)

where
ng E Cirag(E'—Eg)* "'~
T YE I P = T(k+1)
The harmonic forms can be recovered by takinglth® term. We obtain th@* formulation by replacing
[~ ClagE'—Eg<tTt o ng

cy(E')s ;O T with T v (A5)

Below, we give the thermodynamic functions for thie formulation with second-order anharmonic corrections which was
used for L4,

Seocg, (NI hf) S0 S o [Df o 3l 2™ (E— B2 24T (/241 +2m)]

TE= kzE2<EC (NS ;hwf) 2%, oo [Di'm 3, M (B~ Eg) 2 A AT (w/2-+1+2m—1)]"
nfe PES(ED & ) T(k+1+2m+8) Df,3mak 2"
Zos=2 K—E > T (A6)
' S H lhv 0 I'k+1+2m) g
- _£|n 2 EK: KEI DIKm3ma|+2m(EC_Eg)K/2+|+2m—1
T OB e, ,8"’21] i< T(k/2+1+2m)

The harmonic forms can be recovered by takinglta®, m=0 term, and the first order correction forms by taking the
m=0 terms. We obtain the formulation by replacing

n: . (E,) é 'il D|:<m3mals+2m(E/_Eg)K+|+2m71
—— with cvy
K S S ]
where
ng i 2 D|m3m |+2m(E/_E8)K+I+2m—l A7
c= —G
v(E")oIl I'(k+142m) (A7)
=0 m=0
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