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Abstract. The optimization of chemical processes that take place in a
finite time constitutes an important application of finite-time thermo-
dynamics. In this study we investigate two generic optimal control
problems for nucleation-and-growth based syntheses: the maximiza-
tion of the amount of a crystalline solid phase generated via cooling
from the melt within a finite time τ, and the maximization of the differ-
ence between two metastable crystalline modifications again synthe-
sized by crystallization from a supercooled melt. In both cases the

1. Introduction

The major task of experimental chemistry has been, and still
is, the synthesis of new compounds, molecules and solids,
closely followed by the determination of the mechanisms that
underlie the individual reactions and the whole synthesis proc-
ess. Optimizing these syntheses with regard to an increased
yield or decreased work consumption is usually a secondary
issue to the ability to synthesize the compound in the first
place.

In contrast, the optimization of chemical processes consti-
tutes one of the major tasks in the field of chemical engineer-
ing [1]. Besides the straightforward task of optimizing individ-
ual chemical reactions [2–6] or a sequence of reactions [7], the
most common examples are the increase in the efficiency of
various distillation procedures [8–10], the design of chemical
plants [11], where complex syntheses take place that include
e.g. heat exchanger networks [12] or the recycling of chemi-
cals, and the transformation between different phases of a
given substance with a minimal loss of availability [13]. Typi-
cally, the objective(s) or cost function(s) with respect to which
a chemical process is to be optimized are the yield of the de-
sired product, the amount of chemicals needed and the energy
required for the production, the total monetary cost, or the en-
vironmental impact of the process.
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optimal temperature program consists in a bang-bang solution with
constant values of the temperature, where a switch from a temperature
T1, where nucleation rates are high, to a temperature T0 > T1, where
the growth rates of the crystallites are maximal, occurs. The location
of the switching time ts* (0 ≤ ts* ≤ τ) is analyzed as function of the
parameters of the models describing the chemical systems, and an ap-
plication to the synthesis of glycerol crystals is given.

In many, perhaps most, instances, such an optimization is
based on empirical rules of thumb, where one is often guided
by simple estimates and models that capture (at least qualita-
tively) some basic features of the reactions involved. Similarly,
one often proceeds by systematically varying the process pa-
rameters in the laboratory where efficient combinatorial
schemes and correlation tables are employed to reduce the
amount of test syntheses needed [14] and to control multivari-
ate processes [15]. An example of such systematic variations
of process parameters are the so-called high-throughput syn-
theses [16, 17]. They are most efficient, if one wants to opti-
mize some property within a well-defined class of molecular
or solid compounds; in this way they nicely complement the
theoretical scanning of the energy landscapes of chemical sys-
tems, where the primary goal is to discover the possible types
of compounds that can serve as synthesis targets in a given
chemical system [18–21].

Alternatively, one can address this issue on the level of the-
ory. The general mathematical theory that underlies such an
optimization is the so-called optimal control theory [22]. Here,
one describes the system by a set of “internal” variables x

/(t)
plus a set of controls u

/(t) that can be adjusted within certain
limits to achieve an optimal outcome of the process. This opti-
mal control problem is then usually solved using the calculus
of variations or dynamical programming methods.

One notes that for many chemical processes the objective
function is a thermodynamic quantity such as the total amount
of a substance, the entropy produced or the work consumed in
the process. On a very general level, the optimal control of
such processes falls into the purview of the field of finite-
time thermodynamics (FTT) [23]. Finite-time thermodynamics
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deals with the implications for thermodynamic processes of
having only a finite time available to achieve a certain task,
e.g. performing a complete cycle of a thermodynamic engine
such as the Carnot- [24] or the Otto-engine [25]. In particular,
a FTT-analysis yields both, a lower (or upper) bound on the
thermodynamic quantity of interest and the optimal path (in
control variable space, and thus in internal variable space) that
achieves this limit value.

In this paper, we will give an introduction to the field of
finite-time thermodynamics and optimal control, and show
some applications in the field of chemistry. In particular, we
will discuss the application of optimal control to the optimiza-
tion of the outcome of a generic synthesis that proceeds via
nucleation-and-growth processes, where one or two (metasta-
ble) compounds can be the outcome of the synthesis.

2. Finite-Time Thermodynamics
Classical thermodynamics deals with the analysis of thermo-

dynamic processes, which are defined as the movement of a
chemical or physical system between thermodynamic equilib-
rium states. Using the first and second law of thermodynamics
and the concept of reversible and irreversible quasi-static proc-
esses, it is possible to define state functions in the thermody-
namic space and to derive bounds on thermodynamic proc-
esses, in particular on cyclic processes. However, one of the
basic assumptions behind this analysis is that an infinite time
is available for the processes to take place, together with the
ability to perform the process in infinitesimally small incre-
ments along the path.

The driving force behind the development of the so-called
finite-time thermodynamics was the recognition that these
bounds on the efficiency or maximum power of an ideal cyclic
process are of only limited relevance for real processes where
only a finite time (and / or a finite number of steps) is available
for completing the cycle. Until the middle of the seventies of
the last century, the focus was on the so-called second-law
analysis [26, 27] that was employed predominantly in the engi-
neering sciences, in order to develop (economically) efficient
procedures. This changed with the work by Curzon and Ahl-
born [28], who considered the (global) optimization of thermo-
dynamic processes in a finite time interval.

In nearly all application-oriented questions in finite-time
thermodynamics, one deals with an optimal control problem
[22], where a quantity J[ x

/(t), u
/(t), t] is to be optimized that

is given as a functional of the internal (thermodynamic) varia-
bles of the system x

/(t) and the control parameters u
/(t). The

time evolution of these variables is usually described by differ-
ential equations
d x

//dt = f
/

( x
/, u

/,t) (1)

that often represent phenomenological rates of change or dis-
sipation equations. In addition, the process has to obey certain
boundary conditions, which often take the form
x

/(tf) = x
/

f, x
/(t0) = x

/
0; t0 = 0, tf = τ (2)

A short introduction into the concepts of optimal control the-
ory is given in the supplementary material. By now a large
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number of thermodynamic processes have been analyzed, e.g.
Carnot-cycles [24, 29, 30], Diesel-cycles [31], Otto-cycles
[25], heat exchange [12], diffusion [32], energy conversion
[30], phase conversion [33], distillation [8–10], heat pumps
and refrigerators [34–36], thermal insulation [37], solar energy
[38], chemical reactions [6, 7] and chemical converters [1].
Over the past two decades, this analysis has been performed
for engines that use not only classical gases as medium but
also Bose- and Fermi-gases [39, 40], and has been extended to
a large variety of multi-source systems and complicated dissi-
pative systems [41]. Furthermore, spatially dispersed systems
have been investigated, where both the thermodynamic varia-
bles and the control parameters can vary in space [42], and the
performance of computer algorithms has been optimized [43]
(Even outside the fields of physics, chemistry and engineering,
a variety of topics ranging from economics [44, 45] over ecol-
ogy [45] to coding theory [46] have been investigated using
finite-time thermodynamics concepts.).

One reason for the broad applicability of finite-time thermo-
dynamics are some very general and generalizable concepts
that were introduced in the early eighties. These are based on
the insight that one can compute very general bounds on the
quantities to be minimized [47], e.g. the increase of entropy
∆Su or the loss of availability –∆Au,

∆Su ≥ r–

τ LS
2 and –∆Au ≥ r–

τLU
2 (3)

which depend only on the thermodynamic path length

and

(4)

between the initial and final point in thermodynamic space
defined by the matrix of second partial derivatives of U(S,V,..)
and S(U,V,..), respectively [48, 49], and the various parameters
in the phenomenological evolution equations such as the relax-
ation time r̄ and the total time τ of the process. For more details
we refer the reader to the supplementary material.

3. Examples
In this section, we present two examples for the optimization

of chemical syntheses that proceed by nucleation and growth,
e.g. from a melt. In the first example, the quantity to be maxi-
mized is the amount of desired product (only one solid modifi-
cation exists). In the second example, two different solid modi-
fications can form, and the quantity to be optimized is the
difference in the amounts of the two products.

In both cases, we attempt to reduce the very complicated
syntheses to their most elementary features. This allows us to
construct highly simplified but at the same time quite generic
models for the time evolution of the chemical system, such that
the solutions of the optimal control problem can be derived
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analytically. While this simplification reduces the amount of
realistic details of the model description, we can understand
how the optimal control and the system interact, and further-
more we can analyze the influence of the parameters of the
model on the behavior of the optimal solution. Although the
resulting solutions of the optimization problem usually are not
very accurate in a quantitative sense, they typically represent
the qualitative aspects of the optimal control of the real system
correctly and can be used as guidance both in fine-tuning ex-
periments and in the numerical solution of the optimal control
problem when using much more realistic models of the synthe-
sis process.

3.1 Optimal Control of a Generic Synthesis Based on Nucle-
ation and Growth

The generic synthesis we are going to optimize is the produc-
tion of the solid (crystalline) phase of a compound by cooling
from the melt. However, the general analysis is also applicable
to all syntheses that are based on nucleation-and-growth proc-
esses exhibiting the kind of temperature dependence described
below. In contrast to e.g. a chemical reaction in the gas phase,
two processes occur during the formation of a solid phase from
the melt that exhibit very different dependences on the control
parameters, here temperature: the nucleation of the desired
phase and the subsequent growth of the nuclei. Their tempera-
ture dependence is opposite [50]: a reduction in temperature
increases the rate of nucleation (down to the glass transition
where the whole system freezes and no nuclei of critical size
can be formed anymore), while an increase in temperature en-
hances diffusive processes and thus the growth of the nuclei
and the product phase up to the melting temperature, where
the solid modification begins to fall apart again. (We consider
only homogeneous nucleation, i.e. no externally induced heter-
ogeneous nucleation takes place). Clearly, just choosing a sin-
gle fixed temperature below the melting temperature and let-
ting the system evolve for a time τ is very unlikely to yield
the maximal amount of product within the finite time τ

3.1.1 Mathematical Model Description

In order to construct a model amenable to analytical analysis,
the following simplifying assumptions are being made:

1. The amount of melt/volume nmelt is assumed to greatly
exceed the amount of solid material n throughout the process.
We lump all the material in the solid phase together in one
variable n(t), i.e. neither a cluster size distribution (experience
with modeling coarsening processes [51] has shown that many
of the relevant features can be captured in averaged quantities
such as the mean cluster size) nor individual clusters are being
considered in this averaged description. Since n <<< nmelt =
ntotal–n ≈ ntotal, the supercooled melt does not change due to
transfer of material into the solid phase, and we do not need
to keep track of the amount of material in the supercooled melt
explicitly but can treat it as an external constant that is im-
plictly included in the parameters of the model.
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2. The increase of the amount of desired product is governed
by two processes, nucleation and growth. The growth rate is
supposed to depend on the amount of material n already
present in the solid (crystalline) phase, in form of a power law
nr (0< r ≤ 1), while the nucleation rate is independent of n. If
only one cluster were present, i.e. all the material were really
accumulated in one single cluster, the most natural choice of r
would be r = 2/3 reflecting the dependence of the growth rate
on the size of the cluster surface. However, in reality, the total
surface is the sum of the surface of many individual clusters,
and this quantity is larger than the surface of a single big clus-
ter, suggesting a larger value of r. On the other hand, there
exist some empirical growth laws that are better represented
by smaller values of r.

3. The temperature dependences of nucleation and growth
follow power laws in a range between two reference tempera-
tures T1 < T < T0, (T0–T)m and (T–T1)l, respectively. No addi-
tional temperature dependence is assumed to be present. T = T1
is the reference point (e.g. corresponding to the glass transition
temperature), below which the nucleation rate rapidly drops
from a maximum to zero because even local diffusion proc-
esses stop or become logarithmically slow and furthermore the
thermodynamic barriers against the formation of critical nuclei
rapidly increase. Similarly, below T = T1, no significant growth
can take place due to the slowness of diffusion processes at
low temperatures. Without loss of generality, we can set T1 =
0 for mathematical convenience. T = T0 is the reference tem-
perature (e.g. the melting point) above which no nucleation
can take place. We also assume that above T0 no growth can
take place either. Thus the permitted temperature interval for
the control is T ∈ [0, T0].

Taking assumptions 2 and 3 together, the formula for the
growth rate is given by
dn
dt

= f(n,T) = A(T0–T)m + BTlnr (5)

with m,l ≥ 1 and 0 < r ≤ 1.
4. We assume that the internal temperature T(t) of the system

can nearly instantaneously adjust to changes in the control pa-
rameter, the external temperature Text(t), i.e. we can set
T(t) = Text(t) (6)

in the formulation of the problem and treat T(t) as the con-
trol.

5. Only homogeneous nucleation takes place. Also, we ig-
nore effects due to preferred surfaces of the crystal for the
growth processes. Furthermore, we ignore effects like the local
depletion of the liquid phase (melt) or local changes of temper-
ature due to the formation of the solid phase – the system is
assumed to react quickly enough to adjust both the temperature
and the local density of the liquid to the externally prescribed
values.

The next step is the definition of the state variables of the
system: In our simplified description, there are only two varia-
bles, T and n. The external control variable is the applied tem-
perature Text, which we can set equal to the internal tempera-
ture T. The quantity to be optimized is the total amount of
(crystalline) solid phase
J = n(τ) (7)
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generated in the interval [0, τ], where we assume that ini-
tially only melt was present [n(0) = 0]. This means that we
must maximize the integral of the growth rate of the solid
phase f(n, T),

(8)
with respect to the function T(t).
In addition, we need to add the constraint

c(dn/dt,n,T) =
dn
dt

– f(n,T) = 0 (9)

that describes the time evolution of n. This is included by
augmenting the integral (cf. supplementary material),

(10)

Thus we can formulate the optimal control problem as fol-
lows: Maximize the amount of product at the end of the dura-
tion of the synthesis, n(τ) = J, by adjusting the temperature
along the path, where the temperature is restricted to the inter-
val T ∈ [0, T0], the time evolution of n is given by Equation (5),
and the initial amount of product n(0) equals zero.

3.1.2 Solution of the Optimal Control Problem
The variation of Jaug yields

(11)

where we have taken care of the variation of dn/dt by per-
forming an integration by parts, “pδ(dn/dt) = pdδn/dt ”=“ '–
(dp/dt) δn plus vanishing” surface terms. This yields for the
optimization the following set of equations:
dn
dt

= f(n,T) (12a)

[1–p(t)]
∂f

∂T
= 0, (12b)

and
dp

dt
= [1–p(t)]

∂f

∂n
. (12c)

Clearly, a trivial solution of Equation (12b) and Equation
(12c) would be p(t) ≡ 1 for the whole time interval; however,
in this case, there would be no constraint at all on the systems
time evolution since then δp[dn/dt – f(n, T)] = 0 for all trajecto-
ries n(t). Thus, we find that a non-trivial solution leads to

(13)
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Note, however, that since T is restricted to the interval [0,T0],
the term associated with the variation of the control T(t) can
vanish either by fulfilling Equation (13), or by T(t) being pie-
cewise constant on the boundary,
T(t) = T0 or T(t) = 0 (14)

such that δT = 0 along these time intervals, with one or more
switches between these values (a so-called bang-bang-type so-
lution, cf. supplementary material). Solving Equation (13)
yields

(15)

In order to decide, whether T* constitutes a local minimum
or maximum of f, we next compute the second derivative

(16)

and insert the value of n from Equation (15), i.e. we set T =
T*. We find ∂2f/∂T2|T* > 0 and thus, T*(n) is a minimum for
every value of n. In particular, we find for the initial value
T*(t = 0) = T*(n = 0) = T0, and thus no production of the solid
phase would take place. This result of solving the necessary
conditions of the optimal control problem has produced the
global minimum and not the maximum of the objective n(τ).
Since f ≥ 0 for all permitted values of T and n, and n(0) = 0,
n(τ) ≥ 0 for every choice of the control T(t). Thus, the solution
found is obviously a global minimum.

As a consequence, the optimal solution must be a bang-bang-
type of solution, where T switches between T = 0 and T = T0,
and dn/dt between the two boundary maxima of f(n;T),
f(T = 0,n) = AT0

m and f(T = T0,n) = BTl
0nr (17) (17)

respectively, at the value of

(18)
where f(T = 0,n) = f(T = T0,n).
For T = 0,

dn
dt

= AT0
m (19)

and thus
n(t) = n(1)(t) = n(t0) + AT0

m(t–t0) (20)
Similarly, for T = T0,

dn
dt

= BT0
lnr (21)

and

(22)

Note that for the initial condition n(t0) = 0, the differential
equation for n(2)(t) is singular for r < 1, and the appropriate
solution is
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Table 1. ts*, n*(ts*), n*(τ) for the maximization of the one-component system, for different choices of m, l, and r.

n(2)(t) = 0 (23a)
instead of

(23b)

However, for any other value of n(t0), arbitrary close to 0,
Equation (23b) applies. A special case is r = 1, where we find
[Note that Equation (24) is the limiting case of Equation (22)
for r = 1.]
n(2)(t) = n(t0) exp[BT0

l(t–t0)] (24)

Clearly, the initial choice of the temperature should be T =
0, else we are just wasting valuable time. Since there should
be only one switch to T = T0, we can compute the optimal
switching time

(25)

by equating n(1)(t = ts) = ns. From this follows the optimal
trajectory for the amount of product

(26)

Table 1 shows ts*, ns. = n*(t = ts*), and the final amount of
product n*(t = τ) for some useful choices of l, m and r.

We note that after having realized that only one switch takes
place from T = 0 to T = T0 at a time ts, we could have first
computed the general form of n(t) parameterized by ts,

(27)
and then derived ts* by maximizing the function

1798 www.zaac.wiley-vch.de © 2009 WILEYVCH Verlag GmbH & Co. KGaA, Weinheim Z. Anorg. Allg. Chem. 2009, 1794–1806

(28)

with respect to ts. From this we can then compute the value
of n*(t) at the switching time n*(t = ts) = n̂(t = ts*, ts = ts*).
In general, the derivative of n̂(t, ts)with respect to t is not de-
fined at t = ts; only for ts = ts* the left- and right-derivative
agree at t = ts, since we now have (dn/dt)(1)(t = ts) = (dn/
dt)(2)(t = ts). For t < ts*, (dn/dt)(2)(t) < (dn/dt)(1)(t), and for t >
ts*, (dn/dt)(2)(t) > (dn/dt)(1)(t), i.e. the optimal choice of switch-
ing time ensures that the growth rate f is maximized throughout
the process for every value of n, a fact we have already indi-
rectly exploited when choosing the bang-bang-type solution as
the optimal one. The fact that f ≥ 0 for all values of n and n(t)
grows monotonically would allow us to solve the optimal con-
trol problem given by Equation (8) in an alternative fashion
using Tsirlin’s “averaged optimal control” approach [52]. This
leads again to the condition that at each moment of time, i.e.
for each value of n(t), we should chose T such that f is maxi-
mized. In this context, we also note that exponential tempera-
ture dependences of the nucleation and/or growth rate would
have led to the same kind of bang-bang solution for the optimal
control, as long as these exponential laws had exhibited the
same monotonic decrease and increase, respectively, as the
power laws for nucleation and growth we had assumed above.
Furthermore, if T1 ≠ 0, then we just have to replace T0 by T0–
T1 in all the formulas.

3.2 Optimal Control of a Generic Nucleation-and-Growth
Synthesis from the Melt with Competition between two Dif-
ferent Modifications

An interesting variation of the previous problem is the fol-
lowing one: Given a system, where two different modifications
1 and 2 are known to exist side-by-side in the solid state, how
can one select the optimal temperature control such that modi-
fication 1 will be the preferred product of the synthesis via
solidification from the melt? For concreteness, we will define
as the quantity that is to be maximized the difference in the
amounts of the two products, n1(t) and n2(t)
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∆(t) = n1(t)–n2(t) (29)
after a finite time τ, ∆(τ) = n1(τ) – n2(τ). If both nucleation

and growth rates of modification 1 are larger than the ones of
modification 2, a decent heuristic might consist in just maxi-
mizing n1(τ) and ignoring n2(τ), thus reducing the task to the
previously solved problem. But even in this special case, the
optimal solution is more efficient, and we are clearly in trouble
if modification 2 either nucleates or grows more quickly than
modification 1.

3.2.1 Formulation of the Optimal Control Problem
We will employ the same approximations as in the previous

example. In particular, we assume that the general dependence
of the nucleation and growth rates is the same for the two
polymorphs, i.e. m, l ≥ 1 and r (0 < r ≤ 1) are the same for
the two modifications. Thus, the difference between the two
modifications resides only in the different rate parameters Ai
and Bi (i = 1, 2). Again, we assume that the total amount of
starting material/volume, the (supercooled) melt, is essentially
infinite compared to n1(t) and n2(t). A more subtle assumption
is that the total time τ, although potentially very large, should
be smaller than the typical time scales where coarsening would
take place and the thermodynamically stable modification
would devour the unstable one. Taking these two assumptions
together, we can assume that the two polymorphs nucleate and
grow independently such that the amount of product of each
modification never decreases during the process,

(30)
(i = 1, 2)
for all permitted values of T ∈ [0, T0] and ni ≥ 0.
The state variables of the problem are the amounts of the

two solid phases n1 and n2, and the temperature T of the system
that at the same time serves as the control variable. Thus we
can formulate the optimal control problem as follows: Maxi-
mize the difference of the two products ∆ = n1–n2 at the end
of the duration of the synthesis,

(31)
by adjusting the temperature along the path, where the tem-

perature is restricted to the interval T ∈ [0, T0], the time evolu-
tion of ni is given by Equation (30), and the initial amount of
product ni(0) equals zero (i = 1, 2).

The two constraints dni/dt = fi(ni,T) can again be included via
the two Lagrange-multiplier functions pi(t) in an augmented
functional

(32)
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3.2.2. Solution of the Optimal Control Problem

The variation of Jaug proceeds analogously to the previous
example, and yields the following set of equations:
dni

dt
= fi(ni,T) (33a)

(i = 1, 2)

(33b)
(i = 1, 2)
and

(33c)

We note that the presence of two independent Lagrange-mul-
tiplier functions in Equation ( c) prevents us from applying the
simple approach of the previous example, where the optimal
solution could be directly identified by maximizing the func-
tion f(n, T) for every value of n with respect to T. Thus, we
need to analyze the function
d∆
dt

(n1,n2,T) = f1(n1,T) – f2(n2,T) (34)

whose integral is to be maximized with the constraints dni/
dt = fi(ni, T), in detail. In particular, we are interested in
whether the optimal control T*(t) is an interior point in func-
tion space [in this case, we need to solve the full boundary
value problem of the five coupled differential Equations (33)]
or whether we again are dealing with a bang-bang-type solu-
tion.

The analysis proves to be rather lengthy, and thus we just
outline the procedure. We consider a set of points ni(t0) = ňi >
0 at some time t0 > 0 that belong to the hypothetical optimal
solution for ∆*(t) = n1*(t) – n2*(t). What is now the tempera-
ture for which a maximal/minimal growth rate d∆/dt (ň1, ň2,
T) is found ? Computing ∂(d∆/dt)/∂T and ∂2(d∆/dt)/∂T2, we
find that three cases can occur:

1. No interior extremum exists, i.e. we obviously have to
choose one of the boundary values to increase ∆(t).

2. The interior extremum is a local minimum, and thus again
T* = 0 or T* = T0.

3. The interior extremum is a local maximum. But in this
case, we find that ∆(t0) is negative and both the nucleation and
the growth rate of n2 are larger than the ones for n1. In this
situation, the global optimal solution would have been to keep
T = T0 for the whole time interval [0, τ], i.e. we should not
have attempted a synthesis in the first place since n2(τ) > n1(τ)
for all other choices of T(t). Thus, the global solution to the
optimal control problem that maximizes ∆(τ) = n1(τ) – n2(τ)
consists in a bang-bang-type solution where only one switch
from T = 0 to T = T0 occurs. Note that ∆*(t) does not necessa-
rily grow monotonically for the whole time interval (see sup-
plementary material for more details).

The general solution to the optimal control problem is thus
given by:
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Table 2. Case-by-case list of the approximate location of ts*, ∆̃'(0), ∆̃'(τ), and ∆*(τ→ ∞), where applicable, for the maximization of the difference
between the two modifications, ∆(τ) = n1(τ) – n2(τ), for m = l = 1 and r = 1. The results for m, l > 1 can be found by replacing AiT0 and BiT0
by AiT0

m and BiT0
l, respectively, both in the conditions defining the various cases and subcases, and in the actual results. Subcases (i), (ii), and

(iii) are defined in the supplementary materials. Note that subcases (i) and (ii) are only applicable for short values of τ.

(35a)

(35b)
(i = 1, 2).
We still have to identify ts*. To do so, we investigate n̂i(t, ts)

and ñi(ts), and determine the value of ts that maximizes

∆̃(ts) = ñ1(ts)–ñ2(ts) (36)

Several issues complicate the solution: For one, ts* can usu-
ally only be determined numerically by solving the equation
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(37)

This equation can have 0, 1 or 2 solutions ts* in the interval
[0, τ], and furthermore ∆̃(ts*) have to be compared with the
value of ∆̃(ts) at the boundary of the time interval, ∆̃(ts = 0)
and ∆̃(ts = τ). A further subtle complication arises from the
singularity of the differential Equation (21): we need to distin-
guish between ts* = 0 (which implies that T = T0 for the whole
time and no solid is produced) and ts* = ε (1 >> ε > 0) (which
implies that we have tiny initial nuclei of modifications 1 and
2 that grow for the whole time interval). Finally, the type and
number of solutions ts* depends on the relative size of A1, A2,
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Table 3. Case-by-case list of the approximate location of ts*, ∆̃'(0), ∆̃'(τ) and ∆*(τ→ ∞), where applicable, for the maximization of the difference
between the two modifications, ∆(τ) = n1(τ) – n2(τ), for m = l = 1 and 0 < r < 1. The results for m, l > 1 can be found by replacing AiT0 and
BiT0 by AiT0

m and BiT0
l, respectively, both in the conditions defining the various case and subcases, and in the actual results. Subcases (i), (ii)

and (iii) and their subcases are defined in the supplementary material. Note 1: A priori, it is not possible to decide, whether the global maximum
occurs at the boundary (ts* = ε) or at the interior maximum. Note 2: A priori, it is not possible to decide, whether the global maximum occurs
at the boundary (ts* = τ) or at the interior maximum (if an interior maximum exists at all).

B1 and B2 characterizing the two nucleation and growth rates
in general.

Thus, eight different cases must be studied individually: B1 =
B2, A1 > A2 (1); B1 = B2, A1 < A2 (2); B1 > B2, A1 = A2 (3); B1
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< B2, A1 = A2 (4); B1 > B2, A1 > A2 (up to 3 subcases) (5); B1
> B2, A1 < A2 (up to 6 subcases) (6); B1 < B2, A1 > A2 (up to
6 subcases) (7), and B1 < B2, A1 < A2 (8). The subcases reflect
the values of these rates, and their rates of change, at t = 0 and
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t = τ, and also the total time τ available. Some of the general
types of solutions one finds are:

1) ts* ≈ ts(1)* (essentially maximize the amount of modifica-
tion 1; especially if B1 > B2 and τ large)

2) ts* = 0 (perform no synthesis at all),
3) ts* ≈ τ, (essentially permit only nucleation, especially if

B1 ≤ B2, A1 > A2),
4) ts* = ε (after an extremely short nucleation phase switch

to the growth phase, especially if B1 > B2, A1 < A2).
Note that we only have one switch in temperature along the

optimal trajectory: If B1 > B2, then we will stay in the growth
phase once it became advantageous to switch to higher temper-
ature, and if B1 < B2, then we time the switch to the growth
phase (if we switch at all!) in such a fashion that a possible
switch back to low temperature would occur precisely once the
total allotted time has been used up (and thus no further switch
is needed).

Table 2 and Table 3 summarize the results for m = l = 1, r =
1 and m = l = 1, 0 < r < 1, respectively. Since interior values
of ts* must be computed numerically, in the general case we
can only give their location relative to the optimal switching
times ts(1)* and ts(2)* we would obtain if we wanted to maxi-
mize the amount of modification 1 and 2, respectively, regard-
less of the amount of the competing phase [regarding the for-
mulas for ts(1)* and ts(2)*, cf. Equation (25)]. In the
supplementary material, we discuss the simplest case, m = l =
1, r = 1, in some more detail to illustrate the procedure, and
similarly address the case m = l ≠ 1, and r ≠ 1. Note that the
rich solution structure shown in the table can make it difficult
to design simple heuristic guidelines for achieving the objec-
tive: even relatively small changes in the various parameters
in Equation (30) or the total synthesis time can lead to a switch
to a different regime of optimal solutions.

Note that we can use the same basic approach to address the
more general case, where m1 ≠ m2, l1 ≠ l2, and/or r1 ≠ r2. We
find the same kind of bang-bang-type solutions, but the num-
ber of cases to be analyzed grows enormously, and even a
tabular overview is not very helpful. Thus we are not present-
ing the detailed results for this general case; for specific sys-
tems with given experimental values of mi, li, and ri, the most
efficient way would be to treat the optimal control problem
analogously to the case m1 = m2, l1 = l2, and r1 = r2 analyzed
above, and then numerically solve the analogue to Equa-
tion (37) for the switching time.

4. Discussion
4.1. Summary of Results and Application to a Real System
(Glycerol)

In the previous section, we have formulated two optimal con-
trol problems for a nucleation-and-growth based synthesis us-
ing a simplified but nevertheless quite general model for the
nucleation and growth rates of the product phase as function
of temperature and product already present. We have shown
that these problems, the maximization of the yield of one solid
phase and the maximization of the difference between the
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amounts of two solid phases, can be solved and that we obtain
solutions of the bang-bang-type, with a switch from T = T1 (≈
Tglass) to T = T0 (≈ Tmelt) in both cases. To make these problems
analytically accessible, many simplifying assumptions were re-
quired. But the fact that we were able to reach a quite general
solution that holds for very generic laws describing the temper-
ature dependence of nucleation and growth of the nuclei, yields
much insight into the general optimal control problem of this
type of syntheses and the qualitative aspects of its solution.

A natural question is to what extent this “phenomenological”
optimal control result can be applied in a quantitative fashion:
Can we plug numbers based on experiments into the solutions
in Table 1, Table 2, and Table 3 and e.g. find ts* anywhere
near realistic values?

Obviously, the first step would be a fit of the model parame-
ters m, Ai, Bi, T0, T1, l, r, to experimental data describing nucle-
ation and growth rates as function of temperature. Next we
would calculate the appropriate switching time, either by in-
serting the parameters into the formulas in Table 1 or by nu-
merically solving Equation (37).

As a specific example, we consider the application of the
optimal control formalism to the synthesis of glycerol crystals.
Here, the goal is to maximize the yield of the crystalline phase
within the finite time τ. From the literature [50], we find that
the nucleation rate in the supercooled melt increases very rap-
idly upon cooling to a maximum at T1 ≈ –65 °C and then rather
abruptly drops to zero even before the glass transition tempera-
ture Tglass ≈ –85 °C is reached [53]. The growth rate of the
crystallites increases quickly with increasing temperature to a
maximum at about T0 ≈ 0 °C, and then rapidly decreases to-
wards the melting temperature Tmelt ≈ +18 °C [54]. Fitting
power laws to the data yields for the model parameters: A ≈
2.4 × 10–13 /sec·cm3·K9, B ≈ 0.3 /sec·cm·K3, T0–T1 ≈ 65 K, m
≈ 9, l ≈ 3 and r ≈ 2/3. If we plug these values into the formulas
in Table 1, we find a switching time of ts* ≈ 2 sec. Thus, the
optimal solution consists of keeping the melt for about 2 sec-
onds at about –65 °C, and then let the nuclei generated grow
at the maximum rate at a temperature of about 0 °C. There is
some uncertainty about the size of the critical nuclei. We as-
sumed a critical cluster size of 1000 atoms when determining
the parameter A. If a critical cluster contains only 100 atoms
(a lower bound), A would be smaller by about a factor 10, and
ts* would be reduced by a factor of about 3.

4.2 Analysis of the Approximations

As mentioned above, several approximations and simplifica-
tions had been necessary, in order to make the optimal control
problem analytically accessible. Perhaps the most drastic one
is the description of the product phase by a single variable n(t),
ignoring the fact that we are actually dealing with a distribu-
tion of clusters of various sizes. However, in the past it has
proven to be quite successful to focus on the time evolution
of an “average” cluster while modeling processes involving
nucleation of clusters instead of trying to follow the full distri-
bution, e.g. in various models of primary crystallization [55],
coarsening [51] or in the optimization of the gas-liquid transi-
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tion [13]. Thus only two variables would be needed to describe
the solid phase, the total amount of crystalline material n(t)
and the number of clusters generated Nc(t). Since the Nc clus-
ters are treated as identical, they obey the same growth law.
As a consequence, the fact that n(t) represents not only one
cluster but several ones can be included in a heuristic fashion
by choosing the parameter r in the model [see Equation (5)]
to be different from r = 2/3. In particular, we note from the
glycerol example that less than 10 nuclei /cm3 have been gen-
erated by the time ts* is reached, and thus treating the system
as if all the solid material were combined into one effective
crystallite should be quite reasonable. Having to modify r is
only a small price to pay for eliminating Nc(t) as an independ-
ent variable. The situation is slightly different in the case of
two competing modifications where ts* = τ can be the optimal
solution, and thus the exponent r would vary as a function of
n(t) since Nc(t) ranges from one to many nuclei. However, in
this case the optimal solution is independent of the value of r
(the growth phase of the nuclei is actually never reached), and
thus the model again describes the features of the growth proc-
ess relevant for the optimal control problem.

The second approximation concerns the use of power laws
to model the nucleation and growth rates. Of course, these
rates do not drop infinitely fast to zero for (Tmelt < )T < T1 and
(Tmelt > )T > T0, respectively. However, we note that for T <
T1, the growth rate remains zero, and analogously the nuclea-
tion rate is zero for T > T0. From the point of view of optimiz-
ing the amount of final product, there is clearly nothing to be
gained from ever selecting a temperature below T1 or above
T0, and thus we can restrict the range of feasible values of the
control, i.e. the temperature, to the interval [T1, T0]. In particu-
lar, we note that as long as the rates are monotonic in the
interval [T1, T0], the general solution will be of the bang-bang-
type, and one usually can find some reasonable power-law ap-
proximation for the temperature dependence of the rates within
the relevant interval.

The situation is more subtle if the two competing modifica-
tions should exhibit different values for T1

(i) and T0
(i), e.g. T1

(1)

< T1
(2) < T0

(1) < T0
(2). While the models as such are still an

appropriate description of the rates of each of the two poly-
morphs within [T1

(i), T0
(i)], it is not clear, whether we still have

a bang-bang-type of solution of the optimal control problem.
In principle, we need to consider the large interval [T1

(1), T0
(2)],

as the range of feasible values of the control parameter, but
then the peaks in the nucleation rate for modification 2 and in
the growth rate for modification 1 do not occur at the bounda-
ries. But if we choose the small interval [T1

(2),T0
(1)], it can

happen that at T1
(2) and T0

(1) the growth rate of modification 1
or the nucleation rate for modification 2, respectively, are still
substantially different from zero while on the other hand the
nucleation rate of modification 1 at T1

(2) and the growth rate of
modification 2 at T0

(1) are still far from their maximum values.
Clearly, for neither of the two intervals we would expect a

straigthtforward bang-bang solution where the boundaries of
the interval could serve as the optimal temperature values.
Thus, a full re-analysis of the optimal control problem is called
for if T0

(1) ≠ T0
(2) or T1

(1) ≠ T1
(2). In contrast, slightly different
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power laws of the temperature dependence of the nucleation
and growth rates, l1 ≠ l2 and/or m1 ≠ m2, do not pose big prob-
lems, and even different values of r1 ≠ r2 will only complicate
the equations [e.g. lead to additional solutions in the analogue
to Equation (37) for r1 ≠ r2]. But these changes would not
preclude an analytical analysis, as long as T0

(1) = T0
(2) and

T1
(1) = T1

(2), because we can still expect that a bang-bang-type
solution is the optimal one.

Another important approximation is the range of allowed
synthesis times τ. Clearly, if τ → ∞, the amount of melt nmelt
will decrease and n(t) will become comparable unless we keep
adding supercooled melt to the system effectively keeping the
density of solid material small compared to nmelt inside the
synthesis chamber. Similarly, for large times, coarsening of the
cluster size distribution will take place. However, the neglect
of coarsening effects is not critical in the context of our model
because the average cluster size still keeps increasing, and thus
the lumped approximation that only considers the total amount
of solid phase n(t) encompasses and averages out possible
coarsening effects, with the consequence that coarsening does
not have much of an influence on the optimal control problem.
Regarding the decrease of nmelt, we note that if we are maxi-
mizing the amount of a single solid phase, the transition to a
pure growth stage takes place rather early independent of the
total synthesis time. Thus, the decrease in nmelt does not affect
the optimal control problem as such, and it will only be notice-
able in the fact that n(t) reaches a limiting value corresponding
to the intrinsic density of the solid phase itself (instead of
growing to infinity as the formulas in section 3.1 suggest).

Again, additional complications arise for two competing
modifications. Here, cases can occur (cf. Table 2 and Table 3),
where the switching time equals τ or is relatively close to τ.
These situations only occur if we need to stay for a very long
time in the nucleation stage that favors modification 1, in order
to balance the faster growth of the nuclei belonging to modifi-
cation 2. This fact will not change much if the amount of melt
is being depleted, and it will still be favorable to stay at T =
T1 for nearly the whole time if we want to maximize n1–n2.
Much more critically, coarsening processes can be of great im-
portance when two modifications compete, since for suffi-
ciently large synthesis times and/or sufficiently unstable nu-
clei/crystallites, the thermodynamically stable modification
will eliminate the metastable solid phase even in finite time. If
such effects are to be taken into account, one would need to
construct a considerably more sophisticated model of the nu-
cleation-and-growth synthesis with competing modifications
(possibly including an approximate cluster size distribution). It
is very likely that such a model can only be solved numeri-
cally.

Finally, we have assumed that the system reacts instantane-
ously both to changes in the applied external temperature and
to local changes in temperature and melt-density caused by the
nucleation of clusters of critical size or by the attachment of
atoms from the melt to the crystallites. Taking these effects
into account will lead to optimal control solutions that are ap-
proximately of the bang-bang-type, as long as the relaxation
times are much smaller than ts*. This can be expected to hold



J. C. SchönARTICLE
for so-called microreactors, e.g. in the increasingly popular
“lab-on-a-chip”. If the relaxation times are rather large, how-
ever, a full re-analysis of the optimal control problem is re-
quired taking the flow properties and the thermal conductivity
of the melt into account, and the more complicated set of dif-
ferential equations one would derive using the variational ap-
proach would most likely have to be solved numerically.

4.3 Outlook

The discussion of the various approximations in the previous
subsection implicitly suggests a number of future projects in
the optimal control of nucleation-and-growth based syntheses.
Most straightforward is the analysis of the optimal control
problem with competing polymorphs for, l1 ≠ l2, m1 ≠ m2, and/
or r1 ≠ r2. Similarly, one could replace the power laws in Equa-
tion (5) and Equation (30) by more general functions involving
exponentials such as exp[–∆G(T)/kBT] that are often used to
describe activation barriers to the nucleation of clusters of criti-
cal size [50]. As we mentioned earlier, the general type of
solution is not going to change as long as these functions are
monotonically increasing and decreasing with temperature, re-
spectively, although the case-by-case analysis is going to be
much more complicated and numerical solutions will be una-
voidable.

Next, one would want to address the case where the maxima
of growth and nucleation rates of different modifications do
not occur at the same temperature. A more substantial exten-
sion of the model would be the inclusion of coarsening proc-
esses between the competing polymorphs, where one probably
will need to add at least the number of clusters or equivalently
the average size of the clusters for each modification to the
state variables describing the system. Furthermore, one would
add conversion terms between the two modifications as func-
tion of cluster size in the rate equations for (dni/dt)(t) and (dNc/
dt)(i)(t).

A further issue that deserves to be studied is the competition
between homogeneous and heterogeneous nucleation. As a
first step, one might want to study purely heterogeneous nucle-
ation-and-growth on the same level of complexity as was done
in this work for homogeneous nucleation, followed by a com-
bination of both nucleation processes. Another level of sophis-
tication of the models involves the homogeneity of the spatial
distribution of the solid clusters within the supercooled melt.
In contrast to the gas phase where a well-stirred reactor ap-
proximation is quite realistic, the condensed phases are rather
slow in relaxing to (thermodynamic) equilibrium after e.g. the
external temperature has been changed or latent heat has been
released during a nucleation event. Modeling these delays is
clearly important but also quite challenging, in particular with
regard to the solution of the associated optimal control prob-
lems.

Clearly, many more possible extensions of the models em-
ployed here can be proposed and investigated. However, an-
other very interesting question is to what extent the optimal
control problems we have studied can be applied to other nu-
cleation-and-growth based syntheses besides the growth of a
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solid phase from a melt. In particular, it would be worthwhile
to investigate the growth of crystals from solution, or the crys-
tallization inside an amorphous matrix e.g. during the synthesis
of metastable crystalline modifications via the low-temperature
atom deposition method [56, 57].

Finally, one might want to consider the place of our two
optimal control problems in the framework of finite-time ther-
modynamics. The generic laws and guidelines incorporated in
Equation (3), and in Equation (9) and Equation (10) in the
supplementary material, are based on the assumption that we
are moving between two equilibrium states within a finite time
that is still large enough for the system to stay close to the
equilibrium path it would follow in the infinite-time limit.
Such considerations would be applicable e.g. when one tries
to refine our simple model by taking the delays in the relaxa-
tion to local equilibrium into account.

However, the generic aspect of the type of problems we con-
sider in this work is that they are “open-ended”, i.e. we want
to produce as much of a solid crystalline phase as possible
within the given time, and not minimize the amount of work
needed to transform a certain amount of melt into solid in finite
time while staying close to the melting (i.e. equilibrium) tem-
perature. In particular, we note that both for loss of availability
and entropy dissipation, the Hessian of the energy and the en-
tropy, respectively, can serve as a positive definite metric and
this allows the definition of a proper thermodynamic distance
[cf. Equation (4)]. This is not the case for the processes studied
in this work, where the analogous quantity, the second deriva-
tive of the amount of product with respect to the temperature,
∂2n/∂T2, is not necesssarily positive or negative definite for
the whole process and thus no thermodynamic length can be
computed.

The optimal control problems we consider are more similar
to the maximization of the product of a chemical reaction in
the gas phase studied in earlier work [6, 7]. For the optimiza-
tion of the reactions nA ↔ mB [6], it was found that the dis-
tance between the optimal and the equilibrium curves,
T*(Nproduct) and Teq(Nproduct), respectively, in (Nproduct, T)-space
was approximately constant. In contrast to those finite-time
thermodynamics problems where entropy production or loss of
availability were minimized, this distance did not go to zero
for τ → ∞, however. But while in the gas phase reaction there
existed a well-defined equilibrium curve for the amount of
product as function of temperature to serve as a reference, an
analogous quantity is more difficult to discern in a nucleation-
and-growth synthesis, since three (metastable) “equilibrium
states” of the system have to be taken into account, each of
which might serve as a reference point: the (supercooled) melt,
the (macroscopic) crystal and the clusters (of critical or larger
size). Clearly, if one could establish that such a constancy in
∆T also holds in optimally controlled nucleation-and-growth
processes, this would allow us to employ this information in
determining an optimal path for those systems that do not eas-
ily yield to the optimal control methods described in section 3
and the supplementary material.

To a certain degree, a comparison can be drawn with two
consecutive chemical reactions A ↔ B ↔ C, where the melt,
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the critical nuclei, and the crystalline solid would correspond
to the chemical species “A”, “B” and “C”, respectively. Such
a system has been studied [7] using Tisrlin’s averaged optimal
control [52] to maximize the intermediary species “B”. In con-
trast to this study, the model presented in section 3.1 assumes
that no back-reactions take place, and due to the bang-bang-
type of solution nucleation and growth processes do not take
place in appreciable amounts at the same time. Furthermore,
unless one were to specify individual large crystals instead of
the total amount of crystalline phase as the objective, the spe-
cies “B” and “C”, i.e. the critical nuclei and the larger crystals,
both contribute to the objective of the optimal control n(τ).

Thus, the analogy does not hold in all details. As a conse-
quence, we never encounter a “maximal useful time” that is
less than the total time available. Due to the non-reversibility
of the processes incorporated in the model and the fact that in
the optimal solution either nucleation or growth takes place,
the same holds true even if we were to maximize only the
number of critical nuclei since obviously the maximum would
be achieved by remaining in the nucleation phase for the whole
duration τ. But in general, it should be possible to pursue this
analogy further, especially once one includes the number of
clusters Nc as an independent state variable and modifies the
objective to be the amount of crystalline phase that is present
in the form of large crystals.

Similarly, one might try to compare the second optimization
problem with the case of two competing chemical reactions, A
↔ B and A ↔ C. Again, no back-reactions are included in the
melt-to-crystalline material system, in contrast to a standard
e.g. gas phase reaction, where both a possible transformation
C ↔ B (via C ↔ A ↔ B) and the existence of equilibrium
concentrations for “A”, “B”, and “C” at a given temperature
are implied. Furthermore, Equation (30) describes a rather un-
usual pair of reaction rates, since each is a sum of two terms,
one of which increases (monotonically) with the amount of
product present, and thus represents a positive feedback built
into the reaction, in contrast to the usual slowing down of the
net reaction rate due to the increase of the back-reaction rate
with increasing amount of product. Thus, while such a compar-
ison would be valid in principle, this unusual reaction rate and
general set-up makes it difficult to apply one’s intuition based
on competing gas phase reactions. This problem of competing
gas phase reactions does not appear to have been treated within
the context of finite-time thermodynamics so far.

The rather mathematical study presented here might appear
to be far removed from the everyday cares and worries of the
experimental synthetic chemist. But even in the non-industrial
context greater efficiency is something to be strived for; e.g.,
achieving large differences in the amount of the two competing
phases might greatly simplify the subsequent purification
stage. And the purposeful synthesis of only one of several dif-
ferent metastable modifications is one of the great challenges
of experimental solid state chemistry [19, 20]. It is hoped that
the results obtained in this investigation will provide a starting
point for further analyses of the optimal control of nucleation-
and-growth based syntheses, where the construction of more
detailed models and their solution by theory needs to be com-
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plemented by robust, quantitative measurement data that only
experiment can supply.

Supporting Information (see footnote on the first page of this article):
1) A short introduction to optimal control theory, 2) more (mathemati-
cal) details to the derivation of bounds in finitetime thermodynamics,
and 3) a detailed analysis of the different cases for the optimal control
of two competing modifications.

References
[1] S. Sienutycz, Optimization in Process Engineering, WNT, War-

saw, 1991.
[2] K. G. Denbigh, Chem. Eng. Sci. 1958, 8, 125.
[3] R. Aris, Z. Elektrochem. 1961, 65, 229.
[4] F. Horn, U. Troltenier, Chem.-Ing.-Technol. 1960, 32, 382.
[5] B. Mansson, B. Andresen, I & EC. Process Des. Development.

1986, 25, 59.
[6] J. C. Schön, B. Andresen, J. Phys. Chem. 1996, 100, 8843.
[7] T. A. Bak, P. Salamon, B. Andresen, J. Phys. Chem. A 2002, 106,

10961.
[8] O. C. Mullins, R. S. Berry, J. Phys. Chem. 1984, 88, 723.
[9] J. C. Schön, B. Andresen, Ind. Eng. Chem. Res. 1996, 35, 2327.
[10] E. S. Jimenez, P. Salamon, R. Rivero, C. Rendon, K. H. Hoff-

mann, M. Schaller, B. Andresen, Ind. Eng. Chem. Res. 2004, 43,
7566.

[11] C. A. O. Nascimento, R. Giudici, R. Guardani, Compd. Chem.
Eng. 2000, 24, 2303.

[12] A. Bejan, Heat. Fluid Flow. 1987, 8, 258.
[13] M. Santoro, J. C. Schön, M. Jansen, Phys. Rev. E 2007, 76,

061120.
[14] L. Mutihac, R. Mutihac, Anal. Chim. Acta 2008, 612, 1.
[15] J. F. MacGregor, T. Kourti, Control. Eng. Pract. 1995, 3, 403.
[16] S. M. Senkan, Nature 1998, 394, 350.
[17] M. A. R. Meier, R. Hoogenboom, U. S. Schubert, Macromol.

Rapid Commun. 2004, 25, 21.
[18] J. C. Schön, M. Jansen, Angew. Chem. Int. Ed. Engl. 1996, 35,

4025.
[19] M. Jansen, Angew. Chem. Int. Ed. 2002, 41, 3746.
[20] M. Jansen, in: Turning Points in Solid-State, Materials and Sur-

face Science (Eds. K. M. Harris and P. P. Edwards), RSC Public.,
Cambridge 2008, p. 22.

[21] J. C. Schön, M. Jansen, Int. J. Mater. Res. 2009, 100, 135.
[22] D. E. Kirk, Optimal Control Theory, Prentice Hall, Englewood,

1970.
[23] S. Sienutycz, P. Salamon, Eds., Finite-Time Thermodynamics and

Thermoeconomics, Taylor & Francis, New York 1990.
[24] B. Andresen, R. S. Berry, A. Nitzan, P. Salamon, Phys. Rev. A

1977, 15, 2086.
[25] M. H. Rubin, Phys. Rev. A 1979, 19, 1272&1279.
[26] R. A. Giaggoli, Thermodynamics: Second Law Analysis, Amer.

Chem. Soc. Washington, D. C. 1980.
[27] R. C. Tolman, P. C. Fine, Rev. Mod. Phys. 1948, 20, 51.
[28] F. L. Curzon, B. Ahlborn, Amer. J. Phys. 1975, 43, 22.
[29] P. Salamon, A. Nitzan, B. Andresen, R. S. Berry, Phys. Rev. A

1980, 21, 2115.
[30] J. M. Gordon, Amer. J. Phys. 1991, 59, 551.
[31] K. H. Hoffmann, S. J. Watowich, R. S. Berry, J. Appl. Phys.

1985, 58, 2125.
[32] G. R. Brown, S. K. Snow, B. Andresen, P. Salamon, Phys. Rev.

A 1986, 34, 4370.
[33] J. M. Gordon, I. Rubinstein, Y. J. Zarmi, J. Appl. Phys. 1990, 67,

81.
[34] R. K. Pathria, P. Salamon, J. D. Nulton, J. Phys. A 1998, 31,

3171.
[35] A. Kodal, B. Sahin, T. Yilmaz, Energy Convers. Managem. 2000,

41, 607.



J. C. SchönARTICLE
[36] S. Wu, J. Chen, Appl. Energy 2005, 80, 349.
[37] A. Bejan, Entropy Generation through Heat and Fluid Flow,

Wiley-Interscience, New York 1982.
[38] J. M. Gordon, Solar. Energy 1988, 40, 457.
[39] F. Wu, L. Chen, F. Sun, C. Wu, G. Guo, Q. Li, Open. Syst. Inform.

Dyn. 2006, 13, 55.
[40] B. Lin, J. Chen, Phys. Scripta 2008, 77, 055005.
[41] A. Durmayaz, O. S. Sogut, B. Sahin, H. Yavuz, Prog. Energy

Comb. Sci. 2004, 30, 175.
[42] V. N. Orlov, R. S. Berry, Phys. Rev. A 1990, 42, 7230.
[43] J. C. Schön, J. Chem. Phys. 1996, 105, 10072.
[44] P. Salamon, J. Komlos, B. Andresen, J. D. Nulton, Math. Soc.

Sci. 1987, 13, 153.
[45] G. Lebon, D. Jou, J. Casas-Vazquez, Finite-Time Thermodynam-

ics: Economy, Ecology, and Heat Engines, Springer Verlag, Berlin
2008.

[46] J. D. Flick, P. Salamon, B. Andresen, Inform. Sci. 1987, 42, 239.
[47] P. Salamon, R. S. Berry, Phys. Rev. Lett. 1983, 51, 1127.

1806 www.zaac.wiley-vch.de © 2009 WILEYVCH Verlag GmbH & Co. KGaA, Weinheim Z. Anorg. Allg. Chem. 2009, 1794–1806

[48] F. Weinhold, J. Chem. Phys. 1975, 63, 2479&2484&2488.
[49] P. Salamon, J. D. Nulton, E. Ihrig, J. Chem. Phys. 1984, 80, 436.
[50] I. Gutzow, J. Schmelzer, The Vitreous State: Thermodynamics,

Structure, Rheology, and Crystallization, Springer Verlag, Berlin
1995.

[51] I. M. Lifshitz, V. V. Slyozov, J. Phys. Chem. Solids 1961, 19, 35.
[52] L. Rozonoer, A. M. Tsirlin, Avtom. Telemekh. 1983, 1, 70 (Autom.

Remote Control (Engl. Transl.) 1983, 44, 55).
[53] A. A. Chernov, Formation of Crystals, in: Modern Crystallogra-

phy, Vol. 3, Nakua Publishers, Moscow 1980.
[54] M. Volmer, M. Marder, Z. Phys. Chem. A 1931, 154, 97.
[55] P. Bruna, D. Crespo, R. Gonzalez-Cinca, E. Pineda, J. Appl. Phys.

2006, 100, 054907.
[56] D. Fischer, M. Jansen, J. Am. Chem. Soc. 2002, 124, 3488.
[57] D. Fischer, M. Jansen, Angew. Chem. Int. Ed. 2002, 41, 643.

Received: April 8, 2009
Published Online: July 31, 2009


