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A scheme for visualizing and quantifying the complexity of mul-
tidimensional energy landscapes and multiple pathways is pre-
sented employing principal component-based disconnectivity
graphs and the Shannon entropy of relative ‘‘sizes’’ of superbasins.
The principal component-based disconnectivity graphs incorporate
a metric relationship between the stationary points of the system,
which enable us to capture not only the actual assignment of the
superbasins but also the size of each superbasin in the multidi-
mensional configuration space. The landscape complexity measure
quantifies the degree of topographical complexity of a multidi-
mensional energy landscape and tells us at which energy regime
branching of the main path becomes significant, making the
system more likely to be kinetically trapped in local minima. The
path complexity measure quantifies the difficulty encountered by
the system to reach a connected local minimum by the path in
question, implying that the more significant the branching points
along the path the more difficult it is to end up in the desired local
minimum. As an illustrative example, we apply this analysis to two
kinds of small model protein systems exhibiting a highly frustrated
and an ideal funnel-like energy landscape.

information theory � protein landscape � tree graph

To resolve important contemporary issues in the dynamics and
thermodynamics of clusters, liquids, glasses, and biomol-

ecules requires a knowledge of the multidimensional free energy
surface (FES) or potential energy surface (PES) by which
motions of the system and all complexity in the observations are
governed. The most powerful tool currently available for visu-
alizing the high-dimensional energy landscape is probably the
disconnectivity graph (DG) approach (1), which has now been
applied to a wide range of systems (2, 3). The DG as developed
originally is constructed from a database of local minima and
saddles to which they are connected by steepest-descent paths on
the multidimensional PES. The DGs provide a global view of the
PES, which retains topological information. The qualitative
appearance of the graph can predict qualitative aspects of the
kinetics and thermodynamics, such as multiple relaxation time
scales and features in the heat capacity for landscapes containing
multiple potential energy funnels (4, 5). This approach is,
however, limited to relatively rigid systems or to flexible systems
with a small number of important degrees of freedom because
the number of stationary points grows exponentially with the
number of degrees of freedom (6–8). Recently, a new method
has been developed to construct the corresponding DG for
multidimensional FES, which overcomes this difficulty by using
a long equilibrium trajectory (9, 10). It was shown, using the
second �-hairpin of protein G, that the projection of multidi-
mensional FES onto only one or two progress variables (which
have often been used in the literature) results in relatively
smooth surfaces and masks the complexity of the underlying
unprojected full dimensional surface (9). However, in the DG
representation of the PES or FES, each state (‘‘node’’) is located
along a one-dimensional unphysical coordinate simply for visual
clarity, from which one cannot capture actual alignments and

entanglements between each superbasin on the multidimen-
sional configuration space. Moreover, there has been no appro-
priate measure to quantify how ‘‘complex’’ the underlying energy
landscape is and how ‘‘complex’’ the multiple pathways leading
to different local minima are, which is relevant to how they
compete with each other in the kinetics. Such measures offer
new possibilities of telling us how the systems may misfold by
being trapped into one of several competing local funnels.

In this article, we present an alternative multidimensional
metric DG approach, which incorporates a metric relationship
between superbasins. Based on information content of energy
landscapes, we also propose a measure to quantify the degree of
topographical complexity of a multidimensional energy land-
scape, which is expected to characterize to what extent systems
behave as structure seekers and glass formers, and to quantify
the competition of entangled multiple pathways.

To illustrate our approach, we mainly focus on a 3-color, 46-bead
model protein (11, 12). This system has been examined in a number
of previous studies (5, 12–18). This model (termed the BLN model
hereafter) is composed of hydrophobic (B), hydrophilic (L), and
neutral (N) beads, and the global potential energy minimum for the
sequence, B9N3(LB)4N3B9N3(LB)5L, folds into a �-barrel structure
with four strands. The BLN model exhibits a frustrated PES (5, 16)
and does not fold efficiently (13–15). Two peaks are seen in the heat
capacity, corresponding to collapse from extended to compact
states at higher temperature, and to folding into the global potential
energy minimum at lower temperature (13, 15). In contrast, in the
Go� model, constructed by removing all of the attractive interactions
that do not correspond to nonsequential closest contacts in the
native state (global minimum), a much sharper single heat capacity
peak is observed (5). It was observed in the standard nonmetric DG
(16) that the PES for the original BLN potential includes a number
of relatively deep potential energy funnels, but for the Go� model the
surface has an almost ideal single funnel topography.

A New Metric DG
The standard way to display a network of stationary points is by
plotting a DG, which is usually constructed as follows (1, 3). For
a given discrete series of energies V0 � V1 � V2 � . . ., with a
separation of �V, the minima can be classified into disjoint sets,
termed ‘‘superbasins’’ (1, 3), whose members are mutually
accessible, connected by pathways where the energy never
exceeds Vi. For every value of Vi, each superbasin s is represented
by a node. Lines are drawn between the ‘‘child’’ nodes at energies
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Vi and the ‘‘parent’’ nodes at energies Vi�1 if they are the same
superbasin or they are superbasins that merge at the higher
energy Vi�1. As seen in Fig. 1, each superbasin (s) on this
network can be uniquely identified by a connectivity index
(n,m)Vi

with n the index of the parent node of s at energy Vi�1

and m the index of s over all child nodes of n. n and m range from
0 to the total number of the nodes at energy Vi�1 and from 1 to
the number of the child nodes at Vi, respectively (see the legend
of Fig. 1). In this article, we have chosen the connectivity index
to identify the superbasin because it is suitable for classifying the
superbasins along pathways. Our DG implementation is a nat-
ural extension of the original DG method: each node is allocated
along a physically motivated coordinate for the horizontal axis,
which holds as much ‘‘distance’’ information between superba-
sins (nodes) in the underlying multidimensional configuration
space as possible (19). Principal component analysis (20, 21) is
used to derive an approximate description of multidimensional
landscapes in lower dimensionality. The principal component
analysis determines a set of linear, collective coordinates {Qi}
that best represents the variance of the distribution of stationary
points in multidimensional configuration space. The superbasin
or simply node (n,m)Vi

is placed on the energy axis at energy Vi

and placed on the x axis at the value of the principal coordinate
Q1 (having the largest variance), averaged for all of the points
within the superbasin that the node represents. For three-
dimensional graphs, the average value of the second principal
coordinate Q2 (the second largest variance) is used to provide
the y axis.

The thickness of the line drawn between merging or identical
superbasins is introduced so as to depend upon the ‘‘size’’ of the
superbasin. That is, a thicker line represents a larger superbasin.
There may exist many ways to represent the ‘‘size’’ of superbasins.
Here we represent the ‘‘size’’ of superbasin (n,m)Vi

in terms of the
number of stationary points contained within the superbasin.

In Fig. 2, three-dimensional metric DGs are presented for the
BLN and Go� models. One can, visually, understand that for
the BLN model the multiple superbasin nature is manifested in
the multiple thick entangled branches but the Go� model exhibits
a single thick dominant branch. However, how can one quantify

Fig. 1. Schematic representation of a DG with nodes (n,m)Vi and (l)Vi. The
superbasin can be uniquely identified either by (n,m)Vi or (l)Vi, that is, the lth
node at a given energy Vi. The root leading to the node (2,1) at V0 (denoted
by bold line) is represented by the node sequence in the DG as (0,1)V33 (1,1)V2

3 (1,2)V13 (2,1)V0. n refers to the ‘‘parent’’ node l at Vi�1 to which the current
node at Vi is connected (the value can run from 0 to the total number of nodes
at Vi�1; n � 0 denotes a node with no ‘‘parent’’ node, i.e., at Vmax). m refers to
the mth ‘‘child’’ node connected to the same parent node n, whose value runs
from 1 to the total number of the child nodes, e.g., the node (4,1) at V0

corresponds to the first child node of the fourth parent node [i.e., (4)V1 at V1].
The summation �n�,m�

� in Eq. 1 is defined as �n�,m�
� � �

n��1
�ntot�Vi�

m��1
�mn��

tot�Vi, where (ntot)Vi

and (mn
tot)Vi, respectively, corresponds to the total number of parent nodes and

that of the child nodes at Vi. The summation �m�
� for root � in Eq. 2 is defined

by �
m��1
�mn�

tot�Vi. �n� ,m�
� at V1 and �m�

� for the parent node 1 at V1 are shown by light gray
and dark gray regions, respectively.

Fig. 2. New three-dimensional DGs for Go� (a) and BLN (b) models where the energy bin �V is 0.3� (19). The paths leading to the global minimum (GM) and
the second, third, and fourth lowest minima are highlighted in red, purple, blue, and green, respectively. Roots 1, 2, 3, and 4 of the BLN model terminate at
minimum conformations at 	53.62�(GM), 	53.53�, 	53.44�, and 	53.14�, respectively. In the (Q1,Q2) plane, the second, third, and fourth most stable minimum
conformations are located at distances of 0.29�, 2.04�, and 11.99� from the GM. Here we have used 500 minima and 636 saddles for the BLN model, and 520
minima and 844 saddles for the Go� model (16). The potential energy function is described by V � (Kr/2)
i(ri 	 r0

i )2 � (K�/2)
i(�i 	 �0
i )2 � 
i[A(1 � cos�i) � B(1 �

cos3�i)] � 4�
i�j	3S1[(�/Rij)12 	 S2(�/Rij)6], where S1 � S2 � 1 for BB (attractive) interactions, S1 � 2/3 and S2 � 	1 for LL and LB (repulsive) interactions, and S1 �
1 and S2 � 0 for all the other pairs involving N, expressing only excluded volume interactions. Kr � 231.2��	2 and K� � 20�/rad2, with the equilibrium bond length
r0
i � � and the equilibrium bond angle �0

i � 1.8326 rad. For visual clarity, slightly thicker lines were used for roots 1–4 than the thickness evaluated from the size
of superbasins.
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the complexity of such multidimensional landscapes and entan-
gled multiple paths leading to different local minima?

Landscape and Path Complexity Measures
The formation of a DG provides a network that can be analyzed
in terms of the branch points, and the sizes of these branch
points, at discrete energy levels. It is possible to define a pathway
through a DG as a list of superbasins, starting with a high energy
superbasin and moving to a low energy superbasin that may
contain either a desired local minimum or the global minimum
conformation [e.g., see the pathway (2, 1)V0

in Fig. 1].
The pathway that leads to a low energy (super) basin � will be

referred to as root �. Two probability measures are defined
associated with each superbasin along root �: the residential
probability pr and the branching probability pb of superbasin
(n,m)Vi

at each energy level Vi. The residential probability is the
probability of being located within the superbasin when at a
specified energy level. The branching probability is the chance of
taking the pathway leading to the specific superbasin when
moving from the parent node n at Vi�1 to (several) node(s) at Vi.
Thus, the residential and branching probabilities, when plotted
as a function of Vi for the superbasins making up root �, indicate
the change in size of root �’s superbasins in relation to all other
superbasins at each energy level Vi, and the probability of moving
from Vi�1 to Vi along a chosen root �, respectively. The
residential and branching probabilities are defined as

pr ��n,m�Vi
 �

v��n,m�Vi


�
n�,m�

� v��n�,m��Vi

, [1]

pb��n,m�Vi
 �

v��n,m�Vi


�
m�

� v��n,m��Vi


, [2]

where v[(n,m)Vi
] means the ‘‘size’’ of superbasin (n,m)Vi

. The 
�
sums over all superbasins belonging to energy level Vi, but the 
�
sums only those superbasins at Vi which are connected to each
other at the higher Vi�1 (see the detailed explanations in the
legend of Fig. 1).

To quantify the topographical complexity of a DG we intro-
duce a measure of ‘‘landscape complexity,’’ CL(Vi), at energy
level Vi. The landscape complexity associated with energy level
Vi is defined by the Shannon entropy of the relative size of
superbasins (i.e., residual probability) at the chosen level,

CL�Vi� � � �
n,m

�pr��n,m�Vi
log pr��n ,m�Vi

, [3]

where 
� is defined in Eq. 1. This definition produces a com-
plexity of zero when there is only one unique superbasin and the
largest complexity when the size of all superbasins (more than
one) are equal at energy Vi. The landscape complexity measure
can then be integrated over the energy range of the DG and
normalized by this range, to give the overall landscape com-
plexity C� L,

C� L �
1

�Vmax � Vmin�
�

Vmin

Vmax

CL� V�dV , [4]

where Vmax and Vmin are the maximum and minimum energies in
a given data set. This measure allows the classification of DG,
providing a rigorous measure for the topographical complexity
of the energy landscape.

A similar measure is defined for root �, based upon the
branching probability of root � giving the ‘‘path complexity,’’
CP,�(Vi), at energy level Vi,

CP,��Vi� � � �
m�

�pb��n�,m��Vi
log pb��n�,m��Vi

 , [5]

where 
� is defined in Eq. 2 and n� is the index of the parent node
at a given energy level Vi along the root �. This definition
produces a complexity of zero when no branching occurs at
energy Vi and the largest complexity when many equally sized
branches exist. As for CL(Vi), integration and normalization of
CP,�(Vi) gives the overall path complexity C� P,�, providing a
measure with which to compare different roots.

Results and Discussion
In Fig. 3, the landscape complexity is plotted for the BLN and
Go� models as a function of energy relative to the global
minimum (GM) energy VGM. For the frustrated BLN model, as
the energy decreases from high to low energy regions, a large
wide peak starts to appear around 7�, implying high complexity
spanning the energy range from 0 to 7� that corresponds to the
appearance of many thick branches in Fig. 2b. The calculation of
the overall landscape complexity for the BLN model gives C� L �
1.725. In contrast, for the Go� model, the landscape complexity
remains small for a wide range of energy except one small sharp
peak observed at 1.8� that corresponds to the separation into 10
separate basins corresponding to the 10 lowest energy structures.
For the Go� model, the overall landscape complexity is C� L �
0.522, a much lower value than for the BLN model, reflecting the
less complex nature of the landscape.

The ratio of folding temperature to glass temperature has been
used as a measure to quantify the foldability of proteins (22). Our
landscape complexity measures CL(Vi) and C� L are also expected
to quantify what degree the topographical features of underlying
energy landscape represent ‘‘glass formers’’ or ‘‘structure seek-
ers’’ for a vast number of systems.

It is known for a 38-atom Lennard–Jones cluster (2) that the
global minimum, a face-centered-cubic truncated octahedron,
has a narrower funnel on the complicated PES, when compared
with the icosahedral second lowest minimum which is separated
by a large potential barrier from the global minimum. The global
landscape complexity C� L evaluated as 2.503 indicates a frus-
trated landscape as for the BLN model protein.

Next, let us look deeper into the question of how one can
quantify the competition of a chosen path against the other
multiple paths. In Fig. 2b, the frustrated BLN model exhibits
many intertwined roots, indicating a PES in which several
similar-sized superbasins and similar structures are separated
by high energy barriers. As an example, the residential prob-
abilities pr are shown along the roots leading to the 4 lowest
energy structures for the BLN model (labeled in Fig. 2b) as a
function of energy above the global minimum in Fig. 4. Root
i corresponds to the pathway leading to the ith most stable
minimum structure on the metric DG. Roots 1–4 for the BLN
model all terminate in �-barrel structures which are less than
0.3� above the GM, but are separated from each other by

Fig. 3. Landscape complexity as a function of energy above the global
minimum energy for BLN and Go� models.
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significant energy barriers. Roots 1–3 have a similar �-barrel
core, but root 4 has a significantly different core. One can see
that, as energy decreases from a high energy region, the
probability of residing in root 4 suddenly drops off at �8�,
much earlier than the other roots (up to 8.4� root 4 shares a
common pathway with the other three roots). Root 2 shares a
common pathway with root 1 until a much lower energy level
(3.6�). After separation from root 1 at 3.6�, the residential
probabilities of root 2 fall rapidly, with decreasing energy
above the GM. Root 2 therefore is only able to act as an energy
funnel over a narrow energy range. In contrast to roots 2 and
4, root 3 has a comparable residential probability to root 1.
Root 3 shares a common pathway with roots 1 and 2 down to
an energy of 6.6�. This indicates that root 3 offers a very
competitive funnel pathway on the energy landscape over an
energy range similar to root 1 leading to the global minimum.

The folding rate of the BLN model starts to deviate from
exponential behavior just below the collapse temperature, indi-
cating that the folding process is controlled by multiple escape
times from different low-lying energy traps (5, 15). Annealing
simulations of the BLN model also shows the difficulty of
terminating at the GM (12). In Fig. 5, we show the path
complexities CP,�(Vi), along roots 1–4 of the BLN model. All
four roots of the BLN model show many spikes over a wide
energy range, indicating a large complexity over the whole
energy range. There exist many regions of high complexity along
the pathway to the global minimum, resulting in non-exponential
behavior of the folding kinetics. The chance of finishing an
annealing run at the end of root 1 is expected to be very small.
On the other hand, as inferred from the ideal funnel landscape
of the Go� model, there exist no large complexity regions along
the course of folding until very low energy (not shown here).

What can one learn from the residential probability and the path
complexity plots along the chosen path and what is the difference
between them? The residential probability tells us the possibility of
choosing a given pathway at different energies, but the path

complexity measure along the given path quantifies the diversity or
uncertainty in the information content of the chosen path: Suppose
that, from Vi�1 to Vi, a path � splits into the four branches with the
same probability, i.e., 1/4, 1/4, 1/4, and 1/4, and the other path �
splits into the four branches with different probability, e.g., 1/4, 1/2,
1/6, and 1/12. Although the (residential) probability of choosing the
first branch is the same, 1/4 for both paths, the path complexity is
2 for path � but only 1.73 for path � from Vi�1 to Vi. The difference
in path complexity arises from the relative size of the multiple
competing paths that exist besides the chosen path. The former path
with four equally-sized competing branches has the largest diversity
of all possible sizes of the four branching paths. The path complexity
also takes into account the number of the other branches, with
which the path complexity increases monotonically. The path
complexity can, thus, be regarded as a natural measure to quantify
how a given path branches along the energy axis: the larger the path
complexity, the more the branches compete in size and/or the
greater the number of branches. For instance, from 3.3� to 4.6�, the
residential probability for root 1 and the competing root 3 are
similar, but the path complexity measures differ significantly from
each other for these roots over this energy regime (Fig. 5). The path
complexity measures for 3.3–4.6� indicate that some competing
branches exist within root 1 but not within root 3 (root 1 has two
large spikes of CP,� at 3.6� and at 4.5�, while root 3 has an almost
constant CP,� of 0.2).

In the inset of Fig. 2b ellipses indicate the branching regimes
which correspond to large spikes in CP,�: 2.34 at 4.5� for root 1
and 1.41 at 4.8� for root 3. The spike at 6.3� for most of the roots
also corresponds to the biggest branch of the main root in the
inset of Fig. 2b. In terms of the path complexity measure, one can
easily quantify where and to what extent meandering paths are
branched on the multidimensional energy landscapes. The over-
all path complexity C� P reflects how often (on average) the
system would experience competing branches for the chosen
path per unit energy. The overall path complexity C� P for roots
1, 2, 3, and 4 of the BLN model is 0.215, 0.234, 0.200 and 0.135,
respectively, but for root 1 of the Go� model is 0.185. Roots 1, 2,
and 3 of the BLN are more complex than root 4 and the single
Go� root. This implies that the former roots have many significant
branches along their paths and are less likely to end up in the
desired minimum conformation, but the latter, with very fewer
branch points on average, are more likely to reach the desired
minimum conformation once the system has entered the root
(Fig. 2b). For a 38-atom Lennard–Jones cluster (2), roots 1 and
2 leading to the truncated octahedron (global minimum) and
icosahedral structure (second lowest minimum) have path com-
plexities C� P of 0.232 and 0.271, respectively. This implies that,
although the path leading to the global minimum has been
considered as a narrower funnel on the PES compared with the
path leading to the second lowest minimum, the extent of
competition among the multiple meandering and branched
pathways inside the funnels is likely to be similar between the two
routes once the system has decided to follow either of the two.

Conclusions
In this article, we have developed a new metric disconnectivity
graph and new measures for quantifying the complexities of
underlying energy landscapes and multiple pathways. The three-
dimensional visualization of the DGs allows an intuitive under-
standing of the multidimensional energy landscape while the
complexity measures bring a quantification of the complexity
and properties of the landscape. As an illustrative example, we
have demonstrated the versatility of this approach for the PES
of the well studied BLN and Go� model proteins. The ideal
funnel-like Go� landscape has lower topographical complexity
(C� L � 0.522) than that of the more frustrated BLN landscape
(C� L � 1.725). The energy dependency of landscape complexity
CL can indicate an energy regime where branching and bifur-

Fig. 4. Residential probabilities pr as a function of energy above the global
minimum VGM for the four lowest-energy roots of the BLN model. Roots: bold
red line, 1; open-circle black line, 2; solid blue line, 3; and solid green line, 4.

Fig. 5. Path complexity as a function of energy above the global minimum
GM for the BLN model. Roots: bold red line, 1; open-circle black line, 2; solid
blue line, 3; and solid green line, 4.
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cations of the main root become significant, making the system
more likely to be trapped in one of several local minima during
the annealing process. The path complexity of roots leading to
different local minima indicates the uncertainty in following a
pathway to a chosen minimum. The higher the path complexity,
the more the system has significant branching points along the
path and the lower the probability of ending up at the desired
minimum. By investigating the dependency of the landscape and
path complexity measures on the choice of energy bin �V to
build connectivity relationships among superbasins, one can also
assess the ‘‘ruggedness’’ of a PES which may be relevant to assess
the topographical complexity of the FES as a function of
temperature. It would also be interesting to see how the com-
plexity measures can quantify intermediate character between
the BLN and Go� models, which was recently observed by visual
inspection of the disconnectivity graph of a salt-bridged 46-bead
protein (23).

The application of these new measures and metric DGs to a
vast number of different systems is crucial for looking into how
these new complexity measures relate to the kinetics and dy-
namics of the systems. Our landscape and path complexity

measures are quite general, irrespective of the kinds of energy
[i.e., potential or free energy (9, 24)] and model. The landscape
complexity is expected to offer a new measure to quantify the
foldability of proteins in terms of the topographical complexity
associated with the energy landscape as the ratio of folding and
glass temperatures, which can classify a vast number of energy
landscapes for different systems as ‘‘glass formers’’ or ‘‘structure
seekers.’’
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