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Analyzing energy landscapes for folding model proteins
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A new benchmark 20-bead HP model protein sequence �on a square lattice�, which has 17 distinct
but degenerate global minimum �GM� energy structures, has been studied using a genetic algorithm
�GA�. The relative probabilities of finding particular GM conformations are determined and related
to the theoretical probability of generating these structures using a recoil growth constructor
operator. It is found that for longer successful GA runs, the GM probability distribution is generally
very different from the constructor probability, as other GA operators have had time to overcome
any initial bias in the originally generated population of structures. Structural and metric
relationships �e.g., Hamming distances� between the 17 distinct GM are investigated and used, in
conjunction with data on the connectivities of the GM and the pathways that link them, to explain
the GM probability distributions obtained by the GA. A comparison is made of searches where the
sequence is defined in the normal �forward� and reverse directions. The ease of finding mirror image
solutions are also compared. Finally, this approach is applied to rationalize the ease or difficulty of
finding the GM for a number of standard benchmark HP sequences on the square lattice. It is shown
that the relative probabilities of finding particular members of a set of degenerate global minima
depend critically on the topography of the energy landscape in the vicinity of the GM, the
connections and distances between the GM, and the nature of the operators used in the chosen
search method. © 2006 American Institute of Physics. �DOI: 10.1063/1.2198537�
I. INTRODUCTION

One of the most important problems in chemical biology
is to establish or predict the three-dimensional local spatial
arrangement �“secondary structure”� and folded conforma-
tion �“tertiary structure”� adopted by a protein molecule from
knowledge of its primary structure: the one-dimensional se-
quence of amino acid residues.1 This sequence-structure cor-
relation is of critical importance if we are to understand how
proteins fold and, hence, to investigate sequence-activity re-
lationships for proteins. The “protein folding problem” is
essentially a search for the biologically active �functional�
conformation of a protein �the so-called native state� for a
given sequence of amino acid residues.2 The ability of natu-
ral proteins to fold reliably to a unique native state has been
attributed to the presence of a “folding funnel” on the folding
free energy landscape, so that misfolded states are funneled
towards the native state.3 As well as determining the low
energy protein conformations, therefore, it is important to
discover the nature of the folding energy landscape �funnels,
heights of potential barriers, etc.� in order to gain a better
understanding of the dynamics of protein folding.4

There are a variety of protein models which differ in the
way in which they approximate the protein molecule and
how they treat interactions between amino acid residues and
solvents �if included�. Due to the size and complexity of
protein hypersurfaces, simplified models have often been
employed to study the protein folding process.5 One of the
simplest protein models is the HP lattice bead model,6–8
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which is a minimalist model of a protein, representing the
constituent amino acid residues by either hydrophobic �H� or
polar �hydrophilic� �P� beads which lie on a two-dimensional
�2D� or three-dimensional �3D� lattice: square and cubic lat-
tices are most common, though other lattices have also been
studied. Such coarse grained protein models can actually
capture some of the important folding behavior of real pro-
teins, and they have the advantage of being simple, so that
their energies may be calculated quickly, making them good
for systematic grid searches and for carrying out compari-
sons of different folding search algorithms.

In a previous study9 using a genetic algorithm �GA� to
find the global minimum �GM� structures for a number of
benchmark HP sequences �ranging from 20 to 50 beads10� on
a square lattice, we found that most of the sequences have
multiply degenerate global minimum structures. �The GM
energies and degeneracies of these sequences—along with
the new sequence introduced for this study: HP-20a—are
listed in Table I.� Subsequent studies have shown that, for
benchmark sequences with multiply degenerate GM, our GA
finds the degenerate GM often with significantly different
probabilities.

The aim of the present study is to determine to what
extent the differences with which the GA finds different, de-
generate GM conformations depends on: �a� the topography
of the potential energy hypersurface for model protein
folding,4 �b� the way in which the GA searches the surface,
and �c� the nature of the GA operators utilized. In this way,
we hope to obtain some insight into the interconnection be-
tween the folding landscape, the search algorithm, and the

ease or difficulty in finding the global minima.
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II. METHODOLOGY

A. The HP lattice bead model

In the present work, we have adopted the 2D square
lattice HP bead model,6,8 where the H and P beads are con-
strained to lie on a 2D square lattice and interactions occur
only between nonbonded beads that lie adjacent to each other
on the lattice �“topological neighbors”�, but are not adjacent
in the sequence �i.e., they are not directly bonded “sequence
neighbors”�.6 The values of the H-H, H-P, and P-P interac-
tions ��ij� in the standard HP model are6

�HH = − 1.0, �HP = 0.0, �PP = 0.0. �1�

The energy of the model protein is obtained by summing
over these local interactions as follows:

E = �
i�j

�ij�ij , �2�

where

�ij = �1 if i and j are topological neighbors,

but are not sequence neighbors

0 otherwise.
� �3�

It should be noted that the effective attractive �stabiliz-
ing� interaction between the H beads reflects the fact that in
aqueous solution the hydrophobic interaction �i.e., the repul-
sion of hydrophobic residues and water molecules� is the
driving force for protein folding and that the native structures
of many proteins are compact, with cores which are rela-
tively rich in hydrophobic residues.6,11 The reasons for study-
ing the 2D, rather than the 3D lattice bead model are
twofold:6 first, the surface-to-volume ratio of the 2D model
approaches realistic “protein values” for smaller sequences
than in 3D; and second, the computational requirements are
greatly reduced. The 2D analogs of protein secondary struc-
ture features, such as � helices and � sheets, naturally arise
in the compact cores of such models, implying that second-
ary structure formation is a consequence of the compactness
of the core and the presence in the core of hydrophobic
groups.12

In this work, we define the folding conformation of the
protein using a local coordinate system in which the position
of a bead j is defined relative to its predecessors �j−2 and

11,13–15

TABLE I. Benchmark HP sequences investigated in the present study �Ref.
10�, including the new benchmark sequence HP-20a. The lowest energies
found for these sequences are indicated by E�GM� and the GM degeneracies
�restricted to the +x , +y quadrant� by D�GM�. E�GM� and D�GM� values in
bold have been confirmed by systematic grid searching.

Name Sequence E�GM� D�GM�

HP-20 HPHPPHHPHPPHPHHPPHPH −9 2
HP-20a HPHHPPHPHPPHPHPHPHPH −8 17
HP-24 HHPP�HPP�6HH −9 19
HP-25 PPHPP�H2P4�3HH −8 16
HP-36 P3H2P2H2P5H7P2H2P4H2P2HP2 −14 192
HP-48 P2H�P2H2�2P5H10P6�H2P2�2HP2H5 −23 285
HP-50 H2�PH�3PH4P�HP3�3P�HP3�2HPH4�PH�4H −21 370
j−1�. Thus, in two dimensions, the direction of the
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bond joining the �j−1�th and jth beads can be left �0�, right
�1�, or straight ahead �2� relative to the bond joining the �j
−2�th and �j−1�th beads. Each protein conformation is
therefore represented by a conformation vector c, which is a
string of 0’s, 1’s, and 2’s. As the energy of each conformation
is invariant to the rotation of the whole molecule, we fix the
positions of the first two beads in the chain, such that bead 1
lies at the origin �0,0� and bead 2 lies along the x axis �1,0�.
Thus, for an N-bead sequence, c has �N−2� elements.

B. The genetic algorithm

Despite the reduction in complexity inherent in the mini-
malist HP lattice bead model, it has been shown to belong to
the set of problems that are “NP-hard.”13,16 This means that
there is no algorithm that can solve the protein folding prob-
lem exactly in polynomial time. For this reason, researchers
have adopted heuristic and approximation algorithms. For
the HP lattice bead model and other minimalist models, the
approaches adopted include Monte Carlo,17–21 chain growth
algorithms,22,23 simulated annealing,24 genetic
algorithms,9,13–15,25–27 and ant colony optimization.11,28–30

Our GA program, its parameters, and operators have
been described in detail previously,9 so only a brief descrip-
tion is presented here.

1. Generating the initial population

The initial population corresponds to the starting set of
individuals which are to be evolved by the GA. In our GA,
the individuals are a set of conformation vectors �strings of
0’s, 1’s, and 2’s, as described above�. The initial population
is formed by the constructor operator, which generates a
number of valid conformations at random. In lattice bead
models, valid protein conformations correspond to self-
avoiding walks on the 2D or 3D lattice. In contrast, invalid/
infeasible conformations correspond to non-self-avoiding
walks, where two or more beads occupy one or more sites on
the lattice. This is clearly unphysical, and such conforma-
tions should be eliminated. We have adopted a “recoil
growth” algorithm, which involves growing the chain one
bead at a time, checking the validity of the incomplete con-
formation at each step, and backtracking when an invalid
subconformation is generated.11,31

2. Fitness

In our GA, the fitness of the ith individual �conforma-
tion�, which determines the likelihood of it surviving and
taking part in crossover, is simply related to its energy as
follows:

Fi = − Ei + 0.01. �4�

Thus, the fitness is a positive quantity, with high fitness cor-
responding to a large negative energy.

3. Selection

Selection refers to the way in which individual members
of the population are chosen to pass into a temporary “parent

population,” which is subsequently subjected to a number of
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genetic operators. We have adopted roulette wheel selection,
whereby individuals are chosen for crossover with a prob-
ability proportional to their fitness.

4. Crossover

Crossover is the way in which “genetic” information
from two parent structures is combined to generate “off-
spring.” In this study, the variable mating rate is defined as
the percentage of parents in the parent population which un-
dergo crossover. The two offspring produced from each
crossover operation overwrite their parents. The offspring
and unmated parents then pass into the “offspring popula-
tion.” In this study, we have considered one-point �1pt� and
two-point �2pt� crossovers, whereby the conformation vec-
tors corresponding to the two selected parents are cut at ei-
ther one or two points and complementary portions are ex-
changed to produce the offspring.

5. Mutation

While the crossover operation leads to a mixing of ge-
netic material in the offspring, no new genetic material is
introduced. The GA mutation operator helps to increase
population diversity by introducing new genetic material, us-
ing the following mutation operators:9

In-plane Rotation=single-point mutation. This involves
a ±90 or 180° rotation, in the xy plane, of the subchain fol-
lowing a randomly selected bond �say, between beads j−1
and j�. In terms of the conformation vector, this corresponds
to a change of the local coordinate direction of bead j+1,
with the rest of the conformation vector being unchanged,
i.e., a single bit change. This mutation, therefore, leaves most
of the local structure intact.

Out-of-plane rotation. This involves a 180° rotation, in
either the xz or the yz plane, of the subchain following a
randomly selected bond �say, between beads j−1 and j�.
�The rotation plane depends on whether the �j−1�− j bond
points along the x or the y axis.� In terms of the conformation
vector, this corresponds to all of the 0’s being changed to 1’s
and all of the 1’s being changed to 0’s �with the 2’s left
unchanged� for the entire subchain starting at bead j+1. This
mutation, therefore, leads to an inversion of the rotated frag-
ment, thereby generating a diastereoisomer of the original
conformation.

Crank shaft rotation. This involves a 180° rotation, in
either the xz or the yz plane, of a crank shaft local
structure motif �corresponding to the four digit
strings¼0110¼or¼1001¼in the conformation vector�,
which leads to the interconversion of these four digit strings,
with the rest of the conformation vector left unchanged.

Kink motion. This involves the inversion of a kink �or
bend� local structure motif, where the kink bead �say, bead j�
is moved diagonally across a lattice square, such that it is
still bonded to its two neighbors �beads j−1 and j+1�. This
only leads to a change of the local coordinate directions of
the �j−1�− j, j− �j+1�, and �j+1�− �j+2� bonds, with the

rest of the conformation vector left unchanged.
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Snake motion. This involves the movement of the end of
the protein to a neighboring vacant lattice site �if available�,
with each of the remaining beads moving to the position of
its predecessor. This is analogous to the process of reptation
in polymers and is one way in which a dense structure can be
mutated with a low likelihood of creating an invalid mutant.
In terms of the conformation vector, this mutation corre-
sponds to shifting the vector along by one place and placing
the first component of the vector at the end.

The variable mutation rate is defined as the probability
of a selected individual undergoing mutation.

6. The corrector operator

Since the mutation operator often generates invalid �non-
self-avoiding� conformations, a correction operator has been
introduced to generate valid conformations from any invalid
conformations resulting from mutation. Our corrector opera-
tor is based on the approach introduced by Schmygelska and
Hoos in their ant colony optimization study of protein fold-
ing for the HP bead model.28 An invalid conformer can un-
dergo refolding at points of infeasibility �i.e., where two
beads lie on top of each other�, ensuring that a valid con-
former results. The operator starts at the first nonfixed bead
and cycles through the conformer placing beads using their
corresponding value in the conformation vector. If the place-
ment of the jth bead results in an infeasibility, the bead is
randomly repositioned to a valid site; if the bead cannot oc-
cupy a valid site, the operator returns to the �j−1�th bead and
attempts a valid repositioning. The operator continues in this
fashion, backtracking as much as necessary until a valid con-
formation vector is obtained, which is as closely related to
the initial invalid conformer as possible.

7. Elitism

In the context of genetic algorithms, an “elitist strategy”
corresponds to allowing the best individuals in a population
to survive unchanged from one generation to the next,
thereby ensuring that the best member of the population can-
not get worse. In our GA, elitism is accomplished by speci-
fying the fraction of the best individuals within the jth popu-
lation which are to be appended to the mutant population,
prior to the generation of the �j+1�th population.

8. “Natural” selection

In biological evolution the concept of the “survival of
the fittest” �or best adapted to the environment� is a strong
evolutionary driving force. In the case of a GA, although the
selection is clearly not “natural,” individuals �be they par-
ents, offspring, or mutants� are likewise selected to survive
into the next generation on the basis of their fitness �their
quality with regards to the quantity being optimized�. The
GA program generally continues for a predetermined number
of generations �each generation corresponding to a cycle of

crossover, mutation, and elitism� or until some convergence
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criterion is reached. In the calculations reported here, how-
ever, as we know the GM from previous grid searches, the
GA program terminates once one of the degenerate GM
structures has been found.

9. Duplicate predator

In recent work, we have extended the analogy between
GAs and natural evolution by considering the use of “preda-
tors” to remove unwanted individuals or traits from a
population.32 In our protein folding GA studies, we have in-
vestigated the application of a “duplicate predator,” which
deletes �“predates”� identical conformations.9 We define the
duplicate predator limit �DPL� to be the maximum number of
times that a given structure is allowed to appear in the popu-
lation in any particular generation. It has previously been
shown that DPL=1 yields the highest success rates.9 The
duplicate predator serves to increase the diversity �proportion
of unique structures� of the population in order to prevent
premature convergence of the population on a nonoptimal
solution �“stagnation”�.

10. Local search

In problems where the search space is continuous, off-
spring and mutants invariably occupy states which are not
minima, but which lie within an energy well. In such cases,
performing a local minimization will relax each individual to
its corresponding local minimum. Although, due to the dis-
crete nature of the conformation space of the HP lattice bead
model, it is not possible to perform gradient-driven energy
minimizations, it is possible to perform a local search
whereby a given conformation undergoes a number of fold-
ing changes, testing a number of closely related conforma-
tions.

In this study, we have implemented local searching using
the “long range move” Monte Carlo-type approach intro-
duced by Schmygelska and Hoos,28 though it should be
noted that Unger and Moult also used a Monte Carlo muta-
tion in their GA study.13 In our application, a conformation
c1, with energy E1, is folded at a randomly chosen position
�as in the in-plane rotation mutation� by randomly changing
one of the digits in the conformation matrix c. The new
conformation c2 is accepted if its energy E2�E1. For con-
formation changes where E2�E1, the conformational change
is accepted with a probability

p =
E2

15E1
, �5�

where the factor of 15 was found to give reasonable accep-
tance rates �approximately 25%�. Each local search corre-
sponds to 36 of these Monte Carlo steps, with a new random
fold carried out at a random position each time, starting from
the current conformation.

C. The HP-20a sequence

A new 20-bead benchmark sequence �HP-20a
= �HPHHPPHPHPPHPHPHPHPH	� has been chosen for
this study. This sequence has 17 degenerate, but non-

symmetry-equivalent, GM �with energy E�GM�=−8�. From
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Table I, it can be seen that HP-20a has the same H-P com-
position �H10P10� as the HP-20 benchmark sequence, being
related to HP-20 by four H-P point mutations �H-P swaps�
at loci �beads� 4, 6, 15, and 16.

The GM degeneracy of HP-20a is low enough for the
GA to find all of the GM with reasonable probability, while
being large enough to show significant variation between the
GM. The sequence size chosen is small enough to allow
systematic grid searching of all possible conformations,
thereby ensuring that the GM energy and degeneracy are
known precisely. The number of GM is restricted to 17 by
fixing the first two beads in the chain at positions �0,0� and
�1,0� and constraining the first bead that lies off the x axis to
lie in the +x , +y quadrant �though subsequent beads are al-
lowed to fold around into the other quadrants�. The 17 GM
structures �labeled GM1-GM17� are shown in Fig. 1. The
numerical order of the GM conformers follows the numerical
order of their conformation vectors c, written as a series of
0’s, 1’s, and 2’s.

Figure 1 shows that, although all the GM have eight
topological H-H contacts �hence E=−8�, not all of the ten H
beads have to be involved in H-H interactions. Thus, GM3–
GM11 and GM14 have one noninteracting H bead �bead 1, 3,
5, 9, or 14 may be noninteracting�. In these cases, the other
nine H beads compensate by forming additional H-H con-
tacts.

In some of the studies below we have relaxed the con-
straint on the first off-axis bead, so that it can lie in either the
+x , +y or the +x ,−y quadrant. This results in 17 enantio-
meric pairs �nonsuperimposable mirror image conforma-
tions� of GM which are related by reflection in the xz plane.
Enantiomeric GM can be interconverted by exchanging 0’s
for 1’s �and vice versa� in the conformation vector c, while
keeping the 2’s unchanged.

We define the sequence HP-20a�
�HPHPHPHPHPPHPHPPHHPH	 as the reverse of se-
quence HP-20a. �The “forward” and “backward” sequence
vectors are not identical as HP-20a is not a “palindromic”
sequence.� The set of global minima for HP-20a� are, of
course, the same as those for HP-20a �being independent of
which end of the chain is taken as the start of the sequence�.
For any particular GM of HP-20a, the isostructural GM of
HP-20a� is simply generated by reversing the conformation
vector c and interchanging 0’s and 1’s.

In order to determine the success rate of the GA and the
probabilities of it finding different GM conformers, the GA
was run 20 000 times, with the program terminating when a
conformer with the global minimum energy �as determined
from the grid search� is found �up to a maximum of 200
generations�. For successful GA runs, the first GM con-
former found is reported. The GA parameter set is as fol-
lows: population size=200, maximum number of
generations=200, crossover types=1pt and 2pt, crossover
rate=1.0, mutation rate=0.1, elitism=0.3, Monte Carlo local
search �LS� rate �when implemented�=100%, Monte Carlo

steps=36, and duplicate predator limit=1.
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III. RESULTS AND DISCUSSION

A. GM probability distributions

1. Dependence on GA search methodology

The probability distribution of finding GM1–GM17 us-
ing the GA are shown in Fig. 2, which compares the results
for 1pt and 2pt crossovers, with and without Monte Carlo
LS. In each case, 20 000 GA runs were performed. In this
study, initial and subsequent populations were allowed to
sample both the +x , +y and the +x ,−y quadrants in order to
avoid possible problems due to crossover and mutation, gen-

FIG. 1. GM conformations f
erating offspring in the “unallowed” quadrant. �However,
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Fig. 2 only shows the relative probabilities of obtaining the
various GM in the +x , +y quadrant.� Our previous work has
shown that 1pt crossover is generally more efficient than 2pt,
because it leads to less disruption of “schemata” related to
low energy structures.9 For the HP-20a sequence, a compari-
son of 1pt and 2pt crossovers �with and without local search-
ing� again shows that 1pt crossover has comparable success
rates to 2pt, but generally with fewer structures having to be
searched before finding one of the GM.

The distributions in Fig. 2 show that there is little differ-
ence between 1pt and 2pt crossovers as regards the relative

P-20a �black=H, white= P�.
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probability of finding each global minimum in successful
GA runs. What is apparent, however, is that, for both cross-
over types, some GM are found with considerably higher
likelihood than others—with the maximum ratio between
“likely” and “unlikely” GM being approximately 34:1 for
GM12:GM14.

Figure 2 also shows that the introduction of Monte Carlo
local searching leads to a significant change in the probabil-
ity distribution. Thus, when the local search is not imple-
mented, GM 12 and 13 are most likely to be found, whereas,
with local search, minima 13 and 17 are the most probable.
The change in probability distribution when local search is
implemented shows that the distributions depend to a certain
extent on how the GA operations search the energy surface.

2. Mirror image GM

Figure 3 shows the probability distribution for all 17
pairs of mirror image GM, obtained from 20 000 GA runs
with 1pt crossover and no local search. The figure clearly
shows that the differences in the probability of finding enan-

FIG. 2. Probability distribution of minima found by 20 000 GA runs for
both 1pt with �red� and without �black� the incorporation of a Monte Carlo
local search �LS�.

FIG. 3. Probability distribution of enantiomeric pairs of GM found by
20 000 GA runs for a 1pt crossover, without incorporating any local search,

for HP-20a. Red �+x , +y� quadrant, black �−x , +y� quadrant.
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tiomers are statistically insignificant when compared to dif-
ferences between nonenantiomeric minima. Similar results
are found for 2pt crossover and when local search is imple-
mented.

3. Sequence reversal

The GM probability distributions for the forward
�HP-20a� and backward �HP-20a�� sequences �using 1pt
crossover� are compared in Fig. 4, with and without local
search, for 20 000 GA runs. �Again, although the search was
not restricted, only the relative probabilities of finding GM in
the +x , +y quadrant are shown, with the probabilities for the
mirror images being almost identical.� Isostructural GM of
HP-20a and HP-20a� are paired together, though in the fol-
lowing discussion they are distinguished as GM1–GM17
�when the GA was performed on sequence HP-20a� and
GM1�–GM17� �when the GA was performed on sequence
HP-20a��.

It is immediately apparent from Fig. 4 that the
HP-20a� distribution without local search is similar to that of
HP-20a, but with differences for some conformers �espe-
cially GM1/GM1�, GM13/GM13�, and GM16/GM16��
which are clearly greater than those observed between mirror
images. It has already been shown that implementing a local

FIG. 4. Probability distribution of minima found by 20 000 GA runs using
1pt crossover, �a� without and �b� with the incorporation of a Monte Carlo
local search �LS� for both HP-20a �black� and HP-20a� �red�.
search leads to a significant change in the probability distri-
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bution for the GM of HP-20a. Figure 4 shows that this is
also true for the reverse sequence HP-20a� and, more impor-
tantly, that the differences between the probability distribu-
tions of isostructural GM are generally greater when a local
search is implemented. Thus, GM1�, GM14�, and GM16� are
found with significantly increased probability relative to
GM1, GM14, and GM16. Conversely, GM13�, GM15�, and
GM17� are found significantly less frequently than GM13,
GM15, and GM17. Considering conformers GM13�–
GM17�, Fig. 1 shows that these structures have embedded
tail H beads, which contribute to the overall energy of the
structure. Once the tail becomes embedded and the correct
outer structure has been formed, there is a set local structure
that the tail must form in order to remain feasible, which the
correction operator within the local search algorithm will
find.

These initial studies show that there are significant dif-
ferences between GM probability distributions depending on
whether or not local searching is included. It has also been
shown that reversing the sequence can lead to significant
changes in the GA distribution. In the following sections, we

FIG. 5. Theoretical constructor probabilities for the HP-20a �black� and
HP-20a� �red� GM.
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rationalize the above distributions in terms of the nature of
the GA and of the model protein folding surface.

B. The constructor probability

There are two occasions within a GA run when confor-
mations are generated from scratch: �a� the generation of the
initial population and �b� generating new structures to re-
place those removed by the duplicate predator. In both cases,
new structures are generated using the constructor operator,
which uses a recoil growth algorithm11,31 to build up a struc-
ture, one bead at a time, backtracking when necessary.

This type of growth results in high probabilities of con-
struction �Pc� for more compact structures. Pc=	i=1

N Pi,
where Pi=

1
3 if all local coordinates for the next bead are

feasible, 1
2 if only two are feasible, and 1 when there is only

one feasible local coordinate.
The construction probabilities for the GM structures of

sequences HP-20a and HP-20a� �compared in Fig. 5� are
different, as the feasible chain growth directions at each step
will differ depending on which end of the chain is defined as
the origin. In contrast, enantiomeric GM have identical con-
struction probabilities.

It is interesting to note that, with the exception of
GM14/14�, GM16/16�, and GM17/17�, the GM for the re-
verse sequence �HP-20a�� have lower constructor probabili-
ties than those �with the same structure� for HP-20a. Inspec-
tion of the GM structures in Fig. 1 reveals that for
HP-20a�, these exceptional GM have longer embedded tails,
which results in a higher construction probability.

Comparison of Fig. 5 with the GM probability distribu-
tions obtained from GA runs �with or without local search,
Fig. 4� shows that there is no correlation between the con-
struction probability distribution and the GA probability dis-
tribution. In the absence of local searching, because the av-
erage number of generations required to find one of the GM
conformations �54.5� is high, any biasing of the initial popu-
lation arising from the constructor is altered significantly by
the GA operations before the GM is found. This can be

FIG. 6. Hamming distances between
all GM �including mirror images, 18–
34� for the HP-20a sequence. GM�N
+17� is the mirror image of GM�N�,
with N=1–17.
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seen by analyzing a smaller sequence �e.g., HP-10a
= �PHPPHHPPHH	� which has higher construction prob-
abilities for the GM. For this sequence, we have found that
the GM distribution found by the GA within the first few
generations is virtually identical to that from the constructor
probabilities. However, for longer searches the similarity is
lost. Incorporating local searching for HP-20a lowers the
average number of generations required to find a GM �3.7�,
but the local search operator itself changes the distribution of
structure types significantly from that generated by the con-
structor.

This investigation shows that, while one of the GM
might not be generated by the constructor operator, one of
the many structurally related higher energy structures �with
similar individual construction probabilities� may be con-
structed. If the GA finds the GM from this initial population
within a small number of steps �which is possible for short
sequences�, then the GM distribution pattern will be similar
to the theoretical construction probability distribution. For
longer GA runs �before successfully finding a GM conforma-
tion�, which will tend to be the case for longer sequences, the
other GA operators �especially crossover and mutation� will
skew the distribution from that of the constructor.

C. Hamming distances between global minima

The Hamming distance �dH� is a simple measure of the
33

FIG. 7. Valid uphill pathways between a starting GM structure and structu
HP-20a. x axis: number of point mutations; y axis: energy.
dissimilarity of two structures, represented as bit strings.
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For lattice bead models, using a local coordinate system, the
Hamming distance between two conformations ci and cj is
simply the number of positions in the conformation vectors
ci and cj which have different values �local coordinate direc-
tions�. Structures which are closely related, i.e., which are in
close proximity on the conformational hypersurface, have a
low dH. The Hamming distances between all 17 enantiomeric
pairs of GM for HP-20a are shown graphically in Fig. 6.
GM1–GM17 are defined such that the first off-axis bead lies
in the +x , +y quadrant, while GM18–GM34 have the first
off-axis bead in the +x ,−y quadrant. The numbering of the
mirror images is such that GM�N+17� is the mirror image of
GM�N�.

Figure 6 highlights that conformations GM3–GM10
have very similar conformation vectors �dH�4�. As can be
seen from Fig. 1, in this family of GM, the first 16 beads
adopt the same subchain conformation. For GM3–GM10, the
first 16 beads are responsible for all but one of the favorable
H-H interactions and there is a flexible �PHPH	 tail which
folds round in different loops to form the final H-H interac-
tion.

GM12 and GM13 have relatively high Hamming dis-
tances �dH�6� from most of the other global minima �in-
cluding the mirror images�, therefore, assuming the GA
searches all low energy areas with equal probability, the
lower competition for which global minimum the GA

hree folds away, using the point mutation move class, for selected GM of
res t
evolves to once in the region of GM12 and 13 could explain

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



axis: Hamming distance from starting GM structure; y axis: energy.

204714-9 Analyzing energy landscapes for folding model proteins J. Chem. Phys. 124, 204714 �2006�
the high probabilities with which these GM are found, and
also the relatively low probabilities associated with the
aforementioned family GM3–GM10.

D. Connectivity of global minima

To answer whether or how strongly the GA probability
distribution depends on the topography of the energy land-

FIG. 8. Disconnectivity graphs for selected GM of HP-20a. x

FIG. 9. Distribution of connectivity �C, black� and number of minima �Nm,

red� for all valid paths.

Downloaded 05 Jun 2006 to 147.188.105.99. Redistribution subject to
FIG. 10. Number of structures which are common for three fold paths
starting at each GM, for all GM pairs. There are 20 different colors, each of
width 30, in a linear scale from white �0 common structures� through dark
blue, light blue, light green, yellow, orange, and red �583 common

structures�.
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scape and the way in which the genetic operators act, the
energy surface in the vicinity of each GM has been investi-
gated. The movement class is defined as a point mutation,
i.e., picking the kth element of the conformation vector c and
changing its value. The mutant structure therefore has a
Hamming distance, from the starting structure, of 1.

From each GM, all valid uphill/flat paths �i.e., sequences
of point mutations which, starting from the GM, either stay
constant or go up in energy, while at the same time not
resulting in or passing through an infeasible structure� of
three point mutation steps in length were calculated. The
only restriction imposed was that, after a point mutation has
been implemented, the reverse of that mutation cannot be
performed in the next step. These represent the pathways
most likely to be explored by the local search operator,
which always accepts a move if the new fitness is less than or
equal to the parent’s fitness �though uphill moves are ac-
cepted probabilistically�. These paths are represented in Fig.
7 for a selection of GM. The starting GM structure is repre-
sented in the lower left corner �x=0�, with energy plotted on
the y axis and the number of steps �mutations from the GM�
on the x axis. The value at each node indicates the number of
unique structures represented by that node. The total number
of unique structures for all possible point mutations are in-
dicated at the bottom of each column of nodes.

Other statistics calculated are links �L�, the number of
connections between all nodes; connectivity �C�, the total
number of connections between all nodes,

C = P 
 F , �6�

where P is the total number of paths and F is the maximum
number of steps �largest dH�; the ratio L /C; and the number
of minima �Nm�, the total number of unique structures �con-
formations� represented on the figure.

To investigate the broader topography of the surface sur-
rounding the GM, all valid paths �i.e., paths that can also
decrease in energy as a result of a mutation� were also ana-
lyzed to find any paths wherein a higher energy “saddle
point” structure separates two lower energy minima, one of
which is a GM �i.e., defining minimum-saddle-minimum
transitions, where the first minimum is one of the GM and
the other minimum is a low lying structure�. Using these
transitions, a modified disconnectivity graph34 can be cre-
ated, wherein the x axis shows the Hamming distance be-
tween minima in a transition. A selection of these disconnec-
tivity graphs are shown in Fig. 8.

Both representations of local topography clearly high-
light the interconversions between GM which are in close
proximity on the surface, e.g., the aforementioned GM3–
GM10 family. These GM conformations have a high inter-
conversion rate within a few steps.

Within the GA, structures with lower energy are more
likely to be chosen to participate in genetic operations and
propagate into subsequent generations. The connectivity of
structures with an energy of −7 �i.e., one energy unit above
the GM energy� is high, suggesting that the GA will easily
evolve to these structures. Once a population containing a
large number of structures with energy −7 has been created,

structures which are higher in energy are less likely to par-
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ticipate in the evolutionary process. Hence GM14, which has
no connectivity to a structure with energy −7, as can be seen
from both Figs. 7 and 8 �and which has the lowest number of
links�, is less likely to be found.

To investigate the effect of the topology on the GA dis-
tribution, the Connectivity �C� and number of minima �Nm�
values have been extracted from each plot in Fig. 7 and are
plotted as distributions in Fig. 9. This distribution has a very
strong correlation with the GA probability distribution when
the local search is applied �see Fig. 2�, e.g, GM2, GM12,
GM13, and GM17 have high C and Nm and are found most
often by the GA. GM14 is an exception to this correlation,
which may be attributed to the reasons discussed above and
the lack of pathways linking GM14 to other GM. GM14 also
has the lowest number of different types of transition, as
shown in Fig. 8.

Figure 10 shows the number of structures which appear
in the three-mutation pathways for both GM, for all possible
pairs of GM. �For a pair GMi and GMj, if square �i , j� is
white, this signifies that no structures that appear in the path-
ways leading from GMi also appear in the pathways leading
from GMj.� The highly connected region for GM3—GM10,
which was observed in the Hamming distance plot �Fig. 6�,
is again evident in Fig. 10, with these GM having the highest
number of shared structures. The maximum number of com-
mon structures is 583, colored red in Fig. 10, between GM4
and GM6.

Figure 10 shows that only a few of the precursor struc-
tures that appear in the paths leading to GM14 are also
present in paths leading towards other GM, and then only for
GM16 and GM17. This is consistent with Fig. 6, which
shows that GM16 and GM17 are closer in Hamming distance
to GM14 than are any other GM. �The Hamming distances
between these three GM are dH�GM14–GM16�
=dH�GM16–GM17�=4 and; dH�GM14–GM17�=3.�

Inspection of Fig. 1 reveals that GM14, GM16, and
GM17 have the same local structure between beads 5 and 13.
An obvious difference between GM14 and GM16/GM17 is
that, while the latter two structures have embedded H�1�
heads, GM14 also has an embedded H�20� tail. The steric
requirement imposed by having both ends of the chain em-
bedded �i.e., in four-coordinate sites� may contribute to the
reduced probability of the GA finding GM14, though this
would not explain the significantly enhanced probability of
finding GM14’ for the reverse sequence. Finally, it is inter-
esting to note, as mentioned previously, that this family of
related structures �GM14/GM14�, GM16/GM16�,
GM17/GM17�� are the only conformations for which
the constructor probabilities are greater for the reverse
�HP-20a�� than the forward �HP-20a� sequence definition.

E. Previously studied benchmark sequences

The HP benchmark sequences that we have previously
studied10 �HP-20, HP-24, HP-25, HP-36, HP-48, and
HP-50� are listed in Table I, along with the energies and
degeneracies of the global minima for these sequences �re-
stricting solutions to the +x , +y quadrant�.9 �Although these

are commonly studied benchmark sequences for the 2D HP
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lattice bead model, to our knowledge, no exploration of their
folding landscapes have previously been made.� For the
shorter sequences �up to HP-25�, the GM energies and de-
generacies are exact, as they have been obtained by system-
atic grid searching. For HP-36, HP-48, and HP-50, which
are too large to grid search, the “GM” energies and degen-
eracies have been obtained from multiple GA runs. The en-
ergies are consistent with previous studies of these
sequences.9 The degeneracies have not previously been re-
ported and should be regarded as lower bounds on the GM
degeneracies for HP-36, HP-48, and HP-50. Examples of
GM structures for the benchmark sequences are shown in
Fig. 11.9

The GA percentage success rates and average number of
structures evaluated �for successful runs� determined in our
previous study of the benchmark sequences are summarized
in Table II. The search space for the HP square lattice model
grows as 3N−2, where N is the sequence length. However,
Table II shows that our GA program has most difficulty find-
ing the GM for HP-36 and HP-48, which have compact
hydrophobic cores �all of the degenerate GM having 4
4
and 5
5 square hydrophobic cores, respectively as shown in
Fig. 11�, while the GM of the longer HP-50 benchmark se-
quence �which does not have a compact hydrophobic core,

FIG. 11. Example GM structu
tending to have more open GM structures, often with two
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clusters of hydrophobic beads� were found relatively easily
�with much higher success rates and far fewer structure
evaluations�.9 The increased degeneracy of the GM for
HP-50, as compared with HP-36 and HP-48 �see Table I�,
does not explain this observation, as it should be swamped
by the larger search space. The significantly higher number
of structure evaluations required for HP-25, compared with
HP-24 �an increase of 29%�, may similarly be due to the 3

3 square hydrophobic core of the HP-25 GM. These re-
sults are generally consistent with an earlier GA study by
Unger and Moult, though they appear to have required fewer
structure evaluations for HP-25 than HP-24 and far more
structure evaluations in the HP-50 case.13

or benchmark HP sequences.

TABLE II. Percentage success and average number of evaluations �for suc-
cessful GA runs� for the benchmark HP sequences studied previously �Ref.
9�.

Sequence E�GM� Success �%� Ave. evaluations

HP-20 −9 100 18 338
HP-24 −9 100 27 278
HP-25 −8 100 35 128
HP-36 −14 70 113 667
HP-48 −23 13 261 311
HP-50 −21 100 97 691
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For HP-36 and HP-48, GA runs which are not success-
ful �i.e., do not find a GM, with E=E�GM�� nearly always
�HP-36 100%, HP-48 88%� find a metastable structure with
energy E=E�GM�+1; we will refer to these structures as
“GM+1” conformations. Figure 12 shows typical GM and
GM+1 conformations for HP-36 and HP-48. It is apparent
that many of the hydrophobic contacts within the maximally
compact GM structures are between H beads that are far
apart in the sequence. This means that a large number of
changes in local folds are required to go from a GM+1 struc-
ture to a GM. It is, therefore, unlikely that a low energy
pathway will exist that will allow a metastable GM+1 con-
formation to refold into a GM. Given the dense hydrophobic
nature of the GM for these sequences, it is also likely that the
local minima which are near in conformation space to the
GM will have relatively high energies and will again be
separated from the GM by high energy barriers. In the ab-
sence of a simple pathway between these structures and the
GM, the GA frequently fails.

In order to test the above hypothesis, and based on our
findings for the HP-20a sequence, we have calculated the
valid uphill pathways �Fig. 13� and disconnectivity graphs
�Fig. 14�, involving up to three point mutation steps from the
GM, for the GM of the 20–50-bead benchmark sequences.
Due to the high GM degeneracies of the benchmark se-
quences, the valid pathways were calculated for a randomly
chosen GM for each benchmark �Fig. 11�. Similar plots were
observed for other GM for each benchmark.

A number of observations can be made based on these
figures:

�1� At one fold �point mutation� from the GM, only
HP-50 has a structure 1 energy unit above that of the

FIG. 12. Typical GM and GM+1 structures for HP-36 and HP-48: �a
GM �GM+1�. The final fold �leading to the GM� for all
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other benchmark sequences must, therefore, form two
or more H-H contacts.

�2� HP-36 and HP-48 have a lower proportion of struc-
tures belonging to low energy �longer sequences have a
larger possible set A�.

�3� The theoretical number of paths is given by

�2 
 �S − 2��F, �7�

where S is the sequence length and F is the maximum
number of folds �largest dH�. Comparing the theoretical
number of paths with the connectivity �C� yields the
percentage of valid paths, which are listed in Table III
for a maximum of three and four point mutation steps.
This shows a dramatic decrease in the proportion of
valid paths for sequences HP-36 and longer, though,
interestingly, the percentage is higher for HP-50 than
for either HP-36 or HP-48.

�4� HP-50 appears to have better funneling towards the
GM than either HP-36 or HP-48.

HP-36, �b� GM+1 HP-36, �c� GM HP-48, and �d� GM+1 HP-48.

TABLE III. The percentage of valid paths for the HP benchmark sequences
for a maximum of three and four point mutation steps.

Name Three steps Four steps

HP-20 15.2 8.9
HP-24 15.1 8.8
HP-25 15.8 9.5
HP-36 7.1 3.5
HP-48 5.1 2.4
HP-50 7.9 4.0
� GM
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FIG. 13. Valid uphill pathways between a starting GM structure and structures three folds away, using the point mutation move class, for a randomly chosen

GM of each benchmark sequence. x axis: number of point mutations; y axis: energy.
FIG. 14. Disconnectivity graphs for selected benchmark sequences. x axis: Hamming distance from starting GM structure; y axis: energy.
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IV. CONCLUSIONS

A new benchmark 20-bead HP model protein sequence
�on a square lattice�, which has 17 distinct but degenerate
global minimum �GM� energy structures, has been studied
using a genetic algorithm �GA�. The relative probabilities of
finding particular GM conformations have been determined
and related to the theoretical probability of generating these
structures using a recoil growth constructor operator. For
longer successful GA runs, the GM probability distribution is
generally very different from the constructor probability, as
other GA operators have had time to overcome any initial
bias in the originally generated population of structures.
Structural and metric relationships �e.g., Hamming distances�
between the 17 distinct GM have been investigated and used,
in conjunction with data on the connectivities of the GM and
the pathways that link them, to explain the GM probability
distributions obtained by the GA. A comparison has also
been made of searches, where the sequence is defined in the
normal �forward� and in the reverse direction. The ease of
finding mirror image solutions has also been compared. Fi-
nally, this approach has been used to rationalize the ease or
difficulty of finding the GM for a number of standard bench-
mark HP sequences on the square lattice.

In this study, we have shown that the relative probabili-
ties of finding particular members of a set of degenerate glo-
bal minima �for HP bead model proteins on a square lattice�
depend critically on the topography of the energy landscape
in the vicinity of the GM, the connections and distances be-
tween the GM, and the nature of the operators used in the
search method—in this case, a genetic algorithm. While even
for a 20-bead sequence the total number of valid conforma-
tions �4.19
107� is too large to enable the global potential
energy surface to be plotted, we have shown that valuable
information can be obtained by exploring limited regions
around the various global minimum structures.

The work described here is currently being extended to
include other lattice configurations, more sophisticated pro-
tein models, and alternative search algorithms. We believe
that these studies may provide valuable insight into how the
foldability of proteins �i.e., how reliably they can fold into a
unique native state, which may be termed “natural search-
ing”� is related to the topography of the folding energy land-
scape and how this relates to the ease or difficulty of finding
the native structure using “artificial search” algorithms.
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