
Abstract. Determination of the native state of a protein
from its amino acid sequence is the goal of protein
folding simulations, with potential applications in gene
therapy and drug design. Location of the global mini-
mum structure for a given sequence, however, is a dif-
ficult optimisation problem. In this paper, we describe
the development and application of a genetic algorithm
(GA) to find the lowest-energy conformations for the 2D
HP lattice bead protein model. Optimisation of the
parameters of our ‘‘standard’’ GA program reveals that
the GA is most successful (at finding the lowest-energy
conformations) for high rates of mating and mutation
and relatively high elitism. We have also introduced a
number of new genetic operators: a duplicate preda-
tor—which maintains population diversity by eliminat-
ing duplicate structures; brood selection—where two
‘‘parent’’ structures undergo crossover and give rise to a
brood of (not just two) offspring; and a Monte Carlo
based local search algorithm—to explore the neigh-
bourhood of all members of the population. It is shown
that these operators lead to significant improvements in
the success and efficiency of the GA, both compared
with our standard GA and with previously published
GA studies for benchmark HP sequences with up to 50
beads.
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1 Introduction: the protein folding problem

One of the most interesting and important problems in
chemical biology is to establish or predict the 3D local
spatial arrangement (‘‘secondary structure’’) and folded
conformation (‘‘tertiary structure’’) adopted by a protein
or polypeptide molecule from knowledge of its primary

structure—that is the 1D sequence of amino acid
residues from which the molecule is built [1, 2]. This
sequence–structure correlation is of critical importance if
we are to understand how proteins fold and, hence, to
investigate sequence–activity relationships for proteins.
The ‘‘protein folding problem’’ is essentially a search for
the biologically active (functional) conformation of a
protein (the so-called native state), for a given sequence
of amino acid residues. While it was originally assumed
that the native state of a protein is the global minimum
(GM) on the folding energy hypersurface (the ‘‘thermo-
dynamic hypothesis’’ [3]), more recent work indicates
that the functional conformation may sometimes be that
which is most frequently visited under native conditions
(the ‘‘kinetic hypothesis’’ [4])—so folding studies should
also aim to identify low-lying metastable local minima,
in addition to the GM. The major difficulty associated
with the molecular dynamics (MD) simulation of protein
folding is that proteins typically fold with time scales of
the order of seconds or minutes, while MD simulations
are limited to under a microsecond. As Levinthal [5] has
pointed out, however, even this relatively long experi-
mental folding time (seconds to minutes) is negligible
compared with the time which would be required for a
protein to explore its folding space randomly, based on
typical timescales for torsional motions. The ability of
natural proteins to fold reliably to a unique native state
has been attributed to the presence of a ‘‘folding funnel’’
on the folding free-energy landscape, so that misfolded
states are funnelled towards the native state (i.e. protein
folding is a far-from-random process) [6]. As well as
determining the low-energy protein conformations, it is
therefore, important to discover the nature of the folding
energy landscape (funnels, heights of potential barriers,
etc.) in order to gain a better understanding of the
dynamics of protein folding.

1.1 Modelling protein folding

There are a variety of protein models which differ in the
way in which they approximate the protein molecule and
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how they treat interactions between amino acid residues
and with solvents (if included). Owing to the size and
complexity of protein hypersurfaces, simplified models
have often been employed to study the protein folding
process [7].

One of the simplest protein models is the HP lattice
bead model [8,9,10], which is a minimalist model of a
protein, representing the constituent amino acid residues
by either hydrophobic (H) or polar (P) (hydrophilic)
beads which lie on a 2D or 3D lattice: square and cubic
lattices are most common, though more complex lattices
have also been studied. Such coarse-grained protein
models, although being less realistic models of actual
proteins, can capture some of the important folding
behaviour of real proteins, and they have the advantage
of being simple, so that their energies may be calculated
quickly, making them good for systematic grid searches
and for carrying out comparisons of different folding
search algorithms. Applications of the HP lattice bead
model (and its variants) include studies of minimum-
energy structures [8], folding kinetics [11], protein
designability and foldability [10, 12, 13], the effect of
confinement on protein folding [14], protein biogenesis
[9], ligand binding [15] and the evolution of protein
functionality [16, 17].

More realistic (though more complex) protein models
can be constructed, such as off-lattice bead models
(corresponding to a move from a discretised grid into
continuous space), united atom models (where each
carbon and nitrogen atom in the protein backbone is
now treated explicitly and the side chains are represented
by one or two ‘‘united atoms’’) and all-atom models (in
which all the atoms in the protein are treated explicity
and the energy is calculated using a molecular mechanics
force field [18]). Although all-atom models should be the
most accurate representations of real proteins, such
calculations are slower than bead or united atom mod-
els, as the number of energy terms to be evaluated and
the number of structural parameters to be varied are
much greater. Indeed, studies of protein folding land-
scapes and folding dynamics, using off-lattice bead and
united atom models, have shown that simple models can
reproduce the behaviour of real proteins [19–21] in a
generic sense.

Solvent (usually water) effects on protein folding can
also be included in a number of ways. Some protein
models (such as the HP bead model) include the effect of
the solvent implicitly (via the hydrophobicity of the
residues), while inclusion of solvent in the all-atom
models can be accomplished by introducing an effective
solvent (i.e. a dielectric medium) or an explicit solvent
model, where the protein is embedded in a large number
of water molecules, with protein–water and water–water
interactions included in the energy calculation.

Despite the reduction in complexity inherent in the
minimalist HP lattice bead model, it has been shown to
belong to the set of problems that are ‘‘NP-hard’’ [22,
23]. This means that there should be no polynomial
algorithm that can solve the protein folding problem (i.e.
unambiguously find the lowest-energy folding confor-
mation for a given sequence) exactly. For this reason,
researchers have adopted heuristic and approximation

algorithms. For the HP lattice bead model and other
minimalist models, the approaches adopted include
Monte Carlo [24, 25, 26, 27, 28], chain growth algo-
rithms [29, 30, 31], simulated annealing [32], genetic
algorithms (GAs) [22, 33, 34, 35, 36 ,37], and ant colony
optimization [38, 39, 40].

1.2 GAs for studying protein folding

The GA [41, 42] is a search technique, based on the
principles of natural evolution, which uses operators
that are analogues of the evolutionary processes of
genetic crossover (or mating), mutation and natural
selection to explore multidimensional parameter spaces.
A GA can be applied to any problem where the variables
to be optimised (genes) can be encoded to form a string
(chromosome). Each string represents a trial solution of
the problem. The GA operators exchange information
between the strings to evolve new and better solutions. A
crucial feature of the GA approach is that it operates
effectively in a parallel manner, such that many different
regions of parameter space are investigated simulta-
neously. Furthermore, information concerning different
regions of parameter space is passed actively between the
individual strings by the crossover operator, thereby
disseminating genetic information throughout the pop-
ulation. The GA is an intelligent search mechanism that
is able to learn which regions of the search space
represent good solutions.

The design of a protein folding GA (i.e. how the
structure is coded and how crossover and mutation are
carried out) depends critically on the model used to
describe the protein. The optimal values of the GA
parameters (population size, mating rate, mutation rate,
etc.) also depend on the model adopted, as will the
number of generations required to find the lowest-energy
folding conformation. A survey of GAs which have been
applied to the protein folding problem is presented in
reviews by Pedersen [36] and Unger [37] and some of
these GAs are discussed briefly in the following.

Studies by Unger and Moult [22] and by Judson
et al. [43] have shown that GAs generally perform
better than Monte Carlo algorithms for finding low-
energy protein conformations—presumably because the
GA finds it easier to escape from local minima corre-
sponding to nonoptimal compact structures than
Monte Carlo algorithms, which may have to overcome
a large energy barrier to escape from such a minimum.
All-atom protein folding GAs include the work of
Pedersen and Moult [44], who calculated fitness from a
potential energy function depending on electrostatic
terms and the accessible surface area, with the GA
parameters being optimised for a set of fragments of
known structure. Pederson and Moult used their GA
to study short sequences (with 12–22 residues), using a
parallel GA code, finding once again that the GA is
significantly more effective than the Monte Carlo
method for finding low-energy folded structures. A
number of groups have used all-atom GAs to predict
the conformations of small oligopeptides, using
empirical force fields to obtain the potential energy,
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and hence the fitness. GAs have also been used to
predict the lowest-energy conformations of side chains,
starting from an experimental backbone conformation
[44]. In an interesting, alternative application, Jones
[45] has applied a GA to protein design — trying to
find the optimum amino acid sequence which is con-
sistent with a given folding structure. In this GA, in
contrast to the previously mentioned examples, the
genetic operators act in sequence space rather than
conformation space — i.e. the genes are residues rather
than coordinates or torsion angles. In the future, GAs
(and other evolutionary algorithms) are likely to play
an increasingly important role in the areas of protein
design, protein engineering (for example, looking for
mutants with specific properties) and protein biogene-
sis—i.e. using an artificial evolutionary algorithm to
simulate the natural evolution of proteins and other
biomolecules.

In this study, building on our experience in applying
GA to the geometry optimisation of cluster molecules
[46] and for the solution of crystal structures from
powder diffraction data [47], we have developed a GA
for studying the protein folding problem for the 2D
square lattice HP bead model.

2 Methodology

2.1 The HP lattice bead model

In the present work, we have adopted the 2D square lattice HP
bead model [8, 10], where the H and P beads are constrained to lie
on a 2D square lattice and interactions occur only between non-
bonded beads that lie adjacent to each other on the lattice
(‘‘topological neighbours’’), but are not adjacent in the sequence
(i.e. they are not directly bonded ‘‘sequence neighbours’’) [8]. The
values of the H–H, H–P and P–P interactions (�ij) in the standard
HP model are [8]

�HH ¼ �1:0; �HP ¼ 0:0; �PP ¼ 0:0 ; ð1Þ

so the HP potential can be represented by the interaction vector
(�1,0,0).

The energy of the model protein is obtained by summing over
these local interactions:

E ¼
X

i<j

�ijDij ; ð2Þ

where

Dij ¼
1 if i and j are topological neighbours, but

are not sequence neighbours
0 otherwise

(
ð3Þ

It should be noted that the effective attractive (stabilising)
interaction between the H beads reflects the fact that (in aqueous
solution) the hydrophobic interaction (i.e. the repulsion of hydro-
phobic residues and water molecules) is the driving force for pro-
tein folding and that the native structures of many proteins are
compact, with cores which are relatively rich in hydrophobic resi-
dues [8, 38]. The reasons for studying the 2D, rather than the 3D
lattice bead model are twofold [8]: first, the surface-to-volume ratio
of the 2D model approaches realistic ‘‘protein values’’ for smaller
sequences than in 3D; and second, the computational requirements
are greatly reduced. The 2D analogues of protein secondary
structure features, such as a-helices and b-sheets, naturally arise in
the compact cores of such models, implying that the secondary
structure is not driven by specific hydrogen-bonding interactions
but is a consequence of the compactness of the core and the pres-
ence in the core of hydrophobic groups [18].

2.2 The coordinate system

In this work, we define the folding conformation of the protein
using a local coordinate system in which the position of a bead
j is defined relative to its predecesors (j� 2 and j� 1) [22, 33, 34,
38]. Thus, in two dimensions, the direction of the bond joining
the (j� 1)th and jth beads can be left (0), right (1) or straight
ahead (2) relative to the bond joining the (j� 2)th and (j� 1)th
beads. Each protein conformation is therefore represented by a
conformation vector, c, which is a string of 0’s, 1’s and 2’s. As
the energy of each conformation is invariant to rotation of the
whole molecule, we fix the positions of the first two beads in the
chain, such that bead 1 lies at the origin (0,0) and bead 2 lies
along the x-axis (1,0).

The advantages of using a local, rather than a global (Carte-
sian), coordinate system (where the conformation vector would
consist of successive displacements along the x- or y-axes) are

1. Applying a ‘‘genetic operator’’ to a portion of the conformation
vector preserves local structure in unaffected portions of the
vector.

2. The contribution of these local structure motifs to the energy of
the structure (ignoring interactions with beads further along the
sequence) is independent of the orientation of the motif in
Cartesian space.

3. In the context of the GA, such local structure motifs correspond
to ‘‘schemata’’ [41]. Through the crossover operation, good
(low-energy) schemata have a higher probability of being copied
forward into future generations.

4. Some of the invalid conformations (where two or more beads
occupy the same lattice site) produced in a global co-ordinate
system (e.g. those where a þx move is immediately followed by a
�x move) are eliminated in a local coordinate scheme, where
such backward moves cannot occur.

Krasnogor et al. [34] have demonstrated that a GA incorporating a
local coordinate system almost always outperforms one that
employs global coordinates.

In order to calculate the total energy of the protein, within the
HP model, the number of H–H contacts must be enumerated,
which requires the local coordinate conformation vector to be
mapped onto the global cartesian coordinate system corresponding
to the 2D square lattice, so that topological neighbours can be
identified.

It should be noted that the conformation vector is independent
of the sequence of H’s and P’s — which are represented by a
sequence vector, r, of 0’s and 1’s (corresponding to H and P beads,
respectively) [8]. The energy of a particular protein structure (which
may be represented by the structure vector, s) depends on both the
conformation and the sequence, as they both determine the number
of H–H interactions—i.e. s=(c;r). In this study, the sequence (r) is
held constant throughout, while the conformation vectors (c) are
allowed to change, as we aim to find the protein structures corre-
sponding to the lowest-energy conformation(s) for a given
sequence.

In our GA program, the GA search space has not been
restricted to a single quadrant of configuration space, so it is pos-
sible to find mirror image (‘‘enantiomeric’’) conformations, where
two enantiomers are related by reflection in the xz-plane. In terms
of the conformation vector, c, the enantiomer of a particular con-
formation is obtained by converting all 0’s into 1’s and all 1’s into
0’s—with the 2’s left unchanged. Of course, for a given sequence,
enantiomeric conformations will have mirror image local and long-
range structures and the same number of H–H contacts, and
therefore identical energies.

For the study reported here, we investigated HP bead sequences
with 20, 24, 25, 36, 48 and 49 beads. The specific sequences, which
are listed in Table 1, are standard benchmark sequences that have
previously been used for testing GA and other search algorithms
[22, 38, 39, 48]. The table also includes the energy, E�, of the GM
(or global minima — since all of these structures have degenerate
global minima—more than one structure with the same lowest-
energy) for each sequence. For the larger sequences (HP-36 and
above), it is not known for sure whether the reported lowest
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energies actually correspond to the GM, as no grid search has been
performed for these chain sizes.

2.3 The GA

The way in which our GA program operates is shown as a sche-
matic flow diagram in Fig. 1 and the characteristics of the GA are
described in the following.

2.3.1 The standard GA

2.3.1.1 Generating the initial population. The initial population
corresponds to the starting set of individuals which are to be
evolved by the GA. In our GA, the individuals are a set of con-
formation vectors (strings of 0’s, 1’s and 2’s, as already described).
The initial population is formed by the constructor routine, which
generates a number of valid conformations at random. In lattice
bead models, valid protein conformations correspond to self-
avoiding walks on the 2D or 3D lattice. In contrast, invalid con-
formations correspond to non-self-avoiding walks, where two or
more beads occupy one or more sites on the lattice. This is clearly
unphysical, and such conformations should be eliminated.

The proportion of invalid conformations increases rapidly with
the protein chain length, especially for the 2D model: for example,
more than 60% of randomly generated conformations are invalid
for a chain of only 15 beads. For this reason, building up a com-
plete, random conformation vector and testing it at the end to
check whether the conformation is valid, (‘‘end-checking’’) rapidly

becomes inefficient for longer sequences. The approach we have
adopted involves growing the chain one bead at a time, checking
the validity of the incomplete conformation at each step and
backtracking when an invalid subconformation is generated. This
‘‘backtracking’’ algorithm is much more computationally efficient
than the end-checking algorithm. It should be noted that our
method is essentially the same as that used by Shmygelska et al. [38]
and is similar in principle to the Rosenbluth method which was
developed to grow self-avoiding polymer chains, within a Monte
Carlo framework [49]. (This approach has subsequently been
improved in the prune-enriched Rosenbluth method [27, 50].)

Following initial optimisation studies, in all subsequent calcu-
lations (described later) the population size (which is constant
within each GA run) was fixed at 200.

2.3.1.2 Fitness. Fitness is an important concept for the operation of
the GA. The fitness of a string is a measure of the quality of the trial
solution represented by the string with respect to the function being
optimised.

In our work, the fitness of the ith individual (structure) is simply
related to its energy:

Fi ¼ �Ei þ 0:01 : ð4Þ
Thus, the fitness is a positive quantity, with high fitness corre-
sponding to a large negative energy. The addition of the small
constant amount (0.01) is carried out so that even ‘‘open’’ struc-
tures with energies Ei ¼ 0 will have nonzero fitness and, hence, a
finite probability of being selected for crossover.

2.3.1.3 Selection. Selection refers to the way in which individual
members of the population are chosen to pass into a temporary
‘‘parent population’’, which is subsequently subjected to a number
of genetic operators, as shown in Fig. 1. In this study, we adopted
roulette wheel selection [41, 42]: a random number is generated
between 0 and Ftotal (the sum of the fitness values of the entire
population); if the random number lies in the ith interval of
cumulative fitness, then the ith member of the population is selected
for the parent population. In this way, parents are selected until the
size of the parent population equals that of the starting population.
The fittest individuals will tend to be copied more than once into
the parent population, the only restriction being the prevention of
the consecutive selection of any given population member (since
crossover between identical conformations will lead to no new
structures).

Table 1. Benchmark HP sequences used in the present study [48].
The lowest energies reported in the literature for these sequences
are indicated by E�. E� values in bold are optimal solutions found
by systematic grid searching

Name Length E� Sequence

HP-20 20 )9 HPHP2H2PHP2HPH2P2HPH
HP-24 24 )9 H2P2ðHP2Þ6H2

HP-25 25 )8 P2HP2ðH2P4Þ3H2

HP-36 36 )14 P3H2P2H2P5H7P2H2P4H2P2HP2

HP-48 48 )23 P2HðP2H2Þ2P5H10P6ðH2P2Þ2HP2H5

HP-50 50 )21 H2ðPHÞ3PH4PðHP3Þ3PðHP3Þ2HPH4ðPHÞ4H

Fig. 1. Schematic flow diagram for the
genetic algorithm (GA) program used in
this study
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2.3.1.4 Crossover. Crossover (or mating) is the way in which ‘‘ge-
netic’’ information from two parent strings is combined to generate
‘‘offspring’’. In this study, the variable mating rate is defined as the
percentage of parents in the parent population which undergo
crossover. The GA cycles through the parent population, applying
the crossover operator to consecutive parent pairs until the correct
number of parents have participated in crossover. The two off-
spring produced from each crossover operation overwrite their
parents. (In Fig. 1, the two offspring of parents i and j are labelled
i� j and j� i.) The offspring and unmated parents then pass into
the ‘‘offspring population’’. If one or both of the offspring created
by the crossover operator are invalid (non-self-avoiding) confor-
mations, further crossovers are carried out (between the same pair
of parents) until (in total) two valid offspring have been created. In
the (very rare) case where all possible crossovers between a pair of
parents lead to either one or no valid offspring, one or both of the
parents are copied over unchanged into the offspring population.

Preliminary testing of one-point, two-point and uniform
crossover showed that one-point crossover — where two parent
strings (conformation vectors) are cut at the same randomly chosen
point and complementary portions are combined, to generate two
offspring – leads to better performance of the GA, probably owing
to the retention of larger local structure motifs (schemata), as
shown in Fig. 2, and a reduced tendency to produce invalid off-
spring conformations.

2.3.1.5 Mutation. While the crossover operation leads to a mixing
of genetic material in the offspring, no new genetic material is
introduced, which can lead to lack of population diversity and
eventually ‘‘stagnation’’ — where the population converges on
the same, nonoptimal solution. The GA mutation operator helps
to increase population diversity by introducing new genetic
material.

In this study, a number of mutation operators were adopted, as
shown in Fig. 3. Some of these operators have been utilised as
mutations in previous GA and ant colony optimisation studies of
protein folding [22, 39], and as move classes in Monte Carlo studies
of proteins [11, 14, 26]. Some originate in earlier simulation studies
of polymer structures and dynamics [18].
– In-plane rotation involves a �90� or 180� rotation, in the xy-
plane, of the subchain following a randomly selected bond (say
between beads j� 1 and j). In terms of the conformation vector,
this corresponds to a change of the local coordinate direction of
bead jþ 1, with the rest of the conformation vector being
unchanged — i.e. a single bit change. This mutation, therefore,
leaves most of the local structure intact.
– Out-of-plane rotation involves a 180� rotation, in either the xz-
plane or the yz-plane, of the sub-chain following a randomly
selected bond (say between beads j� 1 and j). [The rotation plane
depends on whether the ðj� 1Þ–j bond points along the x-axis or
the y-axis.] In terms of the conformation vector, this corresponds to
all of the 0’s being changed to 1’s and all of the 1’s being changed to
0’s (with the 2’s left unchanged) for the entire subchain starting at
bead jþ 1. This mutation, therefore, leads to an inversion of the
rotated fragment, thereby generating a diastereoisomer of the
original conformation.
– Crank shaft rotation involves a 180� rotation, in either the xz-plane
or the yz-plane, of a crank shaft local structure motif (corresponding

Fig. 2. Demonstration of the preservation of local structure in one-
point crossover

Fig. 3. The mutation operators adopted in
this study. In each case, the conformation
vectors before and after mutation are given

167



to the four digit strings ..0110.. or ..1001.. in the conformation
vector), which leads to the interconversion of these four digit strings
— with the rest of the conformation vector left unchanged.
– Kink motion involves the inversion of a kink (or bend) local
structure motif, where the kink bead (say bead j) is moved
diagonally across a lattice square, such that it is still bonded to its
two neighbours (beads j� 1 and jþ 1). This only leads to a change
of the local coordinate directions of the ðj� 1Þ–j, j–ðjþ 1Þ and
ðjþ 1Þ–ðjþ 2Þ bonds, with the rest of the conformation vector left
unchanged.
– Snake motion involves the movement of the end of the protein to
a neighbouring vacant lattice site (if available), with each of the
remaining beads moving to the position of its predecessor. This is
analogous to the process of reptation in polymers and is one way in
which a dense structure can be mutated with a low likelihood of
creating an invalid mutant. In terms of the conformation vector,
this mutation corresponds to shifting the vector along by one place
and placing the first component of the vector at the end.
The variable mutation rate is defined as the probability of a selected
individual undergoing mutation. The GA cycles through the
offspring population, generating a random number between 0 and
1, for each individual. The mutation operator acts on individuals
where this random number is less than the mutation rate. The
mutation operator randomly selects, with equal probability, the
mutation type to perform. Individuals selected for mutation are
overwritten by the subsequent mutant. Mutants and unmutated
individuals pass into the ‘‘mutant population’’.

2.3.1.6 The corrector operator. Since the mutation operator often
generates invalid (non-self-avoiding) conformations, a correction
operator has been introduced to generate valid conformations from
any invalid conformations resulting from mutation. Our corrector
operator, which is illustrated in Fig. 4, is based on the approach
introduced by Schmygelska and Hoos [39] in their ant colony
optimisation study of protein folding for the HP bead model. An
invalid conformer can undergo refolding at points of infeasibility
(i.e. where two beads lie on top of each other), ensuring that a valid
conformer results. The operator starts at the first nonfixed bead
and cycles through the conformer placing beads using their corre-
sponding value in the conformation vector. If the placement of the
jth bead results in an infeasibility, the bead is randomly reposi-
tioned to a valid site, if the bead cannot occupy a valid site, the
operator returns to the ðj� 1Þth bead and attempts a valid repo-
sitioning. The operator continues in this fashion, backtracking as
much as necessary until a valid conformation vector is obtained
which is as closely related to the initial invalid conformer as pos-
sible. As the parent structure, which was mutated, started off as a
valid conformation, correction will take place on or after the
mutation site. [In Fig. 1, the (possibly corrected) mutants are
indicated by primes.]

2.3.1.7 Elitism. In the context of GAs, an ‘‘elitist strategy’’ corre-
sponds to allowing the best individuals in a population to survive
unchanged from one generation to the next, thereby ensuring that
the best member of the population cannot get worse from one

generation to the next. In our GA, elitism is accomplished by
specifying the percentage of the best individuals within the jth
population which are to be appended to the mutant population,
prior to the generation of the ðjþ 1Þth population. (The elite
members of the population are indicated by the shaded region in
Fig. 1.)

2.3.1.8 ‘‘Natural’’ selection. In biological evolution the concept of
the ‘‘survival of the fittest’’ (or best adapted to the environment) is
a strong evolutionary driving force. In the case of a GA, although
the selection is clearly not ‘‘natural’’, individuals (be they parents,
offspring or mutants) are likewise selected to survive into the next
generation on the basis of their fitness (their quality with regards to
the quantity being optimised). There are many modifications of the
natural selection step: here we generate the ðjþ 1Þth population by
sorting the mutant population (including any elite structures) with
respect to fitness and truncating it to the original size of the jth
population, as shown in Fig. 1. The GA program then continues
for a predetermined number of generations (each generation cor-
responding to a cycle of crossover, mutation and elitism) or until
some convergence criterion is reached.

2.3.2 Additional operations

In addition to the previously decribed GA operators, which are
found in most GA applications [41, 42], we investigated the fol-
lowing nonstandard operations, to determine to what extent they
can improve the success rate and efficiency of our protein folding
GA.

2.3.2.1 Duplicate Predator. In recent work, we have extended the
analogy between GAs and natural evolution by considering the use
of ‘‘predators’’ to remove unwanted individuals or traits from a
population [51]. Here we have investigated the application of a
‘‘duplicate predator’’, which deletes (‘‘predates’’) identical confor-
mations. It should be noted that our duplicate predator is similar in
nature to the ‘‘pioneer search’’ strategy introduced by König and
Dandekar [35], though they only checked for uniqueness of newly
generated individuals every ten generations.

In our study, we define the duplicate predator limit (DPL) to be
the maximum number of times that a given structure is allowed to
appear in the population in any particular generation. For conve-
nience sake, the normal (predation off) situation is represented by
DPL=0, though in this case there is no restriction on the number
of identical stuctures. The duplicate predator serves to increase the
diversity (proportion of unique structures) of the population, in
order to prevent premature convergence (‘‘stagnation’’) of the
population on a nonoptimal solution.

2.3.2.2 Brood Selection. Rather than generating two offspring from
two parents by crossover, a ‘‘brood’’ (of pre-determined size) of
offspring may be generated, from which the best offspring can be
selected. For large brood sizes, this procedure enables more thor-
ough searching of the possible offspring space of the two parents
and is analogous to ‘‘soft brood selection’’ in the field of genetic
programming [52]. We have considered two implementations of
brood selection:

1. The best two (highest fitness) members of the brood are chosen
and they pass into the offspring population. (For a brood size of
2, this is identical to the mating procedure already described.)

2. The offspring in the brood compete with the parents and the best
two individuals from this ‘‘family’’ are passed into the offspring
population. This approach has built-in elitism, since parents
cannot be replaced by less fit offspring.

2.3.2.3 Local search. In problems where the search space is con-
tinuous, offspring and mutants invariably occupy states which are
not minima, but are rather states which lie within an energy well. In
such cases, performing a local minimisation will track each indi-
vidual to its corresponding local minimum. In the GA context, GAs

Fig. 4. An example of the application of the corrector operator. An
in-plane-rotation mutation converts the valid conformer [0,1,2,1
into the invalid conformer [0,1,1,2, where the second and sixth
beads occupy the same lattice site. In this case, the corrector
operator refolds the invalid conformer by rotating the sixth bead
away from the second bead, to generate the valid conformer
[0,1,1,2]
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incorporating local minimisation correspond to Lamarckian, rather
than Darwinian evolution, as individuals pass on a proportion of
the characteristics that they have acquired (during the minimisation
step) to their offspring. Such Lamarckian GAs, which couple local
minimisation with GA searching, have been found to improve GA
efficiency for a number of different applications of GAs in global
optimisation [46, 53, 54]. Although, owing to the discrete nature of
the conformation space of the HP lattice bead model, it is not
possible to perform gradient-driven energy minimisations, it is
possible to perform a local search whereby a given conformation
undergoes a number of folding changes, testing a number of closely
related conformations.

In this study, we performed local searching using the ‘‘long range
move’’ Monte Carlo type approach introduced by Schmygelska and
Hoos [39], though it should be noted that Unger and Moult also
introduced a Monte Carlo mutation and Monte Carlo local search-
ing in their original GA study [22]. In our application, a conforma-
tion c1 with energy E1 is folded at a randomly chosen position (as in
the in-plane rotation mutation) by randomly changing one of the
digits in the conformation matrix c. The new conformation c2 is
accepted if its energy E2 < E1. For conformation changes where
E2 � E1, the conformational change is accepted with a probability

p ¼ E2

15E1
; ð5Þ

where the factor of 15 was found to give reasonable acceptance
rates (approximately 25%). Each local search corresponds to 30 of
these Monte Carlo steps, with a new random fold carried out at a
random position each time, starting from the current conformation.
As shown in Fig. 1, if included, local searching (followed by sorting
according to the fitnesses of the resulting structures) is carried out
after the other GA operations.

As the search for the GM generally becomes more difficult for
longer HP sequences [22, 38, 39], we adopted an incremental
approach, which involves optimisation of the basic GA parameters
for smaller sequences and the introduction and optimisation of the
additional GA operations (duplicate predation, brood selection and
local searching) for the longer sequences. Finally, we will show
results obtained using our optimal GA strategy, for all of the
sequences listed in Table 1.

3 Results and discussion

3.1 Optimisation of the standard GA parameters

Before considering the effect of the duplicate predator,
brood selection and local searching, it was decided to

optimise the GA parameters of the standard GA—i.e.
those associated with mating, mutation and elitism.
Mating, mutation and elitism rates all effect the progress
of the GA: high mutation and mating rates rapidly evolve
the population whereas lower rates evolve the population
more gently. Elitism ensures good structures are passed
on to subsequent generations, enabling more thorough
searching of regions of the hypersurface around these
structures. However, elitism duplicates structures, poten-
tially destroying the diversity within a population.

Our studies into the optimisation of the GA afforded
an insight into different evolutionary strategies. Figure 5
shows 3D plots of the percentage success (the percentage
of runs finding the global minimum structures); and the
average number of structures sampled during successful
GA runs, against the mutation and mating rates, for an
elitism of 30%, for sequence HP-24. (Similar calcula-
tions on the smaller HP-20 sequence showed almost
identical trends to those observed for HP-24.) To enable
comparison between the success of different strategies,
the total number of structures sampled per GA run was
capped at 60,000.

For higher elitism, the percentage success increases
for higher mutation rates. This suggests that with elitism
producing larger quantities of duplicate structures, the
mutation operator becomes increasingly more impor-
tant, as a means of injecting new genetic information
into the population. On the other hand, higher elitism
leads (on average) to fewer structures having to be
sampled before the GM is found, which can be attrib-
uted to elitism retaining parents which would otherwise
be replaced by poorer offspring, hence focusing the GA
on good areas of the search space.

For lower elitism, the percentage success decreases,
and the effect of the mutation operator is less pro-
nounced. The percentage success for low mutation rates
is higher with less elitism, which produces fewer dupli-
cates. In these instances, crossover between different
population members, along with the large number of
crossover points, enables a large space to be sampled. On
average, more structures are required to be sampled to
find the GM when using lower elitism. This is consistent

Fig. 5. 3D plots of a the percentage success and b the average number of structures sampled, as a function of the mating and mutation rates
(with an elitism of 30%) for sequence HP-24, using the standard GA
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with the GA being less focused on good solutions, and,
hence, being affected more by poor mutants or offspring.

The 3D plots in Fig. 5, taken with these other find-
ings, suggest that a good strategy would be to adopt a
high rate of mating and mutation, resulting in fast
evolution, while using relatively high elitism (30%). This
should lead to higher success rates for fewer sampled
structures.

3.2 Comparison of the standard GA
with random searching

In order to assess the efficiency and scalability of our
standard GA program, the success of the GA was
compared with what would be expected for a random
search of conformation space, for the two smallest
benchmark sequences, HP-20 and HP-24. On the basis
of the preliminary optimisation discussed previously, for
these GA runs we adopted the following GA parameters:
mating rate 1.0; mutation rate 0.5; elitism 30%.

For the HP-20 sequence, we performed a systematic
grid search which found approximately 4:1890� 107

valid conformations and four global minima (having
energy E� ¼ �9), corresponding to two pairs of enanti-
omers: one of the global minima is shown in Fig. 6.
Thus, if HP-20 conformations are generated at random,
we would expect to generate a GM on average once
every 1:0472� 107 conformations. Carrying out 100 GA
runs (where the GA stops when a GM is found or when
a capping limit of 20,000 structures has been reached)
resulted in 56% success. (The capping limit of 20,000
was chosen because preliminary studies showed that
90% of successful runs had found the GM by the time
20,000 structures had been sampled.) In the successful
runs, an average of just under 6,000 structures were
sampled before finding the GM. Factoring in the
unsuccessful runs, a GM structure was found on average
every 21,654 conformations studied, representing an
improvement by a factor of 484 over a random search.

It should be noted that the HP-20 sequence is end-to-
end symmetric (i.e. the sequence of H’s and P’s is pal-
indromic, as is also the case for HP-24), so the two
enantiomeric pairs of GM are in fact equivalent—being
related by 90� rotations.

A systematic grid search on the HP-24 sequence
found approximately 4:3167� 109 valid conformations

and 38 global minima (having energy E� ¼ �9), corre-
sponding to 19 pairs of enantiomers. Thus, if confor-
mations are generated at random, we would expect to
generate a GM on average once every 1:1360� 108

conformations. Again carrying out 100 GA runs, with a
capping limit of 30,000 structures (again corresponding
to the limit at which 90% of successful GA runs find a
GM conformation) a success rate of 56% was obtained.
In the successful runs, an average of just under 11,000
structures were sampled before finding the GM. Fac-
toring in the unsuccessful runs, a GM structure was
found on average every 34,504 conformations studied,
representing an improvement by a factor of 3292 over
random searching.

While it is difficult to make absolute comparisons,
especially since we are averaging over some runs that did
not find a GM, we believe that meaningful statistics can
be obtained by capping runs at the number of strutures
when approximately 90% of the successful runs have
found a GM conformation. The fact that the standard
GA is significantly better than statistical (random) is, of
course, essential for our future studies, but it is also
encouraging that the improvement over random
searching increases with increasing sequence length. It is
also worth noting that the average number of structures
sampled (i.e. the average number of energy evaluations)
before finding one of the GM conformations, using our
standard GA (approximately 6,000 and 11,000 for
HP-20 and HP-24, respectively) are lower than those
reported by Unger and Moult [22] in their GA study
incorporating local searching (30,492 for HP-20 and
30,491 for HP-24) . (The work of Unger and Moult did
show, however, that their GA was more efficient than
Monte Carlo searching for finding the GM of HP lattice
bead model sequences.) Although our quoted average
numbers of function evaluations are for successful GA
runs, the success rate of our standard GA is over 50%
for both sequences and it should be noted that those
reported by Unger and Moult actually represent the best
results out of five GA runs. Similarly, our GA outper-
forms the improved GA of König and Dandekar [35],
who incorporated a systematic crossover strategy into
their GA. In their study, they required an average of
13,507 energy evaluations to find the GM for the HP-20
sequence.

3.3 The Duplicate Predator

In our preliminary studies, inspection of failed GA runs
(where the GM was not found), showed that the
diversity (number of unique conformations) within the
populations was significantly decreased. This is consis-
tent with high mutation rates yielding higher success
rates as the mutation operator will remove some of the
duplicates and inject new information into the system.

As already mentioned, an alternative strategy for
maintaining population diversity is to introduce a
duplicate predator, which only allows a certain number
of copies of a particular structure, with any additional
copies being ‘‘killed’’ and replaced by new, randomly
generated structures.

Fig. 6. One of the four global minima (consisting of two
enantiomeric pairs) for the HP-20 benchmark sequence. (H beads
are shown in black and P beads in white)
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Plots of the diversity are shown in Fig. 7 as a function
of the generation number in runs of the GA (with and
without the duplicate predator) for the HP-24 sequence.
(GA parameters: mating rate 1.0; mutation rate 0.5;
elitism 30%.) The diversity, d, is defined as

d ¼ Nunique

Npop
; ð6Þ

where Nunique is the number of unique (distinct) struc-
tures in the population and Npop is the population size
(in this case, Npop ¼ 200). In all cases, the plot terminates
when the GM is found. With the duplicate predator off
(DPL=0 — solid black line), the GM is not found after
200 generations and the diversity rapidly falls to
approximately 0.25 (i.e. there are only about 50 distinct
structures in the population). The dot-dash red line is for
extreme predation, where all duplicates are removed (so
all members of the population are unique—DPL=1 and
d ¼ 1). In this case, the GM is found in 33 generations.
When one duplicate is allowed (i.e. DPL=2, blue dashed
line), the GM is found in 46 generations, by which time
the diversity has dropped to approximately 0.75 (i.e.
there are approximately 150 distinct stuctures in the
population). The plots in Fig. 7 are each for single runs
of the GA, though with the same random number seed.
Inspection of a number of independent runs, however,
indicates that these are quite typical results.

The variation in percentage success with the (DPL) for
the HP-20, HP-24, HP-25 and HP-36 sequences, where
the number of structures sampled per GA run was cap-
ped at 60,000, is shown in Table 2. For HP-20, HP-24 and
HP-25, where the percentages are relatively high, success
is highest (approaching 100% for HP-20 and around
90% for HP-24 and HP-25) when no duplication is al-
lowed (DPL=1) and falls off as more duplicates are al-
lowed. (It should be noted that DPL=0 corresponds to
no predation and, therefore, the maximum number of
identical structures is equal to the population size–which
is why the percentage success for DPL=0 is so low.) The
success for the HP-36 sequence is low (typically around
5%) and shows no clear trend with varying DPL.

The GA optimisation tests described in Sect. 3.1 were
repeated with the duplicate predator (with DPL=1), for
the HP-24 sequence. Figure 8 shows 3D plots of the GA
percentage success and average number of structures
sampled (in successful runs) versus the mating and
mutation rates, for low (0.5%) and high (30%) elitism.
(For a population size of 200, elitism values of 0.5% and
30% correspond to copying the best member or the best
60 members of a given population, respectively, into the
next generation.) In most cases, the duplicate predator
was found to have a dramatic effect, increasing the
success of the GA significantly. This can be seen by
comparing the plots in Fig. 8c (where the success is
approximately 100% for all mating and mutation rates
investigated) and Fig. 5a (where the maximum success is
around 60%, for high mating and mutation rates).

By eliminating identical structures, the duplicate
predator prevents population stagnation and injects new
genetic information into the population (as new random
structures replace the predated structures). With new
genetic information in the population the mating oper-
ator exchanges genetic information between different
parents, converging on good solutions. The mutation
operator, however, has now become somewhat obsolete,
disrupting the offspring and replacing them with poorer
structures. (In fact, the duplicate predator can also be
considered as a ‘‘kill and replace’’ mutation operator.)
With the duplicate predator on, Fig. 8 shows that there
is a trend towards a decrease in success with increased
mutation rates. There are also noticably fewer structures
sampled for higher mating rates and lower mutation
rates, which is consistent with mutations disrupting the
GA while crossover affords the optimal structures by
sharing good genetic information between structures.

Figure 8 also shows that percentage success values are
higher and that fewer structures need to be sampled for
higher elitism values (30%) than for lower values
(0.5%). In fact, as mentioned previously, for the higher
elitism, the sensitivity to mating and mutation is lost. In
particular, the disruption caused by the high mutation
rates can be compensated for by high elitism rates which
will disregard the poor mutants and reinsert the good
parents back into the subsequent population. However,
the increased number of structures sampled by the poor
mutations is undesirable.

From these studies, we can conclude that, with the
duplicate predator on (and DPL=1), higher success

Fig. 7. The effect of the duplicate predator on population diversity
during a single GA run for the HP-24 sequence: without duplicate
predator (DPL=0, solid black line); DPL=1 (dot-dash red line);
DPL=2 (dashed blue line)

Table 2. Percentage success obtained for the 20, 24, 25 and 36 bead
HP benchmark sequences as a function of the duplicate predator
limit (DPL). The GA parameters adopted were those obtained by
optimising the GA without duplicate predation: mating rate 1.0;
mutation rate 0.5; elitism 30%. The number of structures sampled
was capped at 60,000

DPL HP-20 HP-24 HP-25 HP-36

0 65.0 54.5 24.0 2.5
1 99.5 93.5 86.5 4.0
2 97.5 89.0 71.5 3.5
3 96.0 83.5 64.0 5.5
4 92.0 78.5 55.0 4.5
5 89.5 72.0 56.0 3.0
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values are attained than in the absence of predation,
often with fewer structures needing to be evaluated.
High percentage success is generally favoured by rela-
tively high mating and elitism rates and low mutation
rates. In subsequent studies, unless otherwise stated, the
following values were adopted: mating rate 1.0; muta-
tion rate 0.1; elitism 30%; DPL=1.

3.4 Brood selection

We investigated the effect of brood selection (as defined
in Sect. 2.3.1) on the percentage success and number of
structures sampled (for successful runs) of the GA.
Owing to the high success rates achieved using the
duplicate predator for the HP-24 sequence, it would be
difficult to evaluate the benefit of brood selection for this
sequence. Instead, the longer HP-36 sequence was chosen
for this investigation. The percentage success values
achieved and the average numbers of structures sampled
are shown in Fig. 9 as a function of brood size for
parents included in the brood and for parents excluded
from the brood. Two hundered GA runs were carried out
for each brood size, for both parents included and
parents excluded from the brood. It should be noted that

a brood size of 2, with parents excluded, corresponds to
normal crossover (two offspring produced from two
parents). However a brood size of 2 with parents
included would not make sense, since both parents
would pass unchanged into the next generation, without
crossover. For this reason, in these brood selection
studies, the results for a brood size of 2 (both for parents
included and for parents excluded) actually correspond
to normal crossover (producing two offspring, which
then pass into the offspring population), which is why the
percentage success values and average numbers of
structures sampled are identical in Fig. 9a and b.

Both graphs in Fig. 9 show a significant increase in
percentage success when brood selection is incorporated
in the GA (i.e. when the brood size is greater than 2).
The brood selection operator effectively allows the GA
to perform a local search by exploring a greater number
of combinations of the parents’ genes (conformation
vectors), which is benefical to the performance of the
GA. In both cases, the GA success peaks for a brood size
of 5, followed by a gradual drop off for increased brood
size. Larger brood sizes result in more structures being
sampled per mating operation; hence, capping the GA at
sampling 60,000 structures results in fewer generations
within the GA run. The evolutionary pressure is not high

Fig. 8. 3D plots showing the percentage success and average number of structures sampled, as a function of the mating and mutation rates,
for the HP-24 sequence, with the duplicate predator on (DPL=1): a percentage success, elitism 0.5%, b average structures, elitism 0.5%,
c percentage success, elitism 30% and d average structures, elitism 30%
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enough, and the absence of clear guiding pathways leads
to a degradation in GA performance.

Higher success values (approaching 15% for a brood
size of 5, even for the difficult HP-36 sequence) are
achieved when the parents are included within the
brood—i.e. parents compete with their offspring to be
included in the subsequent generation. Poor offspring
will be disregarded, lowering the possible disruption to
the population, thereby resulting in an effectively higher
elitism rate. Combined with the local search effect of
brood selection, this appears benefical to the GA per-
formance.

3.5 Local search

To investigate the effects of local search, the previously
described brood selection tests were carried out for the
HP-36 sequence, with the addition that the local search
operator was applied to all population members after
sorting and truncation of the population. The number of
structures sampled by the GA was capped at 60,000,
120,000 and 180,000 (the other GA parameters were as
in the previous study). Again, 200 GA runs were
performed for each brood size for both parents included
and parents excluded from the brood. Long runs were
performed (with the maximum number of generations
being 600) and the same runs used to provide the data
for capping at 60,000, 120,000 and 180,000 structures.
(In all successful cases, the GA run was terminated after
the generation in which the GM was found.)

As shown in Fig. 10, applying the local search oper-
ator leads to significant improvement of the GA per-
centage success, with a maximum success of around 60%
now achievable and a tendency towards higher per-
centage success for larger broods. For capping at 60,000

structures, comparison with the previous study (without
local search, Fig. 9) shows that there is a small increase
in the average number of structures sampled (in suc-
cessful runs) when local searching is included. As the
local searching leads to an increase in structures inves-
tigated per generation (there are 30 Monte Carlo steps
per local search), this indicates that there is a significant
decrease in the average number of generations required
to find the GM when local searching is switched on. This
is consistent with the work of Shmygelska and Hoos
[39], who found that incorporation of a Monte Carlo
local search led to a significant improvement in the
performance and success of their ant colony optimisa-
tion algorithm for protein folding.

The relatively high percentage success values for
HP-36, for runs of 120,000 (or fewer) energy function
evaluations (i.e. structures sampled), compares well with
the earlier GA study by Unger and Moult [22], where the
GM for HP-36 was found after over 301,000 energy
evaluations . Our GA is also more efficient than the GA
(incorporating systematic crossover) of König and
Dandekar [35] , who achieved only 4% success in finding
the GM for the HP-36 sequence. König and Dandekar
capped their GA at 100,000 energy evaluations, but, as
shown in Fig. 10, we typically achieve (for brood selec-
tion with parents excluded and local searching) 10–20%
success for a cutoff of 60,000 total energy evaluations
and over 40% success when capping at 120,000 evalua-
tions.

In comparison with brood selection without local
searching, Fig. 10 shows that including the parents
within the brood now has a slight detrimental effect
(compared with excluding them) when local searching is
switched on. Allowing parents to populate subsequent
populations as offspring increases the elitism and hence
the local search is performed on the same structures,

Fig. 9. The percentage success (lines) and the average number of
stuctures sampled (bars), as a function of brood size, for the HP-36
sequence, with the duplicate predator on (DPL=1): a parents
included in the brood and b parents excluded from the brood. In

both a and b, a brood size of 2 corresponds to normal crossover,
where the two parents generate two offspring, which then pass into
the offspring population
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wasting resources. Ensuring new offspring maximises the
population diversity and ensures that the local search
operator samples new space, thereby maximising the
operator’s effectiveness.

For larger GA capping values (i.e. allowing the GA
to sample more structures), the percentage success
increases; however, the large degree of local searching
swamps the effects of brood selection and the variation
in success with different brood size and brood selection
schemes becomes less apparant. When the GA is allowed
to sample twice and three times as many structures, the
percentage success increases; however, it should be noted
that on going from capping at 120,000 to 180,000
structures, the average number of structures sampled
increases only slightly. This is because the probability of
the GA locating the global minimum decreases with
increasing generation number, so only a small number of
additional successful runs (which will increase the aver-
age number of structures sampled) are added on
increasing the capping limit.

The distribution of the generation in which the GM
for HP-36 was found in the previously decribed brood
selection runs (200 runs per brood size — for brood sizes
of 2–10 — for both parents included and parents
excluded, with the run finishing when the GM was found
or when a limit of 600 generations was reached) is shown
in Fig 11. With a limit of 600 generations, the GM was
found 2592 times out of 3400 attempts (i.e. 200� 17),
corresponding to an overall success of 76.2%, with the
maximum in the distribution at eight generations. Of the
successful runs, 33.7% found the GM in the first ten

generations; 84.6% in the first 50 generations and 89%
in the first 100 generations. This indicates that for
finding global minima it is more efficient to run a large
number of short GA runs, rather than a few long runs.

3.6 Analysis of the GM conformations
for the HP-36 sequence

As (with the exception of the first two beads, which are
fixed, so as to define the coordinate axes) there are three
possible positions in which each successive bead can be
placed, relative to its predecessors, the total number of
conformations for an N -bead sequence in the 2D HP
lattice bead model is 3N�2. Although, as discussed in
Sect. 2.3, a large proportion of these conformations are
invalid, owing to bead overlap, the number of valid
conformations still rises rapidly with increasing number
of beads. For this reason, no grid search was carried out
for the benchmark HP-36 sequence. However, owing to
the reasonably high percentage success of our GA, we
can say something about the degeneracy of the GM for
this sequence.

In our GA runs, we found 383 distinct conforma-
tions, all with the same lowest-energy (E� ¼ �14),
which is consistent with this being the GM energy, in
agreement with previous studies [22, 35, 38, 39, 48]. (Of
course, without an exhaustive grid search this cannot
be proven to be the lowest-energy possible for this
sequence.) These 383 conformations are found to con-
stitute 191 enantiomeric pairs and one odd structure.
However, as the mirror image of this odd structure
must have the same energy, this just means that we
failed to find one enantiomer. We can therefore say
that the lower bound on the degeneracy of the GM for
the HP-36 sequence is 384 (192 enantiomeric pairs) as it
is still possible that we have failed to find other enan-
tiomeric pairs.

The structure of one of the GM conformations for
HP-36 is shown in Fig. 12. In fact, all of the GM con-
formations that we found have a 4� 4 square H16

hydrophobic core, surrounded by 20 P beads. As noted
by Unger and Moult [22], the chain adopts a zig-zag
(‘‘helical’’) conformation. The high GM degeneracy
comes about because there is a lot of flexibility afforded

Fig. 11. The distribution of the generation in which the global
minima (GM) is found for the HP-36 sequence, from a total of 3400
GA runs (with brood selection), with runs limited to 600
generations

Fig. 12. One of the highly degenerate set of global minima (with
energy E� ¼ �14) found for the HP-36 sequence. (H beads are
shown in black and P beads in white)

Fig. 10a–f. The percentage success (lines) and the average number
of stuctures sampled (bars), as a function of brood size, for the
HP-36 sequence, with the duplicate predator on (DPL=1) and
local searching. a (GA capped at) 60,000 structures, parents
included (in the brood), b 60,000 structures, parents excluded, c
120,000 structures, parents included, d 120,000 structures, parents
excluded, e 180,000 structures, parents included and f 180,000
structures, parents excluded

c
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by the P3 and P2 ends of the chain (varying the con-
formations of these ends does not affect the energy in the
HP model), as well as in the two P4 segments in the
chain. The long H7 segment also allows flexibility within
the hydrophobic core, though H-bead flexibility must
maintain the same number of H–H contacts if the energy
is to remain constant.

3.7 Application of the optimal GA strategy
to all benchmark sequences

On the basis of the results presented in previous sections,
we have concluded that the optimal strategy for finding
the GM for the 2D HP lattice bead model is to
incorporate local searching, brood selection (with par-
ents excluded from the brood) and duplicate predation,
with a high mating rate, low mutation rate and relatively
high elitism. The percentage success (in finding the
lowest energies reported in the literature) and the
average number of structures sampled are compared in
Table 3 in order to find the GM (in successful runs) for
all of the benchmark sequences listed in Table 1, using
our optimal strategy incorporating local searching,
brood selection (brood size 5, parents excluded) and
duplicate predation (DPL=1, mating rate 1.0, mutation
rate 0.1, elitism 30%). The total number of function
evaluations was not capped, though a limit of 100
generations was imposed. Our average numbers of
function evaluations are also compared with those
reported (each being the best result obtained from five
GA runs) by Unger and Moult [22].

Table 3 shows that our GA is 100% effective in
finding the lowest-energy structures previously reported
for HP-20, HP-24, HP-25 and even HP-50. For HP-20
and HP-24, the average number of structures sampled in
order to find the GM (18,388 and 27,278, respectively)
are greater than those obtained (averaging over suc-
cessful runs) using the standard GA, owing to the
inclusion of local searching—but the success rates have
gone up from 56% to 100%. Comparison with the
results of the standard GA, averaging over all runs,
shows that there is actually a decrease in the number of
structures sampled for the optimal GA strategy. Table 3
also shows that, in most cases—except for HP-25 and

HP-48 (for which they did not find the purported GM,
with E ¼ �23)— Unger and Moult sampled more
structures than in the present study. When considering
the results for HP-25, however, it should again be noted
that the reported number of structures sampled by Un-
ger and Moult’s GA represents the best result from five
runs.

It is noticeable from Table 3 that it is more difficult to
find the GM for HP-36 and (especially) HP-48 than for
the other sequences studied, as reflected in the percent-
age success values (70% for HP-36 and only 13% for
HP-48) and the average numbers of structures sampled
in successful runs (over 110,000 for HP-36 and over
260,000 for HP-48). Comparison with Unger and
Moult’s results confirms the difficulty of finding these
global minima, as they required (at best) over 301,000
function evaluations for HP-36 and did not find the GM
for HP-48 [22]. As already mentioned, all of the global
minima for HP-36 possess a 4� 4 square H16 core.
Similar square hydrophobic cores are found in the GM
for HP-25 (3� 3 H9 core) and HP-48 (5� 5 H25 core).
Although we find the GM for HP-25 with 100% effi-
ciency, it is noticeable that the number of structures
sampled is significantly higher than for HP-24. It is
posssible, therefore, that the lower success rates for
HP-36 and HP-48 and the higher number of structures
samped for HP-25 are related to the fact that the
hydrophobic cores are maximally compact. In these
cases, the GA may tend to converge on suboptimal
structures, from which it is not easy to find the global
minima.

4 Conclusions

In this paper, we have described our GA program for
finding the lowest-energy conformations in the 2D HP
lattice bead model, for a number of benchmark
sequences, up to HP-50. Optimisation of the standard
GA showed that the best results were obtained for high
rates of mating and mutation and relatively high elitism
(30%).

In order to study longer sequences, or to look at more
sophisticated protein models, it is important that the GA
efficiency is maximised. To this end, we have considered

Length This work Unger and Moult

E Percentage
success

Average number
of evaluations

E Number of
evaluations

HP-20 )9 100 18,338 )9 30,492
HP-24 )9 100 27,278 )9 30,491
HP-25 )8 100 35,128 )8 20,400
HP-36 )14 70 113,667 )14 301,339
HP-48 )23 13 261,311 )22 126,547
HP-50 )21 100 97,691 )21 592,887

Table 3. Comparison of the lowest energies found (E) and the effi-
ciency of our GA (employing our optimum GA strategy) with that
reported by Unger and Moult [22], for a number of HP benchmark
sequences. E values in bold are those which are in agreement with
the lowest energies reported in the literature. For our GA, we report

the percentage success and the (rounded) average number of func-
tion evaluations in successful runs of the GA. It should be noted
that Unger and Moult did not report their success rate and that their
reported number of function evaluations was for the best out of five
runs of their GA program
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a number of new genetic operators. The duplicate
predator, which maintains population diversity by
eliminating duplicate structures, was found to lead to
significantly higher success in finding the GM, often
requiring fewer evaluations. With the duplicate predator
set to remove all copies, high success was found to be
favoured by relatively high mating and elitism rates and
low mutation rates.

Brood selection was also introduced and was again
found to lead to significant improvement in GA success,
owing to more thorough searching of the crossover
space of the two parents. The most dramatic increase in
the efficiency of the GA, however, was achieved by the
addition of a Monte Carlo type local search algorithm,
which enables efficient exploration of the local confor-
mation space around population members.

On the basis of the calculations described in this
paper, we conclude that the optimum strategy for
finding GM for the 2D HP lattice bead model is to
incorporate local searching, brood selection (brood size
4–6, with parents excluded from the brood) and dupli-
cate predation (DPL=1), with a high mating rate (1.0),
low mutation rate (0.1) and relatively high elitism (30%).
We have found that our GA approach is highly suc-
cessful in finding the GM for all of the sequences stud-
ied, with the exception of HP-48, which appears to be a
particularly difficult case. However, for all of the
sequences studied, the average number of structures
sampled in order to find one of the GM conformations
was found to compare favourably with the results of
previous GA studies of this model [22, 35].

Research is currently continuing into further
improvement of our GA methodology, especially with
regard to developing strategies to improve the efficiency
of finding global minima for sequences (such as HP-36
and HP-48) with dense hydrophobic cores and for
extending our work to longer sequences. Future research
will also include the application of the GA to 3D cubic
and diamond-type lattices and to more sophisticated
protein models. We are also investigating the use of GAs
(and other evolutionary computing techniques) to find
low-energy folding pathways, so that one can obtain
information about folding dynamics, as well as preferred
folding conformations.
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