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The ability to control the crystallization behaviour (including its absence) of particles, be they

biomolecules such as globular proteins, inorganic colloids, nanoparticles, or metal atoms in an

alloy, is of both fundamental and technological importance. Much can be learnt from the

exquisite control that biological systems exert over the behaviour of proteins, where protein

crystallization and aggregation are generally suppressed, but where in particular instances

complex crystalline assemblies can be formed that have a functional purpose. We also explore the

insights that can be obtained from computational modelling, focussing on the subtle interplay

between the interparticle interactions, the preferred local order and the resulting crystallization

kinetics. In particular, we highlight the role played by ‘‘frustration’’, where there is an

incompatibility between the preferred local order and the global crystalline order, using examples

from atomic glass formers and model anisotropic particles.

1. Introduction

Controlling crystallization is a subject of considerable impor-

tance both from a fundamental and an applied perspective.

Chemical physicists want to understand how the interparticle

interactions determine the most favoured crystal structure and

the ease with which crystallization can occur. Biochemists

want to know the best recipe to crystallize the protein in which

they are interested, so that they can then determine its

structure. Nanotechnologists want to know how to get col-

loids or nanoparticles to self-assemble into a given target

structure, such as a diamond lattice because of its potential

importance in photonics. Metallurgists want to be able to

predict which alloys will most readily avoid crystallization,

and instead form a metallic glass.1

In this paper we want to take a theoretical and computer

simulation perspective on the factors that control crystalliza-

tion, and its absence, in these kinds of systems. So far in the

literature, isotropic models have been the starting point for

much of the theoretical work in this area, and although there

have been considerable successes, this approach has its limits.

For example, the experimentally observed ‘‘crystallization

slot’’ for globular proteins, where the interprotein interactions,

as measured by the second virial coefficient, are sufficiently

attractive to encourage crystallization, but not so attractive as

to lead to irreversible aggregation,2 has been rationalised using

isotropic model potentials.3 Another fruitful idea is that if a

protein solution lies near to a metastable critical point asso-

ciated with separation into protein-rich and solvent-rich

phases, the associated concentration fluctuations could en-

hance crystal nucleation.4 However, proteins are not isotropic,

but are anisotropic both in their shape and in their interac-

tions. One reflection of the latter is that protein crystals

typically have much lower packing fractions5 than the close-

packed structures that are favoured by isotropic potentials.

Similarly, for colloids and nanoparticles there are now a

considerable array of different crystals that have been ob-

tained just using isotropic particles, particularly through the

use of binary mixtures. For example, just by varying the

relative sizes of the two types of particles, surprisingly complex

crystals can be formed.6,7 Very recently, the use of particles

with charges of opposite signs has led to colloidal8,9 and

nanoparticle10–12 analogues of ionic crystals, even relatively

low-density structures such as zinc blende.12 However, there

are limits to the structures that can be assembled from

isotropic particles,13 and so there has been considerable recent

interest in developing methods to produce colloidal particles

that are anisotropic in shape14–16 or in their interac-

tions.15,17–21 For all these reasons, there has been much

theoretical interest in beginning to explore simple anisotropic

models and their effects on crystallization22–29 and self-

assembly.30–33

Here we provide a particular viewpoint on this broad area

of controlling crystallization and its absence. In Section 2 we

outline some of our perspectives on protein crystallization,

particularly why it is important to take into account the
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evolutionary origins of proteins when trying to understand

their crystallization behaviour. In Section 3 we explore how

the concept of frustration can provide physical insight into the

structural origins of the glass-forming ability for two of the

most common models for simulating supercooled liquids.

Finally, in Section 4, we introduce some of our recent results

that use model patchy particles to explore how the geometry of

the interparticle interactions can both influence and be used to

control the crystallization and self-assembly behaviour.

2. Protein crystallization

The question concerning protein crystallization that we have

been particularly seeking to address34 is: Why are globular

proteins seemingly so hard to crystallize? Although it is not

true of all proteins—lysozyme and insulin provide notable

examples of proteins that crystallize relatively easily—there is

plenty of anecdotal evidence that proteins are often very

difficult to crystallize. Furthermore, the rise of structural

genomics initiatives has now made it possible to start to

quantify this difficulty. For example, the success rate for

producing X-ray quality crystals has been estimated to be

roughly 20% for those prokaryotic proteins that can be

expressed in soluble form.35,36 Moreover, the crystallization

approaches used are mainly empirical. For example, screening

kits allow large numbers of solution conditions, which have

previously been found to be useful for crystallization, to be

quickly tested.

Our perspective on this question34 is that the need for

proteins to function within the crowded cellular environment

places major constraints on the surface properties of proteins.

In particular, not only must a protein interact correctly with its

binding partners, but it must also make sure that it does not

stick to anything else in the cell, including other copies of

itself. Failure to do so is likely to be deleterious to the cell, as in

the many protein aggregation diseases, of which the most

relevant to this paper are those associated with native state

aggregation and crystallization. For example, sickle cell anae-

mia involves the ordered aggregation of haemoglobin into

fibrils, and some forms of anaemia and cataracts are the result

of the crystallization of mutant forms of the haemoglobin37

and g-crystallin38 proteins, respectively.
Thus, our hypothesis is that the surface properties of

proteins have been selected in order to prevent native-state

aggregation and crystallization in vivo (we term this ‘engineer-

ing out’ of unwanted properties negative design) and that,

because of the robustness of the mechanisms used, many

proteins are difficult to crystallize even in the far-from-phy-

siological conditions explored by the protein crystallographer.

Furthermore, there is a relatively simple way to test this

hypothesis. If negative design is present, then random muta-

genesis of surface amino acids should on average lead to a

protein that is easier to crystallize, and the two such mutagen-

esis studies in the literature do indeed find such a correla-

tion.39,40

More useful, though, would be to identify the mechanisms

used to achieve this negative design, since then this raises the

possibility of developing rational strategies to overcome the

negative design in order to make protein crystallization easier.

Interestingly, bioinformatic analyses have provided a ‘smok-

ing gun’ for the potential role of surface lysine residues. Lysine

is the most common surface amino acid, but yet is the most

underrepresented at functional interfaces41,42 and at contacts

between proteins in crystals.43 This of course begs the ques-

tion: What is it doing there, if it is only reluctantly involved in

interactions? One possible answer is that lysine helps to

prevent unwanted interactions.

Consistent with this suggestion, the group of Zygmunt

Derewenda have shown that systematically mutating surface

lysine residues, particularly to alanine,44 almost invariably

enhances the crystallizability of a protein.36,45 The long lysine

side-chain has substantial conformational entropy, which

would be lost if constrained at a protein–protein interface.

Thus, it has been suggested that lysine stabilizes the free

protein in solution by providing a ‘surface entropy shield’,36

and replacing lysines with the compact alanine is expected to

make crystallization thermodynamically more favourable.

One possible objection to our negative design hypothesis is

that, given that proteins are irregular objects subject to

dynamical fluctuations, it is not surprising that they are hard

to crystallize. However, further evidence that the low crystal-

lizability of most proteins is not an intrinsic property, but one

that arises due to selection, comes from instances when protein

crystallization does occur in vivo, because it achieves some

functional purpose. Nature has no problem getting proteins to

crystallize, even in the ‘dirty’ environment of the cell, when

there is a positive selection pressure for this.

There are many fascinating examples of this in vivo protein

crystallization, as catalogued in a recent review.46 Such crys-

tallization represents a rather neglected area of biological self-

assembly, and one which is worthy of further study. Here we

give just a few examples. Certain genera of viruses that infect

insect larvae coopt the cell to express large quantities of

specific proteins during the late stages of infection. These then

crystallize around the viral particles to provide a protective

environment for the viruses after the death of the insect larvae,

as illustrated in Fig. 1(b). On ingestion of the crystals by a new

insect larva, the protein crystals dissolve in the alkaline

environment of the gut, releasing the virus to infect the new

host.47

A number of examples of crystalline proteins in the cell

correspond to proteins stored in secretory granules. Fig. 1(a)

illustrates one particularly specialized example from the pro-

tist (a type of single-celled eukaryotic organism) Parame-

cium.49 Large numbers of these granules, which are called

trichocysts, are attached to the outer membrane of this

organism, and are assembled from three different families of

closely related polypeptides, each localized to different regions

of the trichocyst to form a structure that is of the order of

3–4 mm in size. In response to an external stimulus the

trichocysts can be simultaneously extruded from the cell. In

this process, the crystalline trichocysts expand in length by a

factor of roughly eight. The purpose seems to be defensive.

The explosive release of the trichocysts can push Paramecium

away from a potential predator, giving it a chance to escape.51

In both these examples, a high level of control is asserted

over the crystallization process in order to determine the

location, size and shape of the crystal. The mechanical
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properties are also important for their function, with the virus-

encapsulating crystals required to be tough in order to provide

a protective environment, and the trichocysts able to undergo

an irreversible expansion triggered by the presence of calcium

ions.

Our final example is of the crystallization of virus particles

themselves (Fig. 1(c)), and has perhaps more to do with an

absence of a selection pressure to prevent crystallization (why

should it bother the virus?) than a functional purpose for the

crystals. The most dramatic examples come from iridoviruses,

which have large icosahedral capsids. This type of virus was

first identified due to the iridescent colours imparted to insect

larvae (hence the name)52 due to the Bragg scattering of visible

light by the crystals.53

3. Glass formation

There has been much work trying to understand the unusual

dynamic properties of supercooled liquids as the glass transi-

tion is approached.54 To do this from a simulation perspective,

model systems have been developed that are robust glass-

formers and show no tendency to crystallize. Such models also

allow one to probe the structural determinants of a system’s

glass-forming ability. A key notion is that of ‘frustration’,55,56

which is said to occur when the preferred local order is

incompatible with global crystalline order. Typically, the

liquid structure reflects the preferred local order, and so when

frustration is present, significant structural reorganization will

be necessary to nucleate a crystalline phase.

To apply these ideas, one needs to be able to identify the

preferred local order, but, because of the inherent disorder

associated with a liquid, sometimes this can be hard to achieve

directly from analysing liquid configurations. An alternative

approach is to instead look at the structures of isolated

clusters, since such a cluster can adopt the preferred structure

without having to mould itself to any surrounding medium.

This approach was first applied by Charles Frank to rationa-

lize why small liquid metal droplets could be substantially

supercooled.57

One of the potentials most commonly used by simulators is

the Lennard-Jones potential. However, the one-component

Lennard-Jones fluid is not a good system to look at the

behaviour of supercooled liquids, since crystallization into a

close-packed solid occurs relatively easily. To generate a good

glass-former, Dzugutov modified this potential by adding a

barrier in the potential at roughly
ffiffiffi
2
p

times the position of the

potential minimum (Fig. 2(a)), hence energetically disfavour-

ing close-packed crystals because of their octahedral inter-

stices.58 Instead, polytetrahedral order,59 and local icosahedral

order in particular, is preferred. As can be seen in Fig. 2(a), the

distances present in the 13-atom icosahedral cluster avoid

sampling this bump in the potential.

Even though there is a stable body-centred-cubic phase,60

the resulting Dzugutov liquid can be easily supercooled.

Interestingly, the Dzugutov system is one of the only liquids

in which an increase in a structural length scale has been

detected on increased supercooling, in particular domains with

local icosahedral order grow in size as the temperature is

decreased.61 However, these domains are not compact, but

are ramified in structure. These results raise the questions:

What are the origins of the non-compactness, and might this

shape be a generic property of domains of enhanced local

order within supercooled liquids? An analysis of the structures

of isolated clusters is able to provide some answers. This type

of ordering is also clearly seen in the clusters, but an analysis

Fig. 1 Some examples of protein crystallization occurring in the cell.

(a) A trichocyst attached to the outer membrane of Paramecium. (b)

An encapsulated rod virus of the granulosis virus of Plodia interpunc-

tella. (c) Paracrystalline arrays of an iridescent virus in the epidermis

of a larva of Culicoides variipennis sonorensis. The scale bars in (b) and

(c) correspond to 0.1 mm and 1 mm, respectively. Reproduced from ref.

(a) [48] and (b) [49] and (c) [50] (r 1968, 2000 and 1999, respectively,

with permission from Elsevier).

Fig. 2 (a) The Dzugutov (Dz) and Lennard-Jones (LJ) potentials

compared. The vertical lines show the positions of the pair distances in

the 13-atom icosahedron and their heights are proportional to the

numbers of pairs with that distance. (b) Some of the particularly stable

structures for Dzugutov clusters. Each cluster is labelled by its size and

point group.
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of the energetics shows that it is a consequence of the unusual

shape of the Dzugutov potential. Therefore, this domain shape

is unlikely to be universal.

The lowest-energy Dzugutov clusters are all aggregates of

interpenetrating and face-sharing icosahedra (Fig. 2(b)).62 As

the cluster size increases first chains, then disks, then rings, and

finally 3-dimensional porous networks of icosahedra are seen.

The energetic causes for this ordering are also clear. The bump

in the potential promotes local icosahedral order. However,

icosahedral structures are inherently strained, e.g. the distance

between adjacent atoms on the surface of the regular 13-atom

icosahedron is 5% longer than that to the central atom (Fig.

2(a)). This strain, and the associated energetic penalty, grows

rapidly for compact polyicosahedral structures. The resulting

non-compact icosahedral aggregates represent a compromise

that maintains the local icosahedral coordination, but which

does not involve excessive strains. Similar behaviour has also

been seen for variants of the Dzugutov potential.63

A second approach used to generate a good glass-former is

to introduce two atom types. Partly this is because the forma-

tion of a compositionally ordered crystal can require the atoms

to diffuse significantly further to find the correct environment

than for the one-component case. However, there is more to it

than this, since the interactions between the particles and the

composition also need to be tuned to reach those regions of the

parameter space where crystallization is particularly diffi-

cult.64,65 The most commonly used model of this type is the

Kob–Andersen binary Lennard-Jones mixture,66 i.e. the

potential is

VBLJðrijÞ ¼ 4eab
sab
rij

� �12

� sab
rij

� �6
" #

; ð3:1Þ

where a and b are the atom types of atoms i and j, and eab and
21/6sab are the pair well depth and equilibrium pair separation,

respectively, for the interaction between atoms i and j. The

Kob–Andersen parameters, sAB = 0.8sAA, sBB = 0.88sAA,

eAB = 1.5eAA, and eBB = 0.5eAA, are non-additive and

strongly favour mixing. At the canonical composition A4B

the ground state is a coexisting pure A face-centred-cubic

crystal, and an AB CsCl-type crystal,64 with low-lying layered

A4B crystals also possible.67 However, crystallization has

never been seen in a simulation.

Here, we use isolated clusters to analyse the preferred

coordination environments of A atoms around B atoms, since

at the glass-forming composition B atoms are in a minority. In

particular, we locate the particular stable clusters with one,

two, three and four B atoms to see how these preferred

environments can organize into larger structures (Fig. 3).

For coordination of a single B atom, clusters with 8, 9 and

10 atoms have similar stability. All three structures are based

on a square antiprism of A atoms, but with possible capping

atoms over the two square faces. This stability of the square

antiprism is also seen for A8B2 and A8B3, where the additional

capping atoms are now B atoms. One way of combining such

coordination environments is illustrated by A12B2 and A16B3

and involves the sharing of the square-faces of the square

antiprisms to form linear aggregates. Similar columns of

square anti-prisms are found in the Al2Cu crystal. A18B3

illustrates another possibility and involves the sharing of two

triangular faces of A12B2 with a bicapped square antiprism.

Another possible coordination environment for the B atoms

is the tricapped trigonal prism. Although this structure is not

stable for A9B (it can relax to a monocapped square antiprism

by a single diamond-square process68) it becomes a common

environment for larger clusters. This is illustrated by the

structures A15B3, A17B4 and A20B4, which have one, two

and four tricapped trigonal prismatic environments, respec-

tively, albeit with B atoms in some of the capping sites.

These results tie in well with studies of the local structure in

liquid configurations, which have found that square antiprism,

and trigonal prismatic environments increasingly dominate the

local structure in the liquid as the temperature is decreased.69

So how do these results help to rationalize the system’s

ability to avoid crystallization. Firstly, these preferred local

environments are not present in the lowest-energy crystal

structures. However, there are still a number of crystalline

structures that are significantly lower in energy than the liquid

that do involve these environments.64,65,69 Secondly, the di-

versity of environments and ways that these can pack is likely

to frustrate the formation of a uniform crystal.

In contrast to the A4B system, at equimolar compositions

the Kob–Andersen BLJ model easily crystallizes into a

Fig. 3 (a) The energies of the global minima for four series of

Kob–Andersen BLJ clusters with different numbers of B atoms. To

make particularly stable clusters stand out, the energies are measured

with respect to Eave, a fit to the energies of the clusters. For clarity, the

curves have also be displaced with respect to each other. (b) Some of

the particularly stable structures identified in (a) with all B atoms

completely coordinated. (c) A particularly stable cluster at near

equimolar composition.
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CsCl-type structure.64 Again, isolated clusters can help to

understand this behaviour. Examining A8Bn clusters, we found

A8B7 to be particularly stable and to exhibit the bulk crystal

structure (Fig. 3(c)), hence showing the absence of frustration

at this composition.

4. Patchy models

In the above models with isotropic interactions, the connec-

tion between the preferred local structure and the form and

parameters of the potential can be quite subtle. To probe the

connection between crystallizability and local structure

further, it would be useful to have a model where the local

structure can be more directly controlled. To achieve this goal

in a simple and flexible way, here we use ‘patchy’ particles,

where the particles are spherical and only interact strongly

when the patches on adjacent particles are aligned, but we

should note that other ways of using anisotropic interactions

to control the local structure have recently been explored.70,71

There has been much recent interest in such patchy models

from the perspective of protein crystallization,22,23,25,26,28 self-

assembly29,30 (particularly into monodisperse clusters in a way

similar to virus self-assembly30,31,33) and the dynamics of

supercooled liquids,72,73 but it is still an area that is very much

in its infancy with much to be discovered. Our interest is to

probe how the anisotropy of the interparticle interactions can

be used to control a system’s crystallization and self-assembly

behaviour, and, in particular, through its effect on the degree

of frustration. As well as being of fundamental interest, the

hope is that the results will also be useful for understanding the

crystallization behaviour of proteins and anisotropic colloids.

4.1. Potential

Here, we model the patchy particles with a single-site poten-

tial, i.e. each particle is represented by just a single site, but

which has both position and orientation. The potential con-

sists of an isotropic repulsion, which is based on the Lennard-

Jones potential

VLJðrÞ ¼ 4e
sLJ
r

� �12
� sLJ

r

� �6� �
ð4:2Þ

but where the attraction is modulated by an orientational

dependent term, Vang. Thus, the complete potential is

Vijðrij ;Xi;XjÞ ¼
VLJðrijÞ rosLJ
VLJðrijÞVangðr̂ij ;Xi;XjÞ r � sLJ;

�
ð4:3Þ

where Xi is the orientation of particle i. The patches are

specified by a set of patch vectors, {pi}, as illustrated in Fig.

4. Vang has the form

Vangðr̂ij ;Xi;XjÞ ¼ exp �
y2kmin ij

2s2

 !
exp �

y2lmin ji

2s2

 !
ð4:4Þ

where s is the standard deviation of the Gaussian, ykij is the
angle between the patch vector k on particle i and the inter-

particle vector rij, and kmin is the patch that minimizes the

magnitude of this angle. Hence, only the patches on each

particle that are closest to the interparticle axis interact with

each other, and the potential is continuous as a function of the

orientations of the particles. Vang = 1 when two patches point

directly at each other, but falls off as the patches deviate

further from the perfect alignment.

One of the nice features of this single-site potential is that,

given a set of patch vectors, the potential has only one

parameter s, which determines the widths of the patches.

Furthermore, as 1/s - 0 the isotropic Lennard-Jones poten-

tial is recovered. Hence, it is possible to systematically study

the behaviour of the model as a function of the degree of

anisotropy with the well-characterized Lennard-Jones model

as one limit.

4.2. Two-dimensional crystallization

We first discuss the application of this model to crystallization

in two dimensions to illustrate the effects of the geometrical

arrangement of the patches, since visualization is easier than in

three dimensions. We choose to study particles with 4, 5 or 6

patches arranged regularly on the surface of the disks. Parti-

cularly interesting will be the 5-patch system as the local five-

fold symmetry of the patches is incommensurate with global

crystalline order.

The two-dimensional Lennard-Jones reference system crys-

tallizes into a close-packed crystal with a hexagonal arrange-

ment of neighbours around each particle. Unsurprisingly, for

particles with a regular hexagonal array of patches, the

anisotropy reinforces this behaviour. Crystallization is easy

(Fig. 5(c)) and the close-packed crystal is lowest in energy for

any combination of pressure and s.
In the 4-patch system there is competition between a low-

density square crystal in which each patch points directly at a

nearest neighbour, and a higher-density hexagonal crystal.

The latter is orientationally ordered with two opposite patches

pointing at nearest neighbours, and the other two at next

neighbours. As the square crystal has more pairs of nearest-

neighbour patches pointing directly at each other, it is en-

ergetically preferred when the patches are sufficiently narrow

(Fig. 6(a)). However, because of its more open structure, it

becomes destabilised relative to the hexagonal crystal as the

pressure is increased. Crystallization to the square crystal

occurs relatively easily in the appropriate region of the phase

diagram (Fig. 5(a)).

Fig. 4 The geometry of the interactions between the model particles.

In this example, there are four patches regularly arranged on the disks,

with their directions described by the patch vectors, pi. Patch 4 on

particle i interacts with patch 2 on particle j because they are closest to

the interparticle vector.
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For the 5-patch system the situation is more complex. No

crystal phases are possible where all the patches point directly

at neighbouring particles. For example, on cooling this system

in the region of the phase diagram where the patches prefer to

be aligned, the resulting configuration has no overall crystal-

line order. However, most of the particles have one of the two

local environments highlighted in Fig. 5(b). From these two

motifs, two crystals can be constructed where every particle

has an identical environment (Fig. 6(b)). In both crystals each

particle has five nearest neighbours, and the crystals can be

thought of in terms of tilings of squares and equilateral

triangles, where every vertex is surrounded by three triangles

and two squares. The nomenclature for these semi-regular

tilings is (32.4.3.4) and (33.42), and derives from the ordering of

polygons around each vertex.74 However, we will use the

notation ‘s’ and ‘H’ by analogy to the Frank–Kasper phases

of these names that can be envisaged as square-triangle tilings

in two of their three dimensions.75

When the patches are sufficiently narrow, the H- and s-
phases represent the best compromise between the five-fold

symmetry of the particles and crystalline order. However, the

patches cannot point directly at each other in these crystals,

and so the system is frustrated. The mean deviation of the

patches away from the nearest-neighbour interparticle vectors

is smaller for the s-phase (7.21) than for the H-phase (9.61),

making the former lowest in energy for intermediate values of

s at low pressure. However, at small s, the energetic penalty

associated with these deviations becomes significant, and

causes the H-phase to distort so that three of the five patches

can point directly at each other. This distortion reduces the

aspect ratio of the unit cell and the triangles deviate signifi-

cantly from the ideal equilateral geometry. No such similar

distortion is possible for the s-phase, and so the H-phase

becomes lowest in energy at small s (Fig. 6(b)).

The H- and s-phase represent only two of the possible

tilings of squares and triangles. These tilings need not be

crystalline, and dodecagonal quasicrystalline packings are also

possible. Indeed, these quasicrystals have been seen in both

metallic alloys75 and macromolecular systems,76 under circum-

stances near to where crystalline square-triangle phases are

stable. Therefore, a stable quasicrystalline state remains an

intriguing possibility for the current system.

The more dense hexagonal crystal is most stable at higher

pressure, and closer to the isotropic limit. Although position-

ally ordered, the crystal is orientationally disordered, because

of the incompatibility of the five-fold symmetry of the particles

and the six-fold symmetry of the crystal (Fig. 6(b)).

An interesting comparison to the current system, which has

five-fold symmetry in the attractive interactions, is provided by

a study of hard pentagons.77 Although the shape of these

particles does frustrate crystallization to some extent, the

lattice formed by the particle centres in the only stable

orientationally-ordered crystalline phase, is based on a slightly

distorted hexagonal lattice.

Also relevant is a recent study of a two-dimensional system

of particles interacting with a Lennard-Jones potential plus an

anisotropic term that favours the formation of isolated five-

fold rings of particles.70 The presence of such order again

frustrates crystallization, and, interestingly, on varying the

strength of the anisotropic term in the potential, the dynamic

properties of the liquid, such as the fragility, can be changed

substantially.

4.3. Three-dimensional crystallization

In our applications of this model to three dimensions, we again

look at how low-density crystalline phases can be stabilized by

the patchy interactions. The two systems that we consider are

4- and 6-patch particles with a regular tetrahedral and octahe-

dral arrangement of the patches, respectively. For these sys-

tems, the stable crystalline phases at sufficiently low pressure

and s would be expected to be a diamond and a simple cubic

lattice, respectively, with each patch directly pointing at a

neighbouring particle. These have maximum packing fractions

of 34% and 52% compared to 74% for the face-centred-cubic

crystal favoured by the isotropic Lennard-Jones potential.

One might have expected these two systems to behave quite

similarly in the regime where the open structures are preferred,

but in fact their crystallization behaviour is quite different. The

6-patch system is able to crystallize easily, leading to a step-

like decrease in the energy on crystallization (Fig. 7(a)), some-

times even giving a perfect defect-free crystal. By contrast for

the 4-patch system at best only partial crystallization is

observed, and on ordering the energy does not exhibit a step,

but instead changes continuously.

Fig. 5 Structures resulting from Monte Carlo cooling simulations for two-dimensional particles with (a) four (b) five and (c) six regularly spaced

patches. In each case, there are 100 particles and s = p/12 E 0.262. The pressures are (a) 0.1, (b) 0.2 and (c) 1.0 e/s3LJ. The dashed lines show the

periodic boundary conditions. In (a) and (c) crystallization clearly occurs. The crystals are not quite perfect, because unless crystallization occurs at

the correct orientation with respect to the boundary conditions and with the correct number of lattice points in each direction, there will not be the

right number of particles to form a perfect crystal, and so some defects are necessarily present. In (b) there is no overall crystalline order, but two

common motifs are highlighted.
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As in Section 3, examining the structure of isolated

clusters can give us some clues as to the physical origins

of this behaviour, because the clusters provide a picture of

the preferred local order for the system. For both systems,

when the patches are sufficiently narrow, as expected, the

lowest-energy clusters exhibit open structures where the

maximum coordination number is equal to the number of

patches. For the octahedral particles, for s t 0.5 most of the

clusters are cuboidal nanocrystals with the simple cubic struc-

ture (e.g. the 3 � 3 � 3 cube in Fig. 7(c)). The system is

unfrustrated and it is unsurprising that crystallization is

relatively easy.

By contrast, the global minima of the tetrahedral system for

0.2 t s t 0.45 do not exhibit the structure of the stable

crystalline phase, but instead are based on dodecahedral cages

(the 20-particle dodecahedron is shown in Fig. 7(b)). Only for

s t 0.2 are clusters with the diamond structures lowest in

energy, e.g. the 26-particle structure in Fig. 7(b). In diamond

the particles form six-fold rings, but are puckered, whereas the

dodecahedra are characterized by planar five-fold rings, where

the 1081 bond angles are very close to the 109.571 angles

between the tetrahedral patches. The effect of this difference is

small until the patches become very narrow, and so for

intermediate values of s, the dodecahedral clusters are pre-

ferred because they have a greater number of bonds, e.g. for

the 20-atom dodecahedron there is only one unused patch per

particle, whereas the particles on the surface of diamond

clusters often have two unused patches. Thus, the results for

these clusters suggest that the tendency of the liquid to form

structures involving five-fold rings is one of the reasons under-

lying the much greater difficulty of crystallization in the

tetrahedral system.

Furthermore, as well as this competition between five- and

six-fold rings, in this model the diamond and hexagonal

diamond (the one-component equivalent of wurtzite) struc-

tures are practically degenerate. The structural difference

between these two crystals is that all the six-fold rings in

diamond have a form analogous to the chair isomer of

cyclohexane, whereas in hexagonal diamond, some of these

rings are analogous to the boat form of cyclohexane. Again,

this further variety of local structural forms is not going to aid

crystallization.

These results are consistent with the work of Zhang et al.

who attempted to crystallize diamond using similar patchy

particles with the same tetrahedral patch geometry.29

Fig. 7 (a) The caloric curves for cooling the 4-patch tetrahedral

particles and the 6-patch octahedral particles from high temperature.

The number of particles is 512, the patch width s is 0.3 radians,

and the pressure is 0.1e/s3LJ. The resulting simple cubic crystal

for the 6-patch system is also illustrated (the dots represent the

corners of the simulation box). (b) and (c) Some of the global

minima of isolated clusters for the 4- and 6-patch systems, respect-

ively. Each cluster is labelled by the number of atoms and point

group.

Fig. 6 Structural phase diagram showing how the ground-state

structure in two dimensions depends on patch width and pressure

(in units of e/s3LJ) for particles with (a) four and (b) five regularly

spaced patches. The unit cells of the crystalline structures are depicted

with thick lines, and the dashed lines show the periodic boundary

conditions.
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Crystallization to the diamond structure only reliably occurred

when a seed crystal was introduced, or when an additional

term in the potential was added that favoured staggered over

eclipsed torsional configurations, and hence disfavoured

hexagonal diamond.

This work on model anisotropic particles is particularly

timely given the rapid recent advances in synthesizing aniso-

tropic colloids,14–16 and because one target for research in this

field is to produce particles with tetrahedral symmetry to

assemble into a diamond-like crystal.78 Our results indicate

that the crystallization of such tetrahedral colloids might not

be so straightforward, because of the potentially frustrating

effects of the variety of local structures possible in the liquid

phase. However, it is not clear how an additional potential

term similar to that used by Zhang et al. could be introduced

into the intercolloidal potential to alleviate this. Instead, an

alternative strategy would be to use a binary system of

oppositely-charged tetrahedral colloids, as this would penalize

the formation of rings with an odd number of particles. In

particular, this change would reduce the tendency for penta-

gons to form, hence removing some of the frustration and

making crystallization more likely.

An interesting comparison to the present results is provided

by a recent study that took the Stillinger–Weber silicon

potential79 and varied the strength of the anisotropic 3-body

term, finding that it has a significant effect on the system’s

glass-forming ability.71 For the original silicon potential

crystallization into a diamond structure occurs relatively

easily, but as the strength of the 3-body term is decreased

the system becomes a good glass-former in the region

of parameter space where there is a crossover in the stability

of the diamond and body-centred-cubic crystals, and it

has been suggested that this is partially due to the

structural dissimilarity between the liquid and the possible

crystals. Similarly, it would be interesting to look at how

varying the patch width affected the dynamics of crystalliza-

tion for our systems.

5. Conclusions

Through the examples of crystallization (and its absence)

considered in this paper, we hope to have shown the subtle

interplay between the interparticle potential, the preferred

local structure and the kinetics of crystallization. In particular,

if the interactions favour a local structure that is incompatible

with the global crystalline order, or almost equally favour a

variety of different local environments, then crystallization is

likely to be frustrated. Furthermore, we have provided further

empirical support that examining the structures of isolated

clusters, as first performed by Frank,57 can potentially provide

a clearer picture of the preferred local order, and hence the

possible presence of frustration.

An important question concerning the type of structural

approach advocated here is how it relates to other approaches

to understanding the kinetics of crystallization, such as classi-

cal nucleation theory. In the latter, one of the key parameters

in determining the ease of nucleation is the surface free energy

associated with the crystal–liquid interface. The connection to

the current approach is that this interfacial free energy is

particularly sensitive to the degree of structural dissimilarity

between the crystal and the liquid, i.e. the greater the structu-

rally dissimilarity, the greater the interfacial free energy, and

hence the harder crystallization becomes.

In such instances where the liquid and crystal are structu-

rally very different, one way of circumventing the large free-

energy barriers to direct nucleation of the crystal is to undergo

a two-step nucleation process, i.e. first nucleate a metastable

phase, and then nucleate the final crystal form from within

that phase.80,81 For example, for the Stillinger–Weber silicon

potential mentioned earlier, crystallization to the diamond

structure only occurs at temperatures below that for a

liquid–liquid phase transition, which leads to the nucleation

of a lower-density liquid phase that more closely resembles the

solid.71

The patchy models introduced in Section 4 are particularly

useful for studying crystallization, since the geometry of the

patches allows the system’s structural propensities to be

directly controlled in a simple and flexible manner. One of

our original intentions for these models was to also use them

to illuminate aspects of the crystallization of proteins. There-

fore, a key question is how relevant these models are to real

proteins. Clearly, the interactions between proteins are

strongly anisotropic in character, i.e. in order for two proteins

(in their native state) to come together, the regions of their

respective surfaces that come into contact, the ‘‘patches’’ if

you like, must be correctly aligned and oriented. Furthermore,

the patchy models, like proteins, are also able to form rela-

tively low-density crystals. However, actual interprotein inter-

actions are much more complex—proteins are anisotropic in

shape, their surfaces are very heterogeneous, and the interac-

tions can depend sensitively on solution conditions, such as

pH and the concentrations of other ions.82 Thus, how much of

this complexity one needs to capture in order to reproduce or

gain insight into the crystallization of proteins is an open, but

important, question.

The examples described in Section 2 illustrate the exquisite

control that biological systems are able to exert over the

interaction properties of proteins, in particular their ability

to avoid native state aggregation or crystallization in the dense

cellular environment, and the ability of particular proteins to

form into complex crystalline assemblies. There are some

indications of how this control is achieved, e.g. the role of

lysine residues in preventing unwanted interactions, but there

is much still to be learnt. Such knowledge will be particularly

important if rational methods to make protein crystallization

in vitro easier are to be developed that aim to overcome the

evolutionary selection of the surface properties of proteins to

prevent native state aggregation.

In some ways, our patchy particles are probably somewhat

closer to some of the anisotropic colloids now beginning to be

generated.14–16 Therefore, it will be particularly interesting,

once it becomes possible to generate such colloids in sufficient

number and quality, and with their surfaces appropriately

functionalized, to be able to probe their phase behaviour and

phase transformation kinetics. Hopefully, some of the insights

gained from our patchy models will help to guide the experi-

mentalists in their quest to create crystals with useful photonic

properties.
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74 B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H.

Freeman, New York, 1987.
75 D. P. Shoemaker and C. B. Shoemaker, in Introduction to Quasi-

crystals, ed. M. V. Jaric, Academic Press, London, 1988, pp. 1–57.
76 X. Zeng, Curr. Opin. Colloid Interface Sci., 2005, 9, 384.
77 T. Schilling, S. Pronk, B. Mulder and D. Frenkel, Phys. Rev. E,

2005, 71, 036138.
78 T. T. Ngo, C. M. Liddell, M. Ghebrebrhan and J. D. Joannopou-

los, Appl. Phys. Lett., 2006, 88, 241920.
79 F. H. Stillinger and T. A. Weber, Phys. Rev. B: Condens. Matter,

1985, 31, 5262.
80 W. Ostwald, Z. Phys. Chem., 1897, 22, 289.
81 P. R. ten Wolde and D. Frenkel, Phys. Chem. Chem. Phys., 1999, 1,

2191.
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