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Abstract

Traditionally, solid state chemistry has followed the inductive paradigm, where ex-

perimental synthesis and observations provide information about the possible com-

pounds in a chemical system and phenomenological and semi-phenomenological mod-

els are employed to rationalize a compound’s existence (or ”non-existence”). Over

the past twenty years, a new methodology has been developing, the aim of which is

the prediction of chemical compounds without any recourse to experimental informa-

tion, followed by their synthesis. The founding stone of this deductive approach to

the rational planning of solid state syntheses is the global study of the energy land-

scape of the chemical system under consideration. In this contribution, we present

an introduction to the concept of energy landscapes in the context of structure pre-

dictions, and its implications for synthesis planning. The latter step gives access to

calculate phase diagrams without resorting to any prior experimental information.

Particularly noteworthy, the approach developed allows the derivation of extended

phase diagrams that include metastable compounds in a systematic fashion.
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1 Introduction

Stable configurations of atoms that can exist for a finite lifetime constitute the foundation

of the whole field of chemistry. All properties of a chemical compound defined by such an

equilibrium structure are fully determined by the basic physical laws of nature: a stable chemical

compound for given boundary conditions displays a distinct composition, topology, electronic

structure and a specific set of physical properties. Therefore, stable atomic configurations serve

as the basis and starting point for any action taken in chemistry, be it for the purpose of

fundamental research or for the development of applications. The most prominent task of

chemistry, virtually defining its identity, is to identify and realize stable compounds. From the

beginnings of chemistry as a science, and even in its alchemistic predecessor[1], the focus has

been the experimental synthesis of new compounds, which then was rationalized afterwards.

This inductive approach to chemistry, relying upon more or less heuristic concepts, reasoning by

analogy, and chemical intuition to select promising synthesis targets has e.g. led to great success

stories in the field of organic and molecular chemistry, exemplified by the retrosynthesis approach

of Corey[2, 3]. The general applicability of this methodology rests on two pillars: the ability of

the molecular chemist to predict with high reliability, which molecule is capable of existence, i.e.

whether a kinetically stable modification exists and how it looks like, and furthermore the great

sophistication of molecular synthesis methods that allow the design of a controlled sequence

of chemical reactions leading to the proposed compound in a particular modification. In the

field of solid state chemistry, however, analogous heuristic concepts such as radius ratio rules[4],

specifying preferred coordination polyhedra, have a much more limited range of applicability for

the prediction of whether a particular compound is capable of existence or what its preferred

structural modification will be.

Thus, it has been recognized that a more systematic and fundamental approach is needed to

solve the problem of predicting the structures of crystalline solids. Addressing this fundamental

objective has resulted in a fully rational, and thus deductive[5, 6] approach to planning chemical

syntheses, where the goal is to first predict possible new compounds as synthesis targets without

any experimental input, and subsequently to synthesize them in a controlled manner. This highly

versatile approach is based on the energy landscape of the chemical system[7]. There exist an

essentially infinite number of spatial arrangements (or configurations) of the atoms that belong
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to a given chemical system, and the (meta)stable compounds feasible in the system correspond

to those specific subsets of configurations that are stable for given thermodynamic boundary

conditions; in particular, at T = 0 K, they are local minima of the energy.

Mathematically, every arrangement of the N atoms belonging to the chemical system under

consideration is represented by a point on the 3N -dimensional hypersurface of the potential

energy, and all the dynamics of the system is represented by trajectories on this surface. Thus,

the knowledge of the properties of the energy landscape is essential, but also sufficient, for the

identification of all compounds in the system that are thermodynamically or kinetically stable

at the given boundary conditions. While some of these landscape concepts might appear to

be rather abstract, they have greatly increased our understanding of what kind of an entity a

chemical compound really is, and their application to structure prediction and rational synthesis

planning has already led to several exciting success stories. Among the most impressive ones

are the successful prediction[8, 9, 10] and subsequent synthesis[11, 12, 13] of the elusive sodium

nitride Na3N in four different predicted modifications at standard and elevated pressures, and

similarly the prediction[14] and subsequent synthesis of new modifications of lithium bromide[15]

and chloride[16] in the wurtzite structure type.

In this contribution, a detailed introduction to the energy landscape concept for solid state

chemistry is given, followed by its application to the prediction of solids, including both in-

dividual modifications and whole phase diagrams. Those readers mostly interested in gaining

a general overview over the many chemical systems where successful predictions of solid com-

pounds and phase diagrams have been performed might want to start with the example sections

(5 - 6) and return to the methodological part (2 - 4) for deeper insight and conceptual background

as needed.

The fundamental approach presented here is equally applicable for the prediction of large

molecules, clusters, molecular crystals and extended solids, and furthermore relevant for the

understanding of amorphous materials. However, due to spatial limitations, the focus is on

extended crystalline solids, and the reader is referred to reviews in the literature[17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30] for more information on structure prediction for the other

types of systems.
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2 The energy landscape concept: configuration space, barriers,

lifetimes, local ergodicity

The starting point of the energy landscape approach is the analysis of the chemical system on the

level of individual atoms by adopting the fundamental physics point of view, where a chemical

system is represented classically as a collection of N atoms. At each moment in time the system

can be characterized by two 3N -dimensional vectors, ~R = (~r1, . . . , ~rN ) and ~P = (~p1, . . . , ~pN ) =

(m1~v1, . . . ,mN~vN ), giving the positions and momenta of all atoms as function of time. As long

as the Born–Oppenheimer approximation holds and zero point vibrations can be neglected, such

a classical picture is also obtained in a quantum mechanical treatment after integrating out the

electronic degrees of freedom[31]. Since the kinetic energy of the atoms is just a quadratic

function of the momenta, the dynamics of the system (via Newton’s equations) is given once

the Born-Oppenheimer surface over the 3N -dimensional space of all atom arrangements, the

so-called configuration space of the system, is known. This energy hypersurface is commonly

denoted as the energy landscape of the chemical system[32, 33, 34, 7, 19, 5, 21, 35, 36, 37, 38].

The first application of energy landscape concepts to chemical systems has been in the area

of glasses[32, 33], in order to understand the non-equilibrium features of these systems. On

the other hand, the landscape of crystalline compounds is being investigated with the goal of

predicting new compounds and developing routes to their synthesis[7, 5], while clusters[34, 21]

and large molecules such as proteins and polymers[17, 19, 21] are studied both as model systems

for complex landscapes and in order to understand the properties of finite chemical systems such

as the existence of magic number clusters or protein folding.

If one tries to analyze the dynamics on this energy landscape, the simplest case is obtained

by considering the chemical system at a temperature of zero Kelvin. As a consequence, the

kinetic energy gained due to the ”downhill” acceleration from an arbitrary starting point on the

potential energy landscape is rapidly dissipated away. Thus, no matter which atom configuration

one starts with, the trajectory quickly reaches the nearest local minimum of the potential energy,

and remains at this minimum configuration for the remaining duration of the experiment or

simulation. Thus, the kinetically stable structures of a chemical system at zero Kelvin are

precisely all the minimum configurations of the energy landscape. The system is essentially
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static, since the lifetimes of these configurations are infinite, at least on the classical level -

quantum mechanically, tunneling processes can take place, of course.

The situation is considerably more complex for non-zero temperatures, since now the time

evolution of the chemical system corresponds to a complicated trajectory in configuration space.

In particular, none of the configurations observed during an experiment or a molecular dynamics

simulation of a chemical system at a given temperature perfectly agrees with the ideal crystal

structure, no matter how accurate an energy function one employs. Lattice vibrations and other

thermally induced excitations are always present in the crystal, and thus what one calls a solid

compound is not associated with a single atom configuration but with a large number of such

arrangements, whose thermal (Boltzmann) average corresponds to the actually observed crystal

structure. In particular, the average of the simulated trajectory over the whole simulation (i.e.

observation) time, the so-called time average, is equal to the average over the thermally activated

configurations around the crystal structure, the so-called ensemble average. Such an equality

of time and ensemble average means that the system fulfills the ergodic condition or ergodic

hypothesis[39], which is a fundamental concept in the field of statistical thermodynamics and

constitutes a crucial step in going from the classical mechanical description given above to the

thermodynamic one. In particular, every chemical compound that is thermodynamically stable,

must necessarily obey this ergodicity condition. This also applies to all metastable compounds,

with the obvious restriction that the ergodic condition can only hold approximately because

of the finite lifetime of a metastable compound. Thus, one can conclude that identifying all

metastable compounds of a chemical system corresponds to the determination of all so-called

locally ergodic regions on the energy landscape [19].

In the next step, these qualitative considerations need to be translated into a constructive

mathematical definition of local ergodicity[19, 40]: For a given temperature T , a subset R of

the configuration space is called locally ergodic on the observation time scale tobs, if the time

τeq(R;T ) it takes for the system to equilibrate within R is much shorter than tobs, while the time

τesc(R;T ) it takes for the system to leave the region R, the so-called escape time or lifetime, is

much larger than tobs,

τesc(R;T ) ≫ tobs ≫ τeq(R;T ) (1)

If this holds true, then the ergodic theorem ensures that one can replace the time averages of
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observables O(~R(t), ~P (t)) along a trajectory of length tobs = t2 − t1

< O >tobs=
1

tobs

∫ t2

t1

O(~R(t′), ~P (t′))dt′ (2)

inside the locally ergodic region R by the (Boltzmann) ensemble average of this observable

< O >ens (T ) =

∫
O(~P , ~R) exp(−E(~P , ~R)/kBT )d~Pd~R∫

exp(−E(~P , ~R)/kBT )d~Pd~R
(3)

restricted to the region R,

| < O >tobs (R)− < O >ens (R;T )| < a. (4)

Of course, this ’equality’ holds only within an accuracy a, since only local and not global

ergodicity is asserted. In particular, one can compute for every locally ergodic region Ri the

local free energy

F (Ri;T ) = −kBT lnZ(Ri;T ) = −kBT ln
∑
j∈Ri

exp(−E(j)/kBT ), (5)

and thus apply the usual laws of thermodynamics to the system as long as it remains within

the region Ri. Figure 1 depicts a sketch of a simplified two-dimensional landscape where the

locally ergodic regions are indicated. Local ergodicity of a region R on some time scale tobs

implies that all the minima {Mi} contained in the region are equilibrated among each other

on this time scale, τesc(R) ≫ tobs ≫ τeq(Mi,Mj). However, the reverse is not true: for tobs >

τesc(R) ≫ τeq(Mi,Mj), the minima remain equilibrated among each other, of course, but there

is a net flow of probability out of R and thus R is no longer locally ergodic on the time scale

tobs [41, 19, 40, 36].

As a result, for any given observation time scale tobs, the configuration space of the chemical

system is split into a large number of disjoint locally ergodic regions, with the remainder of

the configuration space consisting of transition regions connecting the locally ergodic regions.

Each such ergodic region corresponds to a kinetically stable compound of the chemical system

on the time scale of observation. It is important to note that the set of all locally ergodic

regions on an energy landscape depends not only on the observation time chosen, but also on

temperature since the escape time in particular tends to vary strongly with temperature. As

long as the probability of being found in one of these locally ergodic regions is much larger than

6



the probability of being found in a transition region,

∑
i p(Ri)

1−
∑

i p(Ri)
≫ 1 (6)

where

p(Ri) =
∑
j∈Ri

p(j) =
∑
j∈Ri

exp(−E(j)/kBT )

Ztotal(T )
=

exp(−F (Ri;T )/kBT )

exp(−Ftotal(T )/kBT )
, (7)

the system can be considered to be in (meta)stable thermodynamic equilibrium on the time scale

tobs at temperature T . Here, Ztotal(T ) is the sum over states over the whole configuration space.

Note that if the system has been given an essentially infinite time τglobaleq (T ) ≫ τesc(Ri;T ) to

equilibrate before we perform our measurement on the time scale tobs(≪ τesc(Ri;T )), the system

can be treated as globally ergodic, and the likelihood of finding the system at the time of the

measurement in a particular locally ergodic region Ri is given by p(Ri). As a consequence, the

locally ergodic region with the lowest free energy F (Ri;T ) has the highest probability of being

occupied during the measurement, and the compound corresponding to this region is customarily

designated to be the thermodynamically stable phase.

Quite generally, at low temperatures, the escape times from the locally ergodic regions are

mostly controlled by energetic barriers on the energy landscape and tend to follow an Arrhenius’

law. Thus, at very low temperatures individual local minima of the energy landscape are locally

ergodic and their local free energies are determined by the energy of the minimum plus the contri-

bution of the vibrations about these minima, plus possible electronic and magnetic contributions

to the free energy. Usually, the regions with the lowest free energy correspond to crystalline

modifications of the system (Rcryst), while structures containing structural or chemical ordering

defects (Rdefect) are also associated with local minima but with slightly higher energies. At ele-

vated temperatures and/or on sufficiently long time scales, locally ergodic regions will typically

encompass many local minima. The most common case is that the region consists of a large basin

containing both the perfect crystalline minimum and the minima corresponding to equilibrium

defects of this structure, and the free energy includes a contribution due to the various equi-

librium defects. Finally, there are parts of the landscape that describe the glassy state. These

regions are at best marginally ergodic, i.e. the escape time from the region Rmarginal is essentially

the same or somewhat shorter than the equilibration time, τesc(Rmarginal) ≈ τeq(Rmarginal). As

a consequence, aging processes take place[42] and the marginally ergodic regions grow in size,
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until the system has finally, perhaps after a very long time, reached a kinetically stable crys-

talline state. If these marginally ergodic regions together with the transition regions dominate

the landscape, equation 6 is violated, and one would consider the system a glass former, where

it is rather difficult to synthesize one of the possible crystalline modifications.

3 Computational tools for the exploration of chemical energy

landscapes: search strategies, cost functions

3.1 General aspects of search strategies

In principle, the determination of locally ergodic regions consists of three steps: the generation of

a candidate for such a region (which at low temperatures corresponds to identifying an individual

candidate structure), the verification that the candidate is locally equilibrated on the time scale

of observation, and the verification that the candidate is kinetically stable on the time scale of

observation [43]. Nearly all the work performed so far in the field of structure prediction has

focussed on the first step. In contrast, the verification that these candidates are equilibrated

(step 2) and kinetically stable (step 3) on the relevant observational time scales are in most

studies reduced to only checking whether the candidate corresponds to a local minimum of the

energy. As a consequence, nearly all predictions found in the literature are only strictly valid

for very low temperatures, T ≈ 0 K.

Clearly, the approach to structure prediction via globally exploring the energy landscape

of the chemical system is extremely powerful, since it does not require any assumptions or

experimental information about the system under investigation. The only input is the energy

function of the chemical system, which is given by the basic laws of physics. Once the chemical

system has been defined and its energy function has been provided, the global search will deliver

all (meta)stable structures and phases of the system, in principle.

However, the great complexity of the energy landscapes of bulk chemical systems and the

high computational cost of evaluating the energy of every configuration encountered on ab initio

level limit the usefulness of the most straightforward implementation of such a global search via

a systematic scanning of configuration space. Furthermore, one should keep in mind that the

search aims at identifying all local minima that are surrounded by sufficiently high barriers, since
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every one corresponds to a possible metastable compound. Instead, the high computational ef-

fort required has led to the development of a modular multi-stage exploration strategy[7], where

the global exploration of the chemical system employs simplified energy functions. The identified

structure candidates capable of existence are subsequently refined during a local optimization

stage using highly accurate empirical potentials or ab initio energy calculations. Depending on

the complexity of the system (formation of complex ions etc.), a second global search stage is

sometimes inserted, where groups of atoms (e.g. coordination polyhedra[44, 45, 46] or secondary

building units in zeolites[47, 46]) are kept fixed during the second global optimization. Never-

theless, the sheer computer power required makes the systematic determination of all relevant

local minima on an energy landscape of a solid without any direct or indirect input from exper-

iment still essentially impossible for systems with more than about 40 atoms / simulation cell,

irrespective of the global search algorithm employed.

In contrast, it is relatively straightforward to construct individual structure candidates con-

taining dozens or even hundreds of atoms in a unit cell by copying and modifying known struc-

tures of chemically (more-or-less) related compounds from various databases[48] or in generating

periodic bond-networks for a given set of allowed bond-connectivities[49]. The main problem

when relying on a database lies in the inability to identify new and unusual but nevertheless

energetically very low-lying minimum structures that do not exist in databases or do not obey

the topological rules, but which one often finds during unbiased global optimizations on energy

landscapes. Of course, with the topological network approach, one could in principle construct

all possible atom-networks by including all conceivable types of bond-connectivities into the

topological network generation; in the extreme limit, this would correspond to systematically

scanning the configuration space more or less densely[50]. But then the number of hypothetical

candidates would grow exponentially or possibly factorially fast with the number of atoms/cell

[51], and the local minimizations required for these network-based structure candidates would

also overwhelm the computational resources.

Quite generally, the methods discussed in the literature for generating structure candidates

fall into three general classes: 1) direct determination of local minima and structure families

of such minima on the energy landscape (see e.g. [7, 5, 43, 52, 35, 53, 36]), 2) chemically

inspired [54, 55, 56, 57, 58] and/or systematic construction [59, 60, 50] of hypothetical candidates
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including database-driven searches [48, 61], topological bond-network methods employing graph

theory and mathematical tiling theory[51, 62, 63, 49, 64, 65, 66, 67] and so-called ’bottom-

up’ approaches[68, 69, 70, 71] where clusters are first optimized and then assembled to crystal

structures, and, finally, 3) dynamical simulations that try to reproduce or imitate the chemical

and physical processes leading to new compounds, such as pressure or temperature induced solid–

solid phase transitions [72, 73, 74, 75], the sol-gel process [76, 77, 78], synthesis via deposition

from the gas phase[79], or crystallization from solution [80] or the melt [81].

3.2 Algorithms for global landscape explorations

When predicting the existence and structure of stable compounds in a chemical system, the cen-

tral quantities of interest on the system’s energy landscape are the local minima and the locally

ergodic regions[19] in general. In order to estimate the kinetic stability of these compounds,

the barrier structure of the landscape consisting of (generalized) barriers[40] such as energetic,

entropic and kinetic barriers[82] needs to be analyzed. To do so, one must identify the saddle

points and transition regions[83] that connect these minima, and measure the flow of probability

on the landscape. Finally, the local densities of states have to be determined, in order to compute

the local free energies of the compounds. For the analysis of the results of these investigations,

visualization plays an important role, since the depiction of the high-dimensional complex multi-

minima landscape in a simplified fashion yields insights into the properties of, and the dynamics

on, such hypersurfaces. The most important tools are graph-based representations, such as tree

graphs[84, 41, 85, 86, 87, 88, 89, 90], networks[91, 92, 93, 94, 95, 96, 97, 98, 99, 100], or transition

probability matrices[41, 86, 101, 102] and transition maps[103], besides a range of other methods

for the reduction of the number of relevant coordinates[104, 105, 106, 107, 108, 83, 109, 110].

However, due to space constraints, landscape representations are not discussed in more detail

and the reader is referred to the literature.

In this subsection, an overview is provided over the most popular algorithms that have

been employed for the global exploration of energy landscapes. Of course, all these algorithms

have been implemented in their own special fashion by the research groups using them. Most

of the corresponding computer programs are specialized to one method only, although a few

contain several algorithms as sub-modules, such as the G42-code[7] that implements about ten
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different global and local exploration algorithms in various degrees of sophistication, such as

simulated annealing[111], thermal cycling[112], basin hopping[113], threshold explorations[85],

ergodicity search[114], parallel tempering[115], multi-walker annealing, evolutionary search[116],

or prescribed path explorations[110], or the GULP-program[117, 118] that incorporates both

force-based methods and genetic algorithms[119]. Furthermore, several of the codes can connect

to external programs that provide e.g. ab initio or empirical potential energy calculations or

sophisticated local minimization techniques. The reader is referred to the individual publications

for more details and contact information regarding the authors of the various programs.

3.2.1 Identification of local minima

A large number of methods to identify local minima on the energy landscape have been devel-

oped for the solution of discrete and continuous optimization problems in mathematics, physics,

chemistry, biology, technology and economics. These have been adapted and applied to the

goal of identifying structure candidates in chemical systems as a tool for rational planning of

syntheses[7, 5]. The two crucial issues are the efficiency of the search, and the effect of sim-

plifications and modifications of the energy landscape with the goal of speeding up the search

procedure. One should note that in the context of synthesis planning, one is not only interested

in the global minimum – all minima with low energies and sufficiently high barriers surrounding

them are of importance since they represent possible metastable compounds.

Quite generally, the global optimization procedures can be divided into two main groups,

which overlap to a certain degree: Stochastic approaches and deterministic methods. Funda-

mental to the stochastic methods is the concept of a random ’walker’ (or a set of such walkers)

on the landscape, whose trajectory on the landscape describes the time evolution of the chem-

ical system. For example, in a Monte Carlo simulation, the trajectory consists of a stochastic

sequence of jumps of the walker from a given configuration with energy Ei to neighbor configu-

rations with energies Ei+1, which are accepted if ∆E = Ei+1 − Ei < 0 or if exp(−∆E/T ) > r

for a random number 0 ≤ r < 1. In principle, these jumps can be generated by some arbitrary,

non-physical rule, allowing very large steps on the landscape. In contrast, molecular dynamics

simulations reproduce the actual physical trajectory of the system in a deterministic fashion,

although the coupling to an external heat bath introduces a certain degree of stochasticity. The
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classic deterministic global optimization methods, on the other hand, employ systematic scans

of the landscape based on various heuristic or exhaustive rules. They are most useful, if the

landscape can be divided into a hierarchy of regions each containing a number of local minima,

thus enabling a divide-and-conquer approach.

Simulated annealing The most straightforward stochastic optimization approach consists in

performing very long Monte-Carlo or molecular dynamics simulations at constant temperature,

where, by definition, every possible minimum region is visited according to its Boltzmann prob-

ability. However, much computing time is essentially wasted by exploring high-energy regions

of the landscape. If enough computer power is available or the landscape contains only few im-

portant basins and a simple barrier structure, such a constant temperature simulation can yield

satisfactory results. However, the study of landscapes belonging to complex chemical systems

such as large molecules, e.g. clusters or proteins, glassy systems, or non-trivial crystalline solids,

shows that more efficient algorithms are required.

This has led to, among other methods (see below), the development[111, 120, 121, 122] and

the subsequent application to crystal structure prediction[7] of the so-called simulated annealing

algorithm, where during the MC/MD simulations the temperature is decreased, in order to focus

the exploration on regions where deep-lying minima are expected to be found, since it can be

proved that a logarithmically slow schedule T (t) ∝ A/(1 + ln t) guarantees that one will find

the global minimum[123]. One great advantage of employing MC based global optimizations

is that one can replace the physically realistic moveclass of moving one or a few atoms by a

small amount, by more optimization effective moveclasses that allow larger changes in the atom

configuration during each move. One should be aware of the inherent danger, however, that an

unphysical moveclass can lead to the inadvertent elimination of physically relevant local minima.

But if one is reasonably careful when designing the moveclass, this drawback is outweighed by the

higher overall efficiency of the algorithm. In this case, it is sometimes efficient, to combine such

large moves every time with a quench; this scheme is often called basin hopping[113, 124, 125].

Besides the moveclass, there are a number of other features of simulated annealing that can

be adjusted to increase the efficiency of the algorithm[126, 121]. The temperature schedule T (n),

where n counts the number of moves along the trajectory, can be optimized; common sched-

12



ules are exponential or linear decrease with n, schedules involving temperature cycling[112, 127]

where the temperature periodically increases and then decreases again, and adaptive schedules[128,

129] that take properties of the landscape explored up to now into account. Multi-walker imple-

mentations have also been used[130, 126], such as the Demon-algorithm[131], methods that gen-

erate an averaged landscape[132, 133, 134, 135] such as conformation-family Monte Carlo[136],

the particle swarm method[137], superposition state molecular dynamics[138] and SWARM

molecular dynamics[139], or multi-overlap dynamics[140, 141, 142], parallel tempering[115] and

J-walking[143] where different walkers run at different temperatures and periodically switch

positions (or temperatures), in order to overcome barriers more efficiently. Finally, the accep-

tance criterion can be modified; the most popular ones accept a move according to the classical

Metropolis distribution[144], the Tsallis distribution[145, 146], or based on a temperature de-

pendent acceptance-threshold[147]. For more details we refer to the literature[121, 122].

Taboo searches and lid-based optimizations A different class of global optimization meth-

ods are the so-called taboo searches[148, 149, 150], where one performs MC/MD simulations and

already visited regions are forbidden, either by rigid exclusion constraints or via penalty terms

added to the energy function[151]. A crucial issue here is the length of the memory chain, i.e. the

size of the list of configurations already visited that can be kept in memory. Combining a taboo

search with quenches and large moves like in basin hopping schemes can alleviate the memory

problem to a certain extent[152]. One of the more recent incarnations of a taboo search is the

metadynamics approach[153, 154]. Furthermore, there exist a number of methods designed to

achieve a more efficient barrier crossing, which are based on the modification and/or simplifi-

cation of the energy landscape[151, 155, 156, 157, 158, 159, 160, 161, 162, 163], e.g. by locally

elevating visited areas[151] (a precursor of metadynamics), by lowering barriers relative to the

local minima[159], stochastic tunneling[164, 160, 165, 166], dynamic-lattice searching[167], or by

modifying the potential between the atoms[157]. Typically, the landscape modifications during

such accelerated (molecular or Monte Carlo) dynamics runs are adaptive, i.e., they vary with

the progress of the simulation and depend on the information already gained about the system,

in this way being related to the taboo-searches.

Finally, there exist several lid-based methods for the stochastic global exploration of con-
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tinuous energy landscapes. Examples are the deluge algorithm[168], where an energy lid that

must not be crossed during the random walk (like a Monte Carlo simulation where every move

is accepted, i.e. where T = ∞) is slowly lowered from very high lid values, and the threshold

algorithm[85], where the walker is allowed to move below an ascending sequence of energy lids,

and one checks periodically, whether new local minima have been reached by performing quench

runs from stopping points along the trajectories.

Genetic and evolutionary optimization Genetic or evolutionary algorithms[169, 170, 119,

171, 172, 173] have become very popular in crystal structure prediction over the past decade[174,

118, 175, 176, 177]. They essentially produce a stochastic evolution of an interacting ensemble of

walkers which exchange information about the regions of the landscape explored by generating

new configurations via a mixture (crossover move) of two or more walkers from one or more

previous ensemble generations[170, 178], in addition to simple modifications of individual walkers

(mutation move). These ”mixtures” can consist of joining pieces of the (two or more) parent

configurations, averaging the parent configurations, or combinations thereof. Based on the

energies of the members of the extended ensemble, the size of the ensemble is reduced by

elimination of the ”weaker” members according to some selection scheme. One feature of this

reduction process is that one often inserts a preparatory step before the actual selection, where

one assigns a fitness value to the configurations based on some rule. One might use the ratio

of the energy to the average energy of the population[119], the rank of the configuration by

energy[179], or generate the fitness from the rank assigned via some sampling method such

as a tournament[180], where the members of the enlarged ensemble are compared pairwise.

Furthermore, one often employs hybrid moves, i.e. one adds a local minimization after the cross-

over has taken place but before a fitness is assigned[171, 181].

As in the case of simulated annealing, many possibilities for the optimization of the algo-

rithm have been explored. Besides the obvious importance of designing efficient mutation and

cross-over moves that are adapted to the energy landscape of chemical systems, two further

aspects need to be addressed when optimizing the moveclass: the ratio of mutation to cross-over

moves, and the fraction of completely new randomly generated configurations that are added

to the ensemble, in order to keep the diversity of the ensemble sufficiently high such that the
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algorithm does not end up concentrating all walkers into the same basin on the landscape. Re-

garding the optimization of the selection procedure for reducing the enlarged parent+offspring

ensemble to the original size, three variants appear to be most commonly employed: ”Quench”

selection, where only the best configurations are kept, ”Monte Carlo” selection, where the best

configurations are kept but according to their energies weighted by the appropriate Boltzmann

factor, or a related (weighted) ”roulette-wheel” selection, where the new ensemble is generated

by a stochastic sampling with (or without) replacement proportional to their energy or fitness,

or by a so-called stochastic universal sampling[182]. Furthermore, one often keeps some of the

newly generated configurations in the ensemble, irrespective of their energies, or, alternatively,

retains some of the parent configurations in spite of their not so favorable energies, in order to

maintain a high diversity of the ensemble[183]. This can effectively lead to multi-generational

selection strategies, which are common in some classes of evolutionary optimizations[170, 178].

A feature of special relevance for structure prediction is the representation of the members

of the ensemble for the purpose of cross-over moves, i.e. either as a genotype[119, 184] (discrete

encoding of an atom configuration) or as a phenotype[116, 185, 186] (the actual atom con-

figuration). In particular during phenotype-based optimizations, hybrid moves are commonly

introduced[116, 187], similar to the basin hoping procedure. One problem with evolutionary al-

gorithms is the limited physical realism of the moveclass which makes it difficult to estimate the

stability of the minima and can lead to the elimination of a number of potentially relevant local

minima. In this context, one should also mention the extremal optimization method[188, 166],

which is another ensemble-based exploration approach that produces a very wide spread in the

energy distribution of the local minima that can be potentially quite useful when dealing with

large energy barriers on the landscape.

Deterministic and multiple-quench optimizations The most basic deterministic global

optimization method are exhaustive searches, where the whole energy landscape (or pockets

thereof) are explored in such a way that one is guaranteed to find the global minimum. These

methods are most applicable if the energy landscape is discrete or can be easily discretized

via fast local minimizations. Branch-and-bound methods[189, 92] can be quite effective, and

similarly the lid algorithm[41, 190, 191] which is based on a complete enumeration of all states
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reachable from a starting point without crossing a sequence of prescribed energy lids. However,

the system size usually becomes a serious problem as the number of atoms/cell increases.

Combining an exhaustive, heuristic or stochastic search for promising regions on the land-

scape with deterministic local minimizations leads to the many multiple-quench approaches

found in the literature. Basically, the local minimization procedure is repeated for a very large

number of starting points that are generated either by systematically[50] or randomly scanning

the configuration space[192, 193] or by chemically inspired choices[56], e.g. via network model

generation[194, 195, 196] or the selection of structures from databases[48, 61, 197]. Similarly, one

can generate such starting points from long stochastic simulations where periodically quenches

are performed along the trajectory of the system[198, 199].

3.2.2 Identification of locally ergodic regions at elevated temperatures

The most straightforward approach applicable for finding locally ergodic regions at low and

moderate temperatures consists in finding the local minima of the energy landscape as discussed

above and checking that they are surrounded by sufficiently high energy barriers[85, 103]. At

higher temperatures, one can use long Monte Carlo or molecular dynamics simulations and

attempt to visually identify stable structures about which the system oscillates, even if the

structure does not correspond to a single, or even any, local minimum of the energy landscape[72,

200, 75]. A more systematic approach is the ergodicity search algorithm[114], where one registers

the fluctuation of indicator variables, e.g. the potential energy or the radial distribution function,

within time windows during long simulations at constant pressure and temperature. If the

average value of these variables jumps between two windows by more than the fluctuation, this

suggests the existence of a new locally ergodic region, and one or several configurations within

the time window are saved. At the next stage, swarms of short simulations starting from these

points along the trajectory in the time window are employed to verify, whether the system

is in local equilibrium in this region, and long simulations for a number of temperatures are

used to measure the probability flow from the region and thus the escape time. Unsurprisingly,

searching for locally ergodic regions in this fashion is quite expensive computationally. Thus,

this procedure will be most useful for finding locally ergodic regions that either contain no clearly

delineated local minimum and are stabilized only by entropic barriers[40], or consist of very few
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minima separated only by a small energy barrier.

Clearly, the restricted focus on individual local minima is not sufficient if one wants to

determine locally ergodic regions that encompass many local minima, which are often important

at high temperatures, without recourse to experimental data. Two such types of locally ergodic

regions correspond to phases that exhibit local or global controlled disorder[37], respectively,

resulting in a configurational entropy contribution to the free energy of the region. Controlled

disorder is often associated with locally ergodic regions containing many local minima that can

equilibrate to a certain degree on the relevant time scales, while global controlled disorder is

found in solid solutions or compounds with partially occupied atom positions. Identifying locally

ergodic regions containing many local minima requires the analysis and structural comparison

of all the local minima found during the global optimization. If a subset of these minimum

configurations can be assigned to a particular structure family, and the energies of these minima

are approximately the same[43, 201], a candidate for a partly disordered phase at elevated

temperatures has been found.

3.2.3 Analysis of the barrier structure: saddle points, transition paths and prob-

ability flow

Studying saddle points, and transition paths in general, yields information about the barriers

that surround local minima and locally ergodic regions, and thus allows to estimate the lifetimes

of the hypothetical metastable compounds. Furthermore, the knowledge of the transition path

between two locally ergodic regions representing two phases[202, 203] is also a crucial prerequisite

when studying the mechanisms of phase transitions or of chemical reactions.

In general, the methods to find saddle points are considerably more involved, computationally

more expensive and often less robust than the methods employed to determine local minima.

One popular approach to identify saddle points proceeds by first finding the minima of the

|∇E|2(≥ 0) surface and then checking, which among these points are actual saddle points of

the original energy surface[204]. Alternatives are the slowest slides procedure and other closely

related methods[205, 206, 34, 207], and eigenvector following[208, 209].

If two minima in close proximity are known, one can use elastic band methods and related

procedures[210, 211, 212, 110] to identify a locally optimal path connecting these minima. In
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general, however, both the individual phases and the transition regions between them tend

to contain many minima; thus, alternative methods are employed, in particular the so-called

transition path sampling[213, 214, 215, 216], where one performs essentially a Monte Carlo walk

on the space of transition paths, and related procedures[217, 212, 218, 219, 220]. Based on

information gained during such a walk, one can compute the escape times via transition state

theory[221, 222, 223, 224].

The metadynamics scheme[153] mentioned earlier and related methods[225, 226] provide

another alternative, where only a starting minimum/phase is provided, and one expects the

system to find the new phase ’on its own’, by slowly building up a penalty type potential inside

the starting region which makes this region energetically unfavorable and forces the walker to

leave the region. This taboo-like search works in principle at any temperature, and one can

measure the local free energy in the process, too[227, 228], but the metadynamics requires a

good choice of an order parameter, which allows to distinguish between the original phase and

the new one(s), which is a non-trivial issue. The same holds true for alternative methods such as

some type of coarse molecular dynamics[229, 230, 231, 232, 233, 234] or various steered dynamics

procedures[235, 236, 237, 238, 239, 240, 241].

An important measure of the stability of locally ergodic regions is the size of the probability

flows among the locally ergodic regions on the landscape. For simple known transition paths,

standard transition state theory yields the likelihood of moving between the various minima

from the knowledge of the minima, and of the energy and width of the saddles[21]. However, in

general, one does not deal with simple two-minima-plus-saddle systems, and one needs to use

an alternative such as the threshold algorithm mentioned above, where the probability flow is

measured not as function of temperature but instead as function of energy slice for each energy

lid[85, 103]. No target is given, the density of states is sampled, and all minima that have been

identified serve as starting points for new threshold runs. By performing many quenches along

the way, one can identify all local minima on the landscape, gain estimates on the energetic and

entropic barriers and determine the size of the transition regions by identifying the so-called

characteristic regions[83] as function of energy slice.
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3.3 Approximate description of the energy landscape and cost functions

Since a typical set of global optimization runs for the determination of the local minima involves

millions or even billions of energy evaluations, a modular multi-scale approach has become

standard[7, 45, 242, 175, 36]. A global search on an empirical or simplified ab initio energy or

cost function landscape generates structure candidates, which are subsequently locally optimized

on the full quantum mechanical level using e.g. the Hartree-Fock approximation or density func-

tional theory[243, 244, 245]. Here, different levels of approximation and subsequent refinements

for the description of the energy landscape are applied, both with regard to the choice of energy

function (e.g. ab initio energies[176, 246, 247, 248], empirical atomic interaction potentials, or

atom-group based cost functions[47, 46]), and concerning the quantities that describe the atom

configuration and are varied during the global optimization (such as single atoms, groups of

atoms[46], or nodes in bond networks[65]).

In addition to the level of approximation in the energy calculations, one needs to be aware

that, in principle, not only the atoms’ positions and their electronic states, but also the param-

eters and content of the simulation cell can be varied as part of the global search. Thus, the

general cost function is actually not just the energy but the thermodynamic potential of the

grand isobaric ensemble at pressure p [7]

C = E + pV −
∑

i=1,Nspec

µiNi, (8)

where
∑

i=1,Nspec
Ni = N , and Nspec is the number of different types of atoms involved. One

potential difficulty one encounters is choosing an appropriate value for the chemical potential

of species i; typically, one uses the standard enthalpy of formation / atom of the element (as

function of temperature). However, experience has shown that it often tends to be more efficient

to keep the composition and the number of atoms fixed during a single global optimization run,

and to repeat the runs for different compositions and numbers of atoms.

3.3.1 Ab initio energy landscapes

While already in the 1990s the global exploration of the ab initio energy landscape of few-atom

clusters had become feasible[249, 250, 251], computers are only now reaching the speed and

ubiquity that allow the global optimization on the ab initio level for extended solids as well.
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Clearly, there are several reasons why it is desirable to employ ab initio energy calculations

already during the global exploration stage[247, 248, 252]: Ab initio energies are expected to

be more accurate as they mainly depend on the functional but are otherwise free of empirical

parameters. In addition, they are more generally applicable than empirical energy functions,

e.g. empirical potentials work well for ionic systems, but less so for covalent or metallic ones. In

particular, ab initio energies are required if the type of bonds that will be formed is not known

in advance. In this case, choosing a certain model potential to describe the interaction would

introduce a dangerous bias in the calculations.

The major disadvantage of using ab initio energy functions is the computational cost, which

can easily slow the calculations by a factor of 103 to 105 compared to calculations based on

empirical potentials[247, 248, 252]. One should recall that all calculations have to be performed

in space group P1, because all possible atom arrangements must be accessible during the global

exploration, and thus no restrictions on the symmetry of the configurations are allowed.

One way to achieve the crucial speed-up is to use slightly less accurate but much faster ways

to compute the ab initio energies, where once again, as with empirical potentials, one exploits

the fact that it is often sufficient to know the structure candidates only approximately at the

end of the global optimization stage. Only the final local optimizations that yield the correct

ranking and the accurate cell parameters and atom positions of the minimum structures need to

be performed with good parameters. Possible ways to speed up the ab initio energy calculations

are to reduce the number of matrix elements or integrals that must be computed, to use a

smaller basis and fewer ~k points, or to reduce the number of points of the density functional

grid, depending on what type of ab initio calculation one performs[247].

Here one should note that the necessity to converge the ab initio calculations for random atom

arrangements poses an additional complication during global explorations of energy landscapes

of chemical systems: the Hartree-Fock or Kohn-Sham equations are often difficult to converge

for configurations which are far away from realistic solid state structures. The main reason is

that the initial configurations resemble a gas, and thus the band structure is similar to that of

localized electrons, with nearly no dispersion, and with a much smaller gap than the one of the

final structure. This influences the choice of the ab initio method one would use for the global

search: it appears that Hartree-Fock calculations facilitate convergence at even the most unusual
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geometries, due to the relatively large band gaps typically produced by this method, whereas

calculations with the local density approximation may exhibit severe convergence problems[247,

248, 252]. Therefore, especially for non-metallic systems, the Hartree-Fock based energy function

is often the best choice. For more details, we refer to the literature[247, 248, 252, 37]

3.3.2 Empirical potential landscapes

While the use of ab initio energy landscapes during the global exploration is clearly preferable, in

principle, it is often not feasible to do so, especially if a system with many atoms in the simulation

cell needs to be studied. Thus, one will take the risk of missing some potentially important struc-

ture candidates as long as one has a good chance of finding most of the relevant modifications.

Quite generally, there exist a large number of empirical potentials of ever increasing complexity

that have been employed to model solid compounds, in particular ionic ones. These range from

two-body potentials like the Born-Mayer-potential[253], the Buckingham-potential[254], simple

robust Coulomb-plus-Lennard-Jones potentials[255] or a refined version thereof with environ-

ment dependent radii[243, 256], over dipole[257] and quadrupole[258] shell models, to various

kinds of breathing potentials[259, 260, 261, 262, 263, 264, 265, 266] of increasing levels of refine-

ment.

While the more refined empirical potentials typically allow the computation of at least some

properties of a given material with relatively high accuracy, it is not clear, whether their use

during the global optimization is worth the cost as long as one is only interested in identify-

ing possible structure candidates in a chemical system. For one, such potentials tend to be

much more complicated and computationally expensive than the simple potentials commonly

employed. Secondly, the number of parameters involved typically increases with the complexity

of the potential, which makes it very difficult to construct such a potential without detailed a

priori experimental knowledge of the system. However, this contradicts the premise of the whole

enterprise of structure prediction, i.e., to identify the stable and metastable modifications of a

chemical system without any prior information except the identity of the participating atoms.

Of course, one can attempt to fit the parameters of the empirical potential to ab initio calcu-

lations in the system, but this typically involves a large amount of effort. Finally, it has often

been observed that many of these potentials are not globally applicable. They strongly favor the
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structure(s) to which they have been fitted, and even successfully reproduce their properties.

But at the same time, these potentials often weaken or even eliminate the minima representing

important alternative modifications on the landscape of the chemical system.

In contrast, the parameters of the simple two-body potentials are often transferable and can

be derived from average ionic properties such as the radius and the hardness of the ion, but they

lack the precision of the refined potentials, of course. Thus, in order to overcome the limitations

of the simple potentials as much as possible while still retaining their advantages, one should

repeat the global explorations for slightly varied values of the parameters characterizing the

potential.[255, 7] The experience over the past two decades has shown, that the most important

structure candidates usually are quite robust, i.e., they are found as local minima on many of

the slightly modified energy landscapes. Furthermore, this also alleviates the concern that for

many elements the parameters that enter the potential such as the effective ionic radius of an

atom in a compound vary e.g. as function of the number of atoms in the first coordination sphere

around the atom.

One interesting alternative approach that has the potential for generating robust approximate

energy functions has recently been developed[267, 268], where one employs a neural network to

optimize the implicit parameters in a generic empirical neural-network based energy function.

For the training of the network, a test set of ab initio energies of (randomly chosen) atom

configurations is used. While being a very promising approach, it still requires a very substantial

computational effort during the learning phase of the neural network, and the transferability of

the parameters to related but different chemical systems is rather limited.

3.3.3 Cost function landscapes

A second alternative to ab initio energy functions are so-called (non-physical) cost functions

that contain, or wholly consist of, terms that reflect special chemical knowledge about the

system under investigation. These additional terms incorporate empirical features, such as

the validity of the bond-valence rules[269], or the existence of geometric and/or topological

requirements of the structural elements in the chemical system. Similarly, already available

structural information can be included into the cost function, e.g. by adding a penalty term

to the energy, which measures the deviation of the proposed atom configuration from the data
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available from experiment. Depending on the degree to which one ”trusts” the experiment or

the energy calculation, one can weigh the contributions of the energy E and the penalty terms

P .

C = λE + (1− λ)P, (9)

where 0 ≤ λ ≤ 1. Alternatively, one can directly implement the desired constraints by restricting

the configuration space the walker is allowed to explore, by e.g. fixing the shape and volume of

the simulations cell or introducing rigid (or flexible) building units that consist of several atoms

that are connected according to a predefined topology, such as primary and secondary building

units [46].

3.4 Structure analysis tools: SFND, RGS, CMPZ

An important step during a structure prediction study for extended solids is the analysis of the

results of the global optimization runs. Since the searches are performed for variable simulation

cells with space group P1, all the local minimum configurations will be recorded without any

symmetry information. Furthermore, due to numerical aspects of the algorithms, all these min-

ima show slight minute deviations from the more symmetric atom arrangements that correspond

to the exact location of the minimum. Finally, the structures obtained are usually not given

with the unit cells according to crystallographic convention. To address this issue, two algo-

rithms, SFND [270] and RGS [271] have been developed, which allow the determination of the

symmetries a given periodic structure exhibits within a prescribed set of tolerances, to idealize

the cell parameters and atom positions to be in agreement with the symmetries detected, and

finally to deduce the correct space group and transform the structure to standard setting.

A second issue is the need to eliminate duplicates among the many local minima produced

by the optimization, to compare the structures found with already known structure types listed

in the ICSD, and finally to identify structure families by comparing e.g. the cation-anion su-

perstructures in multi-cation/anion compounds. To deal with these tasks, the CMPZ algorithm

[272] has been developed, which allows the comparison of two arbitrary periodic structures, by

generating a mapping of the two infinite periodic atom arrangements onto one another. As crite-

rion for similarity, one measures the deviations between the cell parameters of the appropriately

transformed cells together with the deviations of the atom positions within these cells. One
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should note that this is a geometric criterion for similarity, not a symmetry-based or topological

one. All three algorithms mentioned have been implemented in the structure analysis program

KPLOT [273] available at[274].

4 Moving to thermodynamic space: densities of states, free en-

thalpy, phase diagrams from first principles

When moving from the atomistic energy landscape to thermodynamic space, the next step after

the identification of possible (meta)stable phases is the computation of the local free energies

for the (meta)stable compounds that are kinetically stable for a prescribed set of thermody-

namic boundary conditions (pressure p, temperature T , phase composition xi, . . .), for the given

observation time tobs. Usually, this requires the determination of the density of states, using

one of the methods described below. From this information, one can derive an extension of

the standard equilibrium phase diagrams, which adds the observation time tobs as an additional

coordinate. In such a diagram, one marks for each of the possible phases Pi those regions in

thermodynamic space where Pi is kinetically stable on the timescale tobs. The standard equilib-

rium phase diagram, where at each point in thermodynamic space only one phase (or weighted

combination of several phases) is plotted, is then equivalent to the (tobs = ∞)-slice of the ex-

tended (p, T, xi, . . . ; tobs)-diagram[275]. Here, one should note that once the phases that can

exist have been established and their free energies have been computed, standard procedures

can be used for the depiction of the phase boundaries of each (meta)stable phase for the in-

dividual tobs-slices of the extended phase diagram. For this purpose, a number of computer

programs[276, 277, 278, 279] have been developed over the past four decades within the CAL-

PHAD effort [280, 281]. We refer to the extensive literature for more details on the various

interpolation and construction methods involved.

4.1 Measurement of local and global densities of states

The most straightforward method to measure local densities of states is to sample them via long

unbiased random walks[282, 283], and then to normalize them to e.g. the vibrational density of

states around local minima. The classical histogram methods belong to this group[284, 285]. The
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most obvious problem are the long simulation times; other issues are to separate the contributions

of many different minima. As a consequence, re-weighting methods have been developed[286,

287], where one performs the simulations e.g. for many different temperatures and re-scales the

sampled densities of states with the acceptance probabilities such that the simulation effectively

corresponds to diffusion on a ’flat’ landscape. Many different schemes have been proposed to

achieve this end: weighting of histograms on the fly, e.g. WHAM[288, 289], re-analysis of data

of constant temperature runs taken e.g. from expanded ensembles[290], parallel tempering or

multi-canonical simulations[291, 286, 292, 293, 294, 142, 295, 296, 297, 298], modification of

the landscape such that it effectively becomes flat while keeping track of the measured density

of states[299] as in metadynamics simulations, global or local transformation of the landscape

using e.g. hyperbolic functions to make the landscape look ’flat’ and re-weight the sampled DOS

afterwards[286]. Important issues are the statistics, of course, the homogeneous sampling of

different metabasins containing many local minima, and the overlap of distributions taken at

different temperatures.

Similar concerns arise when mapping the DOS measured within overlapping energy slices,

with subsequent slice-matching as one does when using e.g. the threshold algorithm[85]. The

normalization in particular is usually performed with respect to the phonon spectrum of indi-

vidual minima. Finally, for low temperatures, where most of the sampled DOS during a realistic

physical trajectory inside a locally ergodic region comes from within the harmonic regions around

the local minima and saddle points, one can use analytical methods to compute the density of

states from the phonon spectrum of the Hessian of the minimum under consideration[300]. Even

anharmonic corrections[301, 302] and magnetic contributions[303, 304, 305] can be included to

some degree. Alternatively, one can compute the phonon spectrum from simulations e.g. via the

Fourier transform of the velocity autocorrelation function[306].

4.2 Computation of free enthalpy

Thermodynamically, the free enthalpy G(p, T, xi, ~B, . . .) of a phase is given by the ground state

free energy plus the free energy contributions due to the various excitations that are present in

thermodynamic equilibrium at given temperature, pressure, magnetic field, etc. As long as the

various excitations with respect to the energy minimum can be treated as independent, the sum

25



over states is given as a product of separate partition functions. Then the free enthalpy can be

written as

G = G0 +Gvib +Gelectr +Gdefects +Gmagn + . . . , (10)

and standard formulas can be employed to evaluate each contribution separately. Once this

is no longer possible, e.g. because of high temperatures or due to a strong coupling between

vibrational and electronic or magnetic excitations, more complex methods must be employed.

Here, two different types of calculations need to be distinguished: Energy landscape based

methods, and procedures that can deal with phases encompassing so many local minima on

the energy landscape that special tools based on statistical mechanical models are necessary to

evaluate the free energy[307].

The most straightforward approach to compute the free energy of a system is via the (local)

density of states of a locally ergodic region on the energy landscape. As far as the accuracy

of such a procedure is concerned, the main issue is the quality of the density of states used

as input for the calculation. An alternative procedure is the computation of the free energy

of a system A via the difference between two free energies belonging to systems A and B,

where the free energy of system B usually serves as a reference energy that can be computed

analytically (e.g. the free energy of a system of Einstein oscillators) or is known from very detailed

computer simulations. Three slightly different approaches have been developed for this purpose,

called thermodynamic integration[308], thermodynamic perturbation[309] and computational

alchemy[310]. One feature common to all of them is that one chooses some path between the two

systems, along which one smoothly transforms one of the two systems into the other and back,

and thus derives bounds on the free energy difference between A and B. While the choice of path

and the allocation of time along the path is very important for the efficiency of the algorithm[311],

the path as such does not necessarily have to be dynamically meaningful. Similarly, one can

also directly compute the free energy along a chosen path, e.g. in order parameter space or

along a reaction coordinate, via integration over the remaining coordinates[312, 313], or via the

average force calculated along the path[314, 315, 316]. Ideally, one performs such computations

along a true simulation trajectory using umbrella sampling[317]. Finally, grand canonical[318],

semi-grand canonical[319, 320] and extended Gibbs ensemble[321] computations where atoms

are essentially moved between two copies of the system[322], one describing phase A and the
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other phase B, (in equilibrium) have become quite popular for computing phase equilibria and

differences in free energies. Nevertheless, sampling error inaccuracies are bedeviling essentially

all numerical estimates of free energies derived from dynamical simulations[323].

In contrast, computing the free energies of complex phases such as alloys or solid solutions

requires more problem-specific methodologies. Such methods have their origin in simple ideal

and regular solution models and have been continuously refined[324, 325, 326, 327, 328, 329].

Nowadays, the cluster expansion[326, 330, 331, 332, 329] and cluster variation[333, 334, 335]

methods are among the most popular approaches, together with the explicit computation of the

free energy via summing over the local free energies of a large number of atom configurations

that are supposed to constitute a representative sample of the set of alloy configurations[336].

A precondition of this approach is that the basic structure (reference lattice) of the alloy is

essentially independent of the distribution of the atoms over the structure or sublattices thereof

(except possibly for small relaxations away from the reference positions), and thus an approx-

imate energy function can be constructed. Since this function can be evaluated very quickly

even for large numbers of atoms/cell, one can now calculate free energies via statistical averages

over many thousands or millions of configurations to reasonably high accuracy within relatively

short times[337, 338].

4.3 Phase diagrams from first principles incorporating metastable phases

In principle, the determination of the locally ergodic regions, their corresponding phases and the

computation of their free energies as function of the thermodynamic parameters (T, p, xi, . . .),

provides all the information necessary for the construction of the equilibrium phase diagram of

a chemical system. For every given value of (T, p, xi, . . .), one can compare the free energies of

all phases in the system and select the phase with the lowest free energy at this point, i.e. one

constructs the convex hull of the free energy surfaces of the phases. Projecting this convex hull

onto the space of thermodynamic parameters gives the classical equilibrium phase diagram of

the system.

However, trying to incorporate all metastable modifications and phases into the traditional

thermodynamic description of a chemical system, a task following directly from the goal of

comprehensive unbiased structure prediction, requires the development of an appropriate gener-
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alization of the classical phase diagram,which should contain the traditional equilibrium phase

diagram as a limiting case. Seen from the energy landscape point of view, the natural choice

for an additional coordinate in such an extended phase diagram is the observation time. For

a given observation time tobs, we can determine all phases that are kinetically stable for pre-

scribed thermodynamic boundary conditions (p, T, . . .), i.e.: at this point in e.g. the (p, T )-plane,

n(p, T ; tobs) phases Pi are capable of existence. Since for each of these phases τesc(Pi) ≫ tobs, it

does not matter, whether F (Pi) is the lowest free energy or not: If the system had been prepared

at time t = 0 in the locally ergodic region Ri that is associated with phase Pi, then when the

observation time t = tobs has been reached, we still reside inside Ri, and thus the potential

existence of other kinetically stable phases Pj is irrelevant, even if F (Pj) < F (Pi).

Of course, for each value t
(0)
obs of the observation time, the corresponding (tobs = t

(0)
obs)-slice

through the extended phase diagram is going to look slightly different. For very short times,

tobs → 0, only the individual local minima on the energy landscape can be locally ergodic, i.e. at

each point in thermodynamic space, all the local minima on the energy landscape individually

belong on the list of kinetically stable phases. In contrast, in the opposite limit, tobs → ∞, only

the thermodynamically stable phase survives, and the (tobs = ∞)-slice of the extended phase

diagram is equivalent to the classical equilibrium phase diagram. One should note that this

strictly applies only for macroscopic systems where the thermodynamic limit, N,V → ∞ with

N/V = constant, exists. For finite-size systems such as clusters or proteins, even metastable

regions can be observed with with a finite probability for infinite observation times.

An important point is the correct interpretation of the co-existence of these many phases

at a particular point (p, T, . . .) in thermodynamic space for a given observation time tobs. In

equilibrium phase diagrams, Gibbs’s rule holds, and the existence of two phases at the same point

implies that their free energies are equal. This is typically not the case for the many metastable

phases that can co-exist on the finite timescale tobs although they usually have different free

energies. This is a major consequence of the concept of local ergodicity: Once the system is

prepared in a locally ergodic region of the landscape, then for observational timescales larger

than the equilibration time of this region but smaller than the escape time from the region, we

can treat the system with our traditional concepts of equilibrium thermodynamics restricted to

the subset of phases that can dominate for various thermodynamic boundary conditions within
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this locally ergodic region. In particular, Gibbs’s rule holds for all phases present within such

a region, and we can derive e.g. miscibility gaps or other solid-solid co-existence curves for this

subset of phases.

Finally, one notes that systems such as glasses that have not reached at least local equi-

librium after a relaxation over a time period tobs cannot be represented in the extended phase

diagram. The reason is that the extended phase diagram incorporates all phases that are both

kinetically stable and locally equilibrated on some timescale tobs, but excludes all thermody-

namic non-equilibrium states. Of course, predicting the complete extended phase diagram of

a chemical system is usually extremely expensive computationally, since all the locally ergodic

regions on the landscape for all values of the thermodynamic boundary conditions must be de-

termined. Nevertheless, the construction of this generalization of the classical phase diagram is

the crowning step of the unbiased structure prediction in a chemical system.

5 Examples

The examples presented in this section are divided into two categories: 1) examples illustrating

various general aspects of structure prediction, and 2) a short overview together with a selection

of studies drawn from the field of structure prediction, plus some examples from the closely re-

lated field of structure determination of existing compounds. However, due to the great increase

in the number of publications dealing with structure prediction and structure determination

over the past couple of years, only a limited selection can be presented.

5.1 Illustrative methodological examples

5.1.1 Modular approach: study of the alkali halides

To illustrate the general modular approach, we turn to one of the first groups of ionic systems

whose energy landscape has been investigated in detail using simulated annealing without re-

course to experimental data, the alkali halides[255, 14]. A very detailed study was performed

for NaCl[255], where a large number of local minima was found on the empirical energy land-

scape (Coulomb+Lennard-Jones potential) by global optimization using simulated annealing.

The global minimum of the landscape corresponded to the experimentally observed rock salt
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structure. The structures of most of the energetically low-lying minima could be identified with

typical AB-structure types like NiAs, PtS, CsCl, wurtzite, or sphalerite. However, one deep-

lying local minimum, denoted Na[5]Cl[5] (the so-called 5-5-structure type), exhibits a previously

unknown structure type. Here, Na+ and Cl− are coordinated by Cl− and Na+, respectively, in a

trigonally bipyramidal fashion, resulting in a topology that resembles the one of hexagonal BN

which displays a 3+2 coordination.

Threshold investigations showed that the energy barrier stabilizing this structure was only

moderately high (≈ 0.01 eV/atom), suggesting that the structure might be difficult to synthesize

with traditional solid state synthesis methods in the NaCl-system. However, several years later,

this new predicted structure type was found experimentally [339] as the aristotype of Li4SeO5,

where Li and Se occupy the Na-positions and O the Cl-positions in the Na[5]Cl[5]-structure,

respectively. By now, this structure type has also been found as a minimum on the energy

landscapes of many other AB-systems[340, 14, 110], and has furthermore been observed during

the growth of ZnO-films [341].

Analogous global optimizations have been performed since for all twenty alkali halides [14]

for a wide range of pressures, where all the energies were refined through local minimizations

of the structure candidates on ab initio level. Similar to the case of NaCl, many possible

modifications were found that included both well-known AB-structure types (rock salt, NiAs,

wurtzite, sphalerite, 5-5, CsCl, etc.), and previously unknown structures.

Finally, the ab initio energy landscape of LiF has been explored at standard pressure using

simulated annealing, where both the Hartree-Fock approximation and density functionals were

used to compute the energy [247]. The relevant minima found agreed with those determined

on the empirical potential landscape, including the rocksalt-, the wurtzite- and sphalerite-, the

NiAs-, and the 5-5-structure type. This study provided a valuable validation of the many

landscape explorations based on empirical potentials and also served as a proof-of-principle for

the feasibility of global stochastic explorations on ab initio energy surfaces.

5.1.2 Tree graph landscape representation: the landscapes of MgF2 and CaF2

An important step when studying the energy landscape of chemical systems is the construction of

a simplified representation of the landscape, typically in the form of a tree graph, which depicts
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the relative energies of the minima, together with the energetic and entropic barriers separating

them. An early example of this kind for solid compounds is the study of the empirical energy

landscapes of MgF2[103, 83] and CaF2[103, 40] (Coulomb+Lennard-Jones potential). Besides

the global minimum exhibiting the rutile or fluorite structure, respectively, in agreement with

experiment, many other minima were found showing e.g. the anatase type, the CdI2-type, a half-

occupied rocksalt structure-type, and structures built up from MgF7 and CaF7 monocapped

prisms, just to name a few. Figure 2 shows the corresponding tree graph for MgF2, where

the energies at the points where branches connect indicate the energetic barriers, while the

grey/black bars indicate the height of the entropic barriers that additionally stabilize the locally

ergodic regions.

5.1.3 Free energy tree graph representation: the landscape of SrO

An alternative to the extended phase diagram discussed above is the so-called free energy land-

scape, typically represented in the shape of a tree graph for every observation time. This repre-

sentation is particularly useful, if one deals only with ordered crystalline phases, and wants to

depict both the free energy and the barriers separating the metastable modifications as function

of temperature for a fixed composition and pressure. An example is the free energy landscape

of SrO that was constructed by combining runs with the ergodicity search algorithm and the

threshold algorithm for a global exploration of the energy landscape [114], where an empirical

Coulomb-plus-Lennard-Jones potential served as an energy function.

After a preliminary global optimization of the landscape using simulated annealing, the local

minima identified during the global optimization were used as starting points for a large number

of threshold runs at several different pressures [340]. This yielded an overview over both the

low-lying local minima on the enthalpy landscapes and the barriers separating the different mod-

ifications. Next, the ergodicity search algorithm[114] (ESA) was applied at standard pressure,

and for a large number of different temperatures, in order to identify possible high-temperature

phases. The potential energy and the radial distribution function served as indicator variables.

All the structure candidates found with ESA turned out to be associated with individual local

minima that had already been detected during the threshold run phase. Finally, the appearance

of the melt phase was observed by checking the stability of the underlying crystalline lattice
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of the rocksalt-type modification (the thermodynamically stable solid modification of SrO at

standard pressure, both according to the experiment and the calculations) during very long

MC-simulations for large simulation cells as a function of temperature.

In the fourth step, the free energies of the structure candidates found were computed in the

quasi-harmonic approximation on the empirical potential level, and also on the DFT-B3LYP

level. Combining these free energies as a function of temperature with the energy barriers

computed via the threshold algorithm resulted in the free energy landscape shown in Figure 3,

which is valid for moderately long timescales, at least for low and intermediary temperatures.

5.1.4 Multinary phase diagrams: the quasi-ternary semiconductor (Al,In,Ga)-Sb,

and similar systems

The ab initio prediction of multinary phase diagrams is nicely demonstrated at the example of

the quasi-ternary semiconductor system (Al,In,Ga)-Sb.[342] By globally exploring the empirical

energy landscape of all three quasi-binary systems ((Al,Ga)-Sb, (Al,In)-Sb and (Ga,In)-Sb) and

the full ternary system for many different compositions, followed by a structure family analysis

of the set of candidates obtained and a comparison of their energies on ab initio level, it was

found that no ordered crystalline phase should be thermodynamically stable. The thermody-

namically stable phase is a solid solution and exhibits the sphalerite structure type, in agreement

with experimental observations. Fitting the excess enthalpy as function of compositions xAlSb,

xGaSb and xInSb to a Redlich-Kister polynomial[343], and adding the configurational entropy of

an ideal solution, yields the free enthalpy G(xAlSb, xGaSb, xInSb, T ) as function of composition

and temperature. The convex hull of G determines the miscibility dome of the system, which

for (Al,Ga,In)-Sb has its maximum inside the quasi-ternary region (c.f. figure 4). So far, experi-

mental thermodynamic data are only available for the high-temperature solidus-liquidus region,

and thus a quantitative comparison with experiment has not yet been possible.

The same holds true for the quasi-ternary system (Al,Ga,In)-As[344], whose low-temperature

phase diagrams was predicted in an analogous fashion. Furthermore, for more than twenty

mixed quasi-binary alkali halides[201, 345, 346, 347, 348], the low temperature phase diagram

was determined based on simulated annealing optimizations of an empirical landscape followed

by the ranking of the crystalline modifications and the computation of miscibility gaps where
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applicable, on ab initio level. The results were in good agreement with experimental data where

available, and included the prediction of new ordered crystalline modifications in the RbX-LiX

and CsX-LiX (X = halogen) systems.

In this context we note that special attention needs to be paid to the analysis of the many

structure candidates obtained during the global searches for different compositions, since one has

to be able to distinguish between ordered crystalline phases and solid solution phases, without

experimental pre-information. The crucial issue is whether so-called structure families exist

among the minima observed for different compositions which have essentially the same energy

(for a given composition)[43, 201]. If that is the case, the union of these local minima can be

treated as a large locally ergodic region, and the free energy of this solid solution phase contains

an entropy of mixing which favors the solid solution over ordered crystalline compounds which

correspond to a single minimum basin on the energy landscape. Finally, one can add the free

energy contribution of the thermal excitations for the various phases, which become relevant at

elevated temperatures[201, 305].

5.1.5 Structure prediction in multinary systems: study of the alkali metal ortho-

carbonates M4(CO4), with M = Li, Na, K, Rb, Cs

When predicting the structure(s) of ternary or other multinary systems, one encounters the

problem that for the given composition at which one performs the global search, alternative

phases, such as appropriately weighted mixtures of stable compounds of the subsystems that

together have the same overall composition as one of the multinary compounds, can exist but

which cannot be accessed during a global optimization with a typical (small) number of atoms

per simulation cell (< 40). As a consequence, one needs to also perform global searches for all

alternative binary, ternary, etc. compounds that might be present in the system at some pressure

or temperature.

An example system, where such an extended search has been performed are the still elusive

alkali metal orthocarbonates. A promising approach to synthesize these compounds would be to

apply high hydrostatic pressures during syntheses to the phase equilibria M2O + M2(CO3) ⇀↽

M4(CO4) (M = alkali metal). But since the hypothetical orthocarbonate would compete with the

high-pressure phases of the corresponding regular carbonates plus oxides, it is necessary for the
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study to include, at least, the enthalpy surfaces with composition M4(CO4), M2O and M2(CO3)

for many different pressures, in order to establish the range of (thermodynamic) stability of the

orthocarbonate phase vs. the decomposition into the corresponding oxide and carbonate as a

function of applied pressure.

To achieve this, the enthalpy landscapes of M2O [349], M2(CO3) [245] and M4(CO4) [46, 350]

were investigated for many different pressures using simulated annealing and an empirical

Coulomb+Lennard-Jones potential. In a first round of global optimizations, individual metal-,

carbon-, and oxygen-atoms were used to describe atom configurations. Since many of the min-

imum configurations contained isolated trigonal CO3- and tetrahedral CO4-units, the latter at

high pressures, a second round of global optimizations was performed, where fixed CO3- and

CO4-units were employed together with the metal atoms. All structure candidates found were

locally minimized on ab initio level in the Hartree-Fock approximation. Next, for each pressure,

the thermodynamically stable modification was determined (together with the transition pres-

sures among the various modifications for each of the individual systems), and the enthalpy of

M4(CO4) was compared with the one of M2O + M2(CO3) as function of pressure [350]. It was

found that for all alkali metals, there should exist thermodynamically stable orthocarbonates

at sufficiently high pressures, with the most easily accessible candidates being K4(CO4) and

Rb4(CO4) where the phase equilibrium is expected to switch to the orthocarbonate from the

oxide-plus-carbonate in the range of 20 - 30 GPa.

5.2 Structure prediction and structure determination using global landscape

exploration: Overview and presentation of selected examples

5.2.1 Elemental modifications

With the exception of the noble gases, no simple empirical potentials are available for elemental

solids, which are at the same time robust and sufficiently precise to allow the identification

of all (meta)stable phases in the system. Thus besides early studies on the noble gases[351]

and their mixtures[352], predictions of elemental solids using global optimization techniques

have only been performed rather recently; earlier comparisons of E(V )-curves for a few typical

structure types such as fcc-, hcp- or bcc-arrangements of metal atoms[353] do not qualify as

structure prediction in the sense discussed in this contribution. Of particular interest have been
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predictions of high-pressure phases, often spurred by some new high-pressure experiments and

geophysical questions.

First attempts of predicting elemental carbon structures relied on the generation of periodic

graphs consisting of sp2 [194] and sp3 [195] hybridized carbon atoms, where these network con-

figurations were subsequently minimized on DFT-level. In this way, a number of metastable

networks were generated that may be of relevance in understanding amorphous carbon or nan-

otube fragments. Similarly, two-dimensional necklace-like carbon structures were obtained using

basin hopping simulated annealing with a tight-binding energy function[354]. More recently,

the multiple-quench approach using a DFT-based energy function was employed for the de-

termination of high-pressure phases of silicon, carbon, and hydrogen, where a gradient based

relaxation was employed[246]. For silicon, the four lowest-pressure modifications were correctly

obtained. Furthermore, in recent studies, the large number of possible clathrate-like structures

for elemental silicon have been explored[355]. Both a multiple-quench[246] and an evolutionary

algorithm[356] were used for silane to predict new high-pressure phases.

Similarly, an evolutionary algorithm was employed with an ab initio energy function for

sulphur[176], silicon[357], and carbon[176, 358], to predict stable and metastable phases of these

elements at ambient or at (ultra)high pressure. Furthermore, dense phases of lithium[359] and

iron at terapascal pressures[360] have been studied, and structure prediction methods have been

applied to boron[361] to achieve the structure solution of a previously unsolved high pressure

modification of boron[362].

5.2.2 Ionic compounds

In nearly all of the studies of the energy landscape of ionic compounds, empirical potentials

of some kind have been employed, since these have proven to be quite useful when modeling

the properties of such systems. All types of prediction methodologies have been applied to this

class of compounds, from simulated annealing and genetic/evolutionary algorithms to database

searches and network generation. The systems investigated span a wide range of anion-cation

combinations, preferably of main group elements.

A large body of work deals with oxides, e.g. the alkali[245] and alkaline earth oxides[340],

V2O5[363], B2O3[364], SnO2[7] and SnO[19], NiO[7], SiO2[7, 365], CaTiO3[7], SrTiO3[7], SrTi2O5[7],
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MgSiO3[176] and TiO2[366], which have been investigated to find possible phases at stan-

dard and high pressures. Similar studies were performed for a number of nitrides, such as

the alkali nitrides[8, 9, 10, 367], Cu3N[368], Si3B3N7 (via simulated annealing[7] and net-

work construction[56]) and other compositions in the Si-B-N-system[369] (via simulated an-

nealing and the threshold algorithm), tantalum nitride (using ab initio energies, together with

database information[370] or multiple quenches[371]) and lanthanum pernitride[372] (via min-

imization of structures taken from a database of AB2 compounds). Analogous work was per-

formed for the sulfides, e.g. the alkali sulfides[244, 10] and lead sulfide[110] employing an ab

initio energy landscape in the latter case, and the carbonates of the alkali metals[349], mag-

nesium and calcium[373, 176, 374]. The landscape of AlF3 has been studied via the construc-

tion of polyhedra-networks[65], and furthermore the chlorides and fluorides of magnesium and

calcium[375], SrCl2[7], and all the binary alkali halides[255, 14] have been investigated with

simulated annealing, yielding promising structure candidates. In addition, the ground state

structures of SiC and GaAs have been found in global landscape studies[357], and the empiri-

cal energy landscape of the ternary system Mg(BH4)2[376] has been explored using simulated

annealing.

In addition, a number of studies have been performed, where many different compositions

in a binary or quasi-binary system have been investigated. Systems that have been studied in

this way are e.g. the FeB-system using ab initio energies with an evolutionary algorithm[177], or

the quasi-binary Ca2Si-CaBr2[256] and MgO-MgF2[243] systems employing simulated annealing

and the threshold algorithm for an environment-dependent potential. In the latter case, the

energy barriers surrounding the minima were also determined, and the structure candidates

refined on ab initio level. Such a modular approach combining simulated annealing and the

threshold algorithm on an empirical landscape with a subsequent ab initio refinement, was also

employed for the exploration of the landscape of the mixed lanthanum halides[377], showing that

in all these systems thermodynamically stable ternary compounds should exist. Furthermore,

the quasi-binary (Li,Na)-nitrides[9] were investigated using simulated annealing, with the main

result being that the compositions Li:Na = 2 : 1 and 1 : 2 appear to be the most promising

candidates for ternary crystalline compounds in this system.

As more detailed examples, the global investigations of the landscapes of CaCO3 and of
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B2O3[364] are discussed. Using an evolutionary algorithm, the enthalpy landscape of CaCO3

at high-pressures was investigated[373] and several promising structures were found. One of

them allowed the solution of the structure of the already known first post-aragonite phase of

CaCO3 (at about 40 GPa)[378], while another one corresponded to the structure of a second

high-pressure phase[379], which was found in parallel experimental work at about 130 GPa.

This second structure contains chains of CO4 tetrahedra (c.f. figure 5), which is reasonable,

since the presence of CO4-tetrahedra at such high pressures has also been predicted for e.g.

the alkaline orthocarbonates[350]. In the CaCO3 study, particular attention was paid to main-

taining the diversity of the population of walkers, which is an important concern in the use

of genetic/evolutionary algorithms. Interestingly, a surprisingly large number of the structure

candidates found (compared to what is often produced via e.g. simulated annealing or just ran-

dom search) appears to exhibit a layer-like structure; a possible reason might be the frequent

cross-over move that merges two halves of two configurations by cutting their unit cells along

some plane and thus favors the stacking of partially optimized structure segments such as layers.

The study of B2O3[364] combines elements from database searches and network construction

to generate structure candidates for crystalline and amorphous phases. Starting point were the

known crystalline compounds (B2O3-I and B2O3-II) and several multinary borate structures

containing e.g. water H2O or a modifier oxide such as Cs2O. After removing all Cs- and H-atoms,

respectively, together with the appropriate number of oxygen atoms, the new network structures

were locally optimized using ab initio methods and potentials fitted to ab initio calculations.

In addition, new networks were generated by replacing e.g. a B3O6-unit by a BO3-unit. The

optimized structures exhibited the same local environments that are found in known crystalline

and amorphous boron oxide compounds. For some of the new hypothetical structures, the lattice

energies were lower than the one computed for B2O3-I, suggesting that some of the predicted

structures should be capable of existence at standard conditions.

5.2.3 Intermetallic solids

Depending on the amount of charge transfer and polarization effects between the different metals

involved, a successful global search for intermetallic compounds capable of existence can either be

performed using modified ionic or embedded atom potentials or has to take place on an ab initio
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energy surface. An example of the latter type is the alloy Au8Pd4. Several studies have been

performed on this system, starting with a systematic scan of the possible Au-Pd-arrangements

on an underlying fcc-lattice where the energy was computed using a cluster expansion fitted to

ab initio calculations[380], followed by two evolutionary optimization studies[357, 381], where

the global search on the ab initio landscape succeeded in finding the underlying fcc lattice, and

several energetically close alloy configurations corresponding to different Au-Pd arrangements

on this lattice. In contrast, the embedded atom potentials such as the Gupta potential have so

far predominantly been used to study intermetallic clusters[28].

Partly due to the many similarities among the known intermetallic compounds, and partly

due to the fact that a great majority of these compounds can be described via random or ordered

atom arrangements on an underlying lattice (or group of sub-lattices), database methods[48] and

exhaustive sublattice-occupation[338] procedures have been employed for predicting intermetal-

lic compounds and their structures. One such example is the high-throughput analysis of eighty

binary intermetallic alloys[382] that can be built up from the 4d transition metals, plus several

systems containing Al, Au, Mg, Pt, Sc, Na, Ti, and Tc. Employing database information about

typical binary intermetallic structures, a large number of prototypes was compiled by either

taking an actual existing structure-type or generating a new one as a fcc-, hcp- or bcc based

superstructure. For each of the chemical systems, these prototype structures were locally op-

timized for eighteen different compositions. The resulting structure candidates were analyzed,

ranked by energy, and, in a final step, the convex hull as function of composition was con-

structed. The results are mostly in agreement with experimental data, but in a number of cases,

discrepancies appear, which might be due to experimental or calculational errors. Furthermore,

a substantial number of candidates for new structures are proposed that might in the future be

accessible as stable or metastable phases.

5.2.4 Covalent solids

In a good first approximation, and with plausible results, compounds developing polar covalent

bonds can often be successfully described by applying ionic, empirical potentials. This is espe-

cially true, as long as the local coordination polyhedra of the anions that surround the individual

cations are highly symmetric and the overall charge distribution in the solid is approximately
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isotropic. In such a case, covalent and ionic models in many cases produce the same set of

low-energy structure candidates, just with some different energy rankings in the higher-lying

minima and possibly different energy barriers between the minima. However, this does not

apply to systems where important local minima exhibit different kinds of anisotropic bonding

arrangements, e.g. sp2- and sp3-hybridized carbon atoms, and one then needs to perform global

optimizations on the ab initio energy landscape.

For example, in boron nitride several kinds of, mostly covalent, contributions to the to-

tal energy are present, and the global searches need to be performed on ab initio level. The

BN-system is particularly interesting as a test system, because the experimentally observed

modifications include both layered structures (hexagonal BN) and three-dimensional networks

(wurtzite- and sphalerite-type). In global optimizations employing both Hartree-Fock and den-

sity functionals[248], all experimentally observed structure types were indeed found. In addition,

several new modifications were predicted such as layered structures but with a stacking order dif-

ferent from the experimentally observed structure h-BN. The strength of the general landscape

approach has been impressively demonstrated by the discovery of two remarkable new frame-

work structures with low-energies exhibiting the β-BeO structure, and the Al-partial structure

in SrAl2, respectively.

Another recent study has employed a combination of data mining, network generation and

local optimization with ab initio energy calculations (DFT), in order to predict crystal structures

of group 14 nitrides and phosphides[383]. An important step was the generation of new candi-

dates by judiciously substituting atoms of different types in known basic networks, resulting in

a multitude of many interesting structures. This procedure is somewhat similar to one of the

approaches taken to find crystalline candidates in the Si3B3N7-system[56].

5.2.5 Compounds exhibiting two or more types of bonding

When trying to deal with systems where groups of atoms form complex ions that are usually

kept together via covalent bonds, two options are available: One can introduce rigid (or flexible)

building units with a pre-defined charge distribution (based on experiment or ab initio calcula-

tions) together with individual atoms, or perform the whole search on an ab initio landscape,

where these complex ions are expected to form as part of the optimization process.
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As an example for the use of rigid building units serves the system KNO2[19], where a NO−

2

building unit was employed during simulated annealing runs, with geometrical data taken from

compounds listed in the ICSD. The charge distribution of the building unit was varied from

q(N) = +3 and q(O) = −2 to q(N) = −1 and q(O) = 0. It was found that the most prominent

structure candidates exhibit a distorted rock salt structure, if one considers only the centers of

mass of the NO2 groups and the potassium-atoms. All these minima taken together constitute

a structure family, which at elevated temperatures forms the basis of a large locally ergodic

region that corresponds to a high-temperature phase of the system. Such an ”average” rock salt

structure is also observed experimentally at room temperature for KNO2, where one assumes

either a positional or rotational disorder of the NO2-groups to be present [384, 385].

Using the prescribed path algorithm to study the activation barriers of the rotation of the

NO2-units around various axes of the unit, one finds that two barriers of about 10 K and

about 100 K, respectively, appear to dominate the dynamics [43, 386]. This suggests that at

least one intermediary structure with limited rotational freedom of the NO2-units should exist

between the ordered global minimum and the freely rotating high-temperature structure. In the

experiment, both a low-temperature structure (in space group P21/c) corresponding to one of

the local minima found on the energy landscape, and a structure with the NO2-units rotating

along the three-fold axis of the crystal (space group R3m) at intermediate temperatures have

been found, while the barrier analysis suggests that there might exist a second, not yet observed,

intermediary phase where the NO2-units rotate along a twofold axis of the structure.

The alternative approach of directly searching on the ab initio energy landscape was em-

ployed for the mixed covalent-ionic system CaC2[387], with simulated annealing as the global

optimization method. In all of the low-energy structures found, the carbon atoms had paired

up in C2−
2 -units. At standard pressure, the C2-units were located in the centers of approximate

Ca-octahedra, which were edge-connected analogous to the arrangement of the Cl-octahedra

around the Na atoms in the rock salt structure type. Many very similar structure candidates

differing in the orientation of the C2-units inside the distorted octahedra were observed. They

could be assigned to one large structure family also containing nearly all known experimental

modifications, which suggests that actually many more modifications might be accessible to ex-

periment. In addition, a representative of a family of high-pressure modifications analogous to
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the CsCl-type of structure was found (the C2-units were located in the centers of distorted Ca8

cubes), which should be capable of existence at high pressures.

5.2.6 Molecular crystals

General aspects An important class of crystalline compounds for which building units play

a central role in predicting their structures are the molecular crystals[388, 389, 390, 391, 392,

393, 394]. In these crystals, the molecules can essentially always be treated as indestructible

units; one often even fixes the conformation of the molecules during the global search.

There are a number of critical issues that workers in this area have to contend with: 1) The

number of local minima that have very similar energies is overwhelmingly large, and thus it

is not easy to select the ”relevant” structure candidates from among them. 2) Related to this

problem is the difficulty to properly compute the total energy of the structures. One typically

uses simple empirical potentials, to describe the inter-molecular interactions during the global

optimization stage. But since high-quality ab-initio calculations of crystals containing both

inter- and intra-molecular interactions are still rather challenging, one usually employs refined

empirical potentials also for the refinement optimizations. Such potentials are either fitted to

experiment or to results from ab-initio calculations on individual molecules. 3) In principle, the

molecules are flexible and not rigid, and treating them as inflexible during the global search can

easily lead to important candidates being overlooked. 4) Due to the similarity in the ground state

energies of many structure candidates, the effect of the thermodynamic conditions (pressure,

temperature) at which the crystal is synthesized can lead to a change in the ranking according

to the free energies. 5) Finally, it is quite likely that with the system being able to ”choose”

from among many structures with nearly the same energies, the kinetic aspects of the synthesis

process will end up controlling the structure of the molecular crystal found in the laboratory;

this is especially likely, since the likelihood of formation of critical nuclei of the various phases

is not necessarily correlated with the thermodynamic stability of the corresponding macroscopic

crystal.

Seen from the perspective of extended solids, it comes as a surprise that a small set of

space groups (18) suffices to describe over 90 % of all molecular crystals found so far[395].

Furthermore, over 90 % of these crystals contain only one molecule in the asymmetric unit[396].
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This statistical observation is often exploited during the theoretical structure determination

and/or prediction of a molecular crystal by restricting the allowed structure candidates to those

which exhibit one of these space groups and contain only one or two molecules in the asymmetric

unit[397]. As a consequence, in most studies, the random walk based global minimizations tend

to be combined with massive exhaustive searches, and the choice of simulated annealing, genetic

algorithms and other stochastic walker based algorithms for the global search has not been very

critical to the success of the prediction. In spite of the large body of work in this sub-field

of structure prediction, only two examples are presented in some detail to illustrate the issues

facing the investigator; for further cases, we refer to one of the many useful review articles that

have appeared in recent years[390, 391, 19, 398, 52, 30, 53], and to the results of the relatively

recent third blind test[393].

Examples The so-called conformation-family Monte Carlo algorithm was used to predict the

crystal structure of nine small organic molecules such as benzene, pyrimidine, dimethoxymethane

or formamidoxime, using several empirical potentials during the global search, and several refined

potentials during the local optimizations[136]. Both the location, orientation, and conformation

of the molecule, and the shape and size of the unit cell were modified during the global search. No

symmetry constraints were applied. For the rigid molecules, their shape was taken from crystal

structures where these molecules were present, if such structures were available. In the four

studies involving rigid molecules, the energy of the lowest minimum was lower than the energy

of the experimental structure, indicating that the global optimization technique was working

quite well although the energy functions employed were not yet accurate enough. In nearly all

cases, the experimental structure was found as a local minimum, but often not as the global

minimum. When searching for crystal structures for the five flexible molecules, the success rate

was not so high: in most instances, the experimental structure was not found during the global

search, and the energy of the lowest minimum found was higher than the one belonging to the

experimental structure in several cases.

It is interesting to note that in the majority of cases, the global search found local minima

whose energies were lower than those of the experimentally observed crystal structures; some-

times the experimental modifications were not even among the top ten minima by energy. This
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appears to be a general problem for molecular crystal structure prediction, in contrast to the

prediction of extended crystalline solids, where the experimental structure is usually among the

four or five lowest minima in energy, and often corresponds to the global minimum on ab initio

level, at least for simple binary and ternary systems.

The general strategy pursued in the investigation of the energy landscape of phenobarbital[399],

a medium-sized molecule with two flexible torsion angles, provides another good example of the

currently popular approach to structure prediction of molecular crystals: In a first step, the

molecule is analyzed on refined potential and/or ab initio (here: DFT) level, and possible con-

formations of the molecule that are expected to be the most relevant ones are determined.

Then, a divide-and-conquer approach is used: Global optimizations using simulated annealing

are performed for several of the space groups most common in molecular crystals, with very few

molecules in the asymmetric unit, and the runs are repeated for each of the different molecular

conformations the molecule can exhibit. During a given run, the conformation is kept fixed, but

the position and orientation of the molecule in the cell, and the cell parameters are allowed to

vary. The minima found are locally optimized using refined potentials, where both the positions

and the conformations of the molecules are allowed to change.

Similar to the experience in the preceding study, the experimentally observed structure ”III”

ranked only 15th by energy among the local minima found, indicating that even the highly refined

potentials fitted to ab initio data or combinations of ab initio and potential energies were not

yet sufficiently accurate. Neither of the other two confirmed experimental structures ”I” and

”II” was found during the global optimization, and their energies proved to be considerably

lower than the energies of the lowest minima found during the global search. It is encouraging,

however, that the search produced many energetically competitive structures, which can serve

as possible candidates for a fourth known modification of phenobarbital whose structure has

not yet been determined. Nevertheless, even this rather extensive careful study (over 620,000

crystal structures were locally minimized) encountered serious problems when dealing with a

flexible molecule with non-negligible hydrogen bonding.
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5.2.7 Zeolites

An important class of extended solid compounds for which structures have been predicted are

the zeolites and zeolite-analogues [62, 400, 401, 47, 46, 402, 52, 53, 403]. However, when us-

ing unrestricted global optimization techniques such as simulated annealing, zeolite framework

prediction encounters serious problems. The reason is that one cannot expect the simulated

system to produce the zeolite-framework ”on its own” within a reasonable time when starting

from individual atoms, because of the competition from the high-density phases. On the other

hand, structure determination of zeolites with restricted energy landscapes has already been

successfully performed[404]. Addressing this issue has led to the development of the AASBU-

procedure[47], and, alternatively, the use of restrictions on the overall cell volume of the allowed

configurations.

The ”automated assembly of secondary building blocks” (AASBU) proceeds by taking struc-

tural elements like coordination polyhedra and joining them at their corners, edges and faces, in

order to generate new structures. As starting configurations, a random arrangement of a fixed

number of rigid SBUs is chosen. Periodic boundary conditions are employed, and commonly a

space group is prescribed. Simulated annealing is used for the global optimization, where the

SBUs are allowed to rotate. Furthermore, the cell parameters can be changed, and the distances

among the SBUs adjusted.

In order to generate zeolite-like structures, ML4-tetrahedra were picked as SBUs in the first

study[47], in agreement with experimental data, where the interactions were chosen to favor

corner-sharing networks. One or two SBU per asymmetric unit, and a selected set of space

groups were employed. The authors found the expected structure types, e.g. the GME-, FAU-

, RHO-, and LTL-frameworks (for the notation of zeolite classifications, c.f. the database of

the international zeolite association[405]). For LTL-like frameworks, two new candidate struc-

tures were found, and an energy minimization with an empirical potential showed that their

lattice energies were only slightly higher than that of LTL itself. These results and subsequent

successes[52] are quite encouraging. An unknown quantity is the effect of fixing the space group

during the optimization - it is not clear, whether the above frameworks could be generated in

P1, too.

A related way to generate zeolite-like frameworks is their construction from bubble clusters[70,
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406, 407]. A starting point is the investigation of the global landscape of clusters of various sizes

for a given chemical system. The most stable compact and bubble clusters serve as building

blocks analogous to the SBUs to construct either densely packed structures or porous frame-

works, respectively. For example, Woodley et al.[406] employed an evolutionary algorithm to

identify promising ZnO clusters such as a sodalite-cage analogue which is the basic SBU e.g. for

the LTA or the FAU zeolite, and subsequently constructed a variety of such networks according

to the usual connection rules for zeolite (see figure 6). Besides generating many candidates

for single-SBU based frameworks and testing their viability, the authors investigated possible

frameworks consisting of two different SBUs, and frameworks where the cages are not merged

but connected by linkers such as a ZnO-atom pair, leading to structures analogous to those

known from mesoporous compounds[408].

Another approach to zeolite prediction consists in varying the positions of individual atoms

and the cell parameters while ensuring that the overall density of the configuration remains

within a given interval during the simulated annealing[43]. After local optimization (quench) on

empirical potential level, the resulting structures (for a generic SiO2-zeolite) were quite reason-

able, but still exhibited many defects such as under-coordination or dangling bonds, underlining

the large degree of freedom the system has in forming low-energy porous structures.

Finally, a second alternative method consists in introducing stationary or mobile exclusion

zones together with individual atoms or larger building units. Such work has been mostly

performed with genetic algorithms[400, 409, 410, 411], although simulated annealing has also

been employed, e.g. for the study of possible zeolite-type structures in the SiO2-analogue BeF2

using spherical mobile zones of varying diameter[412]. When using such mobile exclusion zones,

they tend to cluster during the global exploration stage resulting in structures that contain

isolated columnar pores or consist of alternating sheets of essentially bulk material and layers

of exclusion zones, because for fixed large cell volume such isolated slabs of bulk material are

energetically competitive with three-dimensional porous structures, especially for very large

numbers of atoms / simulation cell.

In a detailed study[411], the generation of zeolitic SiO2-networks via hybrid genetic and

evolutionary algorithms with and without the use of exclusion zones was investigated, for fixed

overall density and various fixed shapes of the simulation cells. An ionic empirical energy func-
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tion was employed, where the exclusion zones were represented by hard boundaries in order to

accelerate the cost function evaluation. For the cases studied, the hybrid evolutionary algorithm

was to be preferred to the hybrid genetic algorithm with about twice the success rate of finding

one of the expected zeolites; in particular, it was able to generate small-pore frameworks such

as JBW or BIK even without needing exclusion zones. However, for lower-density frameworks

with larger pores, exclusion zones were always necessary for finding the zeolite frameworks such

as SOD and CHA on the cost function landscape.

5.2.8 Selected examples of structure determination

Clearly, the more restrictions are enforced during the global search, the less one should call the

investigation an unbiased structure prediction. Instead, one should divide the examples one

finds in the literature under the heading of ”structure prediction” into three different classes:

On the one extreme is the unrestricted structure prediction, where only the stoichiometry but

neither the unit cell nor the number of formula units is known, while on the other extreme is

the structure determination, where structural information, typically a unit cell and its content,

often together with a powder diffractogram, is known from experiment. Between these two

extremes lies the case of restricted structure prediction, e.g. the prediction of structures in

systems where certain structural elements or local environments of atoms are pre-defined or

assumed at the outset based on chemical pre-knowledge, such as primary and secondary building

units [46], or where the atoms are assumed to reside on prescribed sublattices usually known

from experiment[413, 320, 414, 337, 415, 416, 417, 418, 419, 420].

Such structure determination from limited experimental information is rapidly becoming

a highly valuable tool in the arsenal of applied crystallography and solid state chemistry. A

number of methods have been developed that use global optimization techniques to generate

structure candidates for newly synthesized compounds, which can serve as starting points of

standard structure refinement techniques. The most common approaches are probably the

so-called Reverse-Monte-Carlo method where the cost function equals the difference between

measured and computed diffractogram[421, 422, 423, 424], and the use of experimental cell

information to restrict the configuration space that the walker can explore while still employing

a simple potential or cost function for computing the energy[269, 366, 425, 426, 118]. As global
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optimization methods, both simulated annealing and genetic algorithms have been employed for

systems such as NbF4[269] and Li3RuO4[174], respectively.

Incorporating the experimental information directly into the energy landscape via penalty-

type terms leads to a Pareto-optimization approach, where the cost function modifies the energy

landscape through an explicit incorporation of experimental data by adding the difference RB

(sometimes denoted the R-value) between the measured Bragg intensities and the ones calcu-

lated for the current atomic configuration, to the potential energy[427]. Here, the structure is

optimized both with respect to the energy and the diffractogram,

E = λEpot + (1− λ)RB , (0 ≤ λ ≤ 1). (11)

Besides prescribing the cell parameters, one can include various additional constraints, e.g. keep

the positions of some of the atoms fixed or enforce certain symmetry requirements. In analogy

to the restricted structure prediction, it is also possible to employ rigid or flexible building units,

in particular if the existence of complex ions and molecules in the compound of interest has been

established.

This approach has been tested successfully for a large number of ionic, quasi-ionic and metal-

lic systems [427, 428, 429], where simulated annealing [427, 428] and genetic algorithms [429]

were used as the global optimization tool. Typically, simple two-body potentials with Coulomb-

and Lennard-Jones-terms served as energy functions; such simple potentials were sufficient be-

cause the combination of experimental input and theoretical energy function delivered a high

synergy by eliminating many unrealistic local minima on the energy landscape. One up-to-date

implementation using simulated annealing, the program ENDEAVOUR [430], has already been

very successful in ”real-life” applications, generating convincing structure candidates for such

different systems as K2CN2 [431], sulphur [432], Na3PSO3 [433], Ag2NiO2 [434], Ag2PdO2 [435],

GaAsO4 [436], ammonium metatungstate [437], the zeolite-like structure Na1−xGe3+z [438],

Tl2CS3 [439], and BiB3O6 [440].

6 Feasibility and experimental verification

While there exist by now a large number of predicted structures in many types of chemical

system, the instances of a successful synthesis after an unbiased structure prediction had taken
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place are quite rare. One of the reasons is that for many of the elementary, binary and ternary

compounds, i.e. precisely the kind of systems where the theorist stands a good chance of sys-

tematically exploring the energy landscape without guidance from experiment, the experimental

chemist has usually already attempted to synthesize potential compounds, either successfully

(and thus no prediction of the thermodynamically stable phase is possible any more) or unsuc-

cessfully (which usually implies that the experiment is probably very challenging and requires

a serious effort on the side of the experimentalist). Thus predictions can often only hope to be

validated by either the synthesis of a new metastable modification or by the predicted structure

being in a range of thermodynamic conditions which are unusual and/or difficult to reach with

standard synthesis methods. The latter case especially refers to the high-pressure region, but

also thermodynamically stable phases at very low temperatures that are difficult to reach by

e.g. quenching from the melt in quasi-binary or -ternary systems fall into this category.

Nevertheless, there have been a number of noteworthy successes in recent years described

below. This is partly due to the development of new synthesis techniques such as the low-

temperature atom beam deposition method (LT-ABD)[441]. In this technique, atoms are de-

posited atomically dispersed on a very cold substrate (at liquid nitrogen or liquid helium tem-

peratures) forming an amorphous deposit that is subsequently slowly heated, resulting in the

crystallization of (in particular) low-density modification at very low temperatures. The other

recent development favoring successful predictions in the future is the more frequent use of

high-pressure methods in synthetic chemistry[442, 443, 444].

6.1 Prediction and synthesis of sodium nitride Na3N

Among the most impressive results of a successful synthesis of a predicted compound is the

synthesis of the elusive sodium nitride Na3N in an energetically high-lying structure, the ReO3-

type using the LT-ABD-method[11], several years after a large number of metastable phases had

been predicted to exist in this deceptively simple chemical system. One should note that the

inability to synthesize any compound of this composition had for many decades been hailed as a

blatant violation of the homologue rule, since Li3N can be synthesized directly from the elements

at ambient conditions [445]. In several studies [8, 9, 10], the enthalpy landscapes of all alkali

nitrides M3N (M = Li, Na, K, Rb, Cs) had been explored with simulated annealing and the
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threshold algorithm for a wide range of pressures. This resulted in a large number of structure

candidates, including e.g. the Li3N-, Li3P-, Li3Bi-, AuCu3-, Al3Ti-, ReO3-, and UO3-structure

types, plus many previously unknown structures. Figure 7 shows a part of the tree graph for

the empirical-energy landscape of Na3N containing some of the most important local minima.

Ab initio calculations using the Hartree-Fock approximation suggested that for Na3N the most

likely candidate would be the Li3P-type, followed by the Li3N- and the ReO3-type, with the

Li3Bi-type expected at high pressures.

Even more impressively, almost the full set of the most stable predicted polymorphs of Na3N

(in addition to the ReO3-type also the Li3N-, the Li3P-, and the Li3Bi-type) have recently

been realized in the correct sequence of appearance as function of pressure, using high-pressure

experiments[12, 13]. One should note that in contrast to the usual situation prevailing when

predictions of high-pressure phases are attempted, not even the standard pressure modification

of Na3N existed at the time when the predictions were made.

6.2 Prediction and synthesis of metastable lithium halides LiX (X = I, Br,

Cl)

Another beautiful success in synthesizing a new modification after the prediction had occurred,

was the synthesis of metastable modifications in the lithium halides. As mentioned earlier,

for each of the twenty alkali metal halides numerous polymorphs had been predicted [255, 14].

In the case of the lithium halides, the structure that is most competitive energetically with the

experimentally observed modification (rock salt) exhibits the low-density wurtzite type structure,

and thus appears to be the most promising candidate for a metastable modification in the lithium

halides.

Using the LT-ABD-technique, this predicted modification has subsequently been realized

for LiI[446, 447], LiBr[15] and LiCl[16]. Figure 8 shows the typical structural evolution from

the amorphous phase to the metastable wurtzite and finally to the thermodynamically stable

rocksalt structure for LiBr. It is noteworthy, how well developed the powder diffractograms are

in spite of the extremely low crystallization temperatures. Furthermore, this result underlines

the fact that in many if not all simple supposedly well-known compounds additional, as yet

unknown, metastable modifications exist that are accessible to experimental realization.
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6.3 Prediction and validation of high-pressure alkali metal sulfides

As a final example, we consider the alkali metal sulfides, a case of successful predictions of new

high-pressure modifications for a system where the standard pressure modification had been

known and studied for a long time before the predictions and the high-pressure experiments

were performed. At the beginning of the past decade, parallel work took place in predicting

the possible high-pressure phases of Li2S[10], Na2S[10], K2S[244], Rb2S[244] and Cs2S[244], and

performing the corresponding high-pressure experiments on Li2S[448], Na2S[449], K2S[450].

The high-pressure modifications found in the experiment agreed with those determined from

the global optimization runs, serving as a satisfying validation of the suitability of global explo-

ration techniques for structure predictions of high-pressure phases. However, only recently has

the experimental work continued[451], confirming the original prediction[244] of the existence of

a Ni2In-type modification in the Rb2S-system at high pressures.

7 Outlook

7.1 Future developments of exploration algorithms

”Beware the claims of the producer!”[452] is a word of caution one should heed quite generally

when reviewing the performance of global optimization techniques, such as those employed

for the purpose of structure prediction. Between the moveclass of the random walker, the

temperature schedule, the size of the ensemble of walkers, the penalty terms included, and

the degree to which chemical information about the system and already available landscape

information is incorporated, there exists a large amount of freedom to tune and optimize any

particular algorithm under consideration, and thus the comparability of the algorithms is often

highly problematic.

Considering the general task of finding most of the relevant deep-lying local minima of a

crystalline solid, or quite generally a chemical system, using one of the methods presented,

what is the current state of the field? Of course, the size of the system that can be handled

depends on the computer power available and the amount of already available information

about the system and its landscape. Assuming that the researcher can perform several hundred

or perhaps several thousand single walker optimization runs within a reasonable amount of time,
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for binary and ternary systems, then e.g. standard ”plain vanilla” simulated annealing can deal

with about 20 - 30 atoms per simulation cell when using empirical potentials, and about 8 - 12

atoms per cell using ab initio energy calculations. More refined, but often computationally more

expensive and/or algorithmically more complex, variants such as thermal cycling, basin hopping,

multi-walker annealing or genetic/evolutionary algorithms are on average more successful than

standard simulated annealing for up to 40 - 50 atoms per cell (for empirical potentials), but

beyond this number, none of the methods appears to be truly reliable. This applies even more

strongly if one attempts to deal with large quaternary or even more diverse systems, whose

landscapes are dominated by minima corresponding to essentially amorphous configurations:

unless the energy function possesses structure directing features, e.g. the energy hypersurface

contains large funnels guiding the search towards the most important local minima or large

essentially invariant building units control the possible structures, one has to ask oneself ”Am I

feeling lucky today?” when exploring such systems.

However, the task of optimizing the optimization algorithm will surely remain high on the

priority list of future goals in structure prediction. A corollary of this is that newer and bigger

computers are not the magic bullet, since the difficulty of solving typical structure prediction

problems grows exponentially with system size. But experience shows that there often appear

to be approximately hierarchical elements in those periodic structures that contain many atoms

per primitive unit cell, and this must surely be reflected in the properties of the corresponding

energy landscape. Once it is possible to use e.g. short preliminary exploration runs to identify

such general features of the landscape of crystalline solids that can influence the progress of the

walker[7, 453, 454, 103, 121], one should be able to greatly improve the performance of various

search algorithms by e.g. employing adaptive moveclasses or reducing the size of the landscape

by introducing fixed building units or restricting the search to sublattices.

Hierarchical or divide-and-conquer approaches that work by restricting the allowed configu-

ration space during a part of the optimization stage often appear to be able to deal with large

simulation cells or molecules. However, one always runs a considerable risk of overlooking im-

portant structure candidates, for example, when basing one’s decision to employ certain building

units only on e.g. database information about related chemical systems. This is especially true

when one predominantly relies on chemical intuition instead of mathematical information about
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the shape of the energy landscape. Furthermore, finding the local minima is not everything

that one cares about when studying an energy landscape, even if one only wants to determine

structure candidates. Identifying complex locally ergodic regions that are important at elevated

temperatures, and estimating the kinetic stability of the candidates requires landscape infor-

mation beyond the local minima, such as (generalized) barriers and local densities of states.

While already several algorithms are available for this purpose, most are still rather clumsy and

inefficient. Optimizing these exploration tools will clearly be a major enterprise in the future.

Closely connected to this issue is the fundamental question of the determination of ’phase

diagrams’ for systems that are not close to the thermodynamic limit, e.g. finite size systems

such as clusters[455, 456] or systems that have not yet reached global equilibrium, as one daily

encounters in solid state chemistry. One of the major issues in this context is to what extent the

traditional concept of a phase diagram that presupposes the existence of the thermodynamic

limit and global equilibrium can be extended in a systematic fashion to deal with such types of

systems. As discussed in this work, in principle, such questions can be resolved within the context

of locally ergodic regions and the proper observational time scales on which the movement of the

system on the energy landscape takes place. This leads naturally to the concept of an extended

phase diagram with the observational timescale as an additional coordinate, that encompasses

the standard equilibrium phase diagram in the limit of infinite observation time.

Alternatively, one might want to incorporate the history of the phases in the experimentally

determined phase diagram. Here, a quite interesting approach is the combination of thermo-

dynamics and kinetic modeling visualized in the well-known time-temperature-transformation

(TTT) diagrams[457, 458, 459, 460, 461], where the development of a phase is depicted as func-

tion of time and temperature. Clearly, the fact that metastable or marginally stable compounds

such as glasses are of great importance in applications makes it imperative, to address this

question in a systematic fashion.

7.2 Rational development of synthesis routes

The successful validation of the existence of the predicted compounds requires also great efforts

on the part of the experimental solid state chemist, for the second step of planning chemical

syntheses consists of rationally developing a viable path to the desired configuration, predicted

52



to be either kinetically or thermodynamically stable. This is a task of intriguing complexity,

which includes monitoring the structural and compositional evolution of the system under con-

sideration as a function of time. The reactions involved need to proceed spontaneously, and

the system thus follows a descending trajectory on the hypersurface of the free enthalpy. In

many instances, such pathways would be a spin-off of the determination of the free enthalpy

landscapes, addressed above. However, upon approaching the synthesis target many pathways

leading to different modifications compete, and the final outcome is the result of a bifurcation

in the cluster population in sub- and super-critical nuclei. This final step in the synthesis of a

specific solid is determined by the kind of nuclei that first reach critical size and start growing[5].

Therefore, special measures need to be taken to direct the system into the minimum region

corresponding to the desired configuration. To exert an influence on this decisive final step

would require at least some control of the population dynamics of transient states occurring in

the pre-organization stage during which the stable (supercritical) nuclei develop. Regrettably,

neither the theoretical treatment nor the experimental control of such a process has yet reached

a satisfactory level.

One attempt aimed at improving this situation is the development of new synthesis routes

such as the low-temperature atom beam deposition method mentioned above. Particularly note-

worthy from the synthetic point of view is the fact that the structural evolution of the random

solid reaction mixture, which is very much reminiscent of the starting configurations for the

global computational exploration of the respective energy landscape, undergoes unprecedented

all-solid state reactions at temperatures far below room-temperature, yielding well-crystallized

products [441] of metastable phases. Since a shrinkage of volume occurs when crystalline nuclei

form inside the amorphous deposit, effective negative pressures on the surfaces of these nuclei

are generated[367], and thus the first structures that evolve are the metastable, low-density ones.

Working in tandem with experiment, at least conceptually, the time also appears to have

come for theory, to address the third pillar of the rational planning of solid state synthesis: the

modeling and optimization of chemical synthesis routes. For certain types of syntheses, such

as growth of crystals from a melt, or the generation of new phases via phase transitions upon

changes in temperature and/or pressure, these tasks can be achieved by analyzing pathways

on the energy landscape of the chemical system alone[462]. In contrast, many typical syntheses
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involve additional chemical species, solvents and/or catalysts whose influence must be taken into

account during the modeling process. But even in the case of pure phase transitions, the fact

that many of these transformations are of first order, leads to technical problems in atomistic

modeling, due to the large size of the simulations that have to be able to describe nuclei of

critical sizes containing hundreds or even thousands of atoms.

Thus, it will be necessary to combine models on many time and length scales to reach an

approximately analytical description, which then can be analyzed and employed as input to

an optimal control approach aimed at achieving a specific synthesis outcome[463, 464]. First

examples of such a stepping-stone description are the modeling of the sol-gel synthesis of the

amorphous ceramic a-Si3B3N7 [76, 77], and the deposition and growth of Xe on a cold sapphire

substrate[79].

The wide-spread availability of fast computers and clusters thereof has led in recent years

to a rapid increase in the number of research groups involved both in the prediction of new

compounds and in the atomistic modeling of phase transitions and other synthesis routes, in

particular the nucleation and growth of crystals from solution [465, 462]. While the success rate

of the predictions has steadily increased with time (and available computer time), not everyone

seems to be conscious of the fact that at each given temperature and pressure there are many

possible metastable modifications capable of existence. Thus it is crucial, not only to search

for the thermodynamic minimum configuration, but also to identify the competing metastable

ones, and to estimate their kinetic stability.

However, perhaps the most fundamental change over the past two decades has been the

development of a new paradigm for materials science and solid state chemistry[5, 6, 35]: the

switch from the traditional inductive approach based on explorative synthesis followed by phe-

nomenological modeling and a posteriori interpretation and interpolation of the experimental

data to a deductive one of predicting new compounds, determining the phase diagrams where

they occur, and designing routes for their synthesis from first principles. This rational synthe-

sis planning[466, 7, 5, 35] is finally coming into its own as the success of the combination of

initial prediction of a new compound and subsequent synthesis, via newly developed synthesis

methods[11, 441], clearly demonstrates[15, 467]. This transformation of solid state chemistry

and materials science from an inductive to a deductive science is a monumental step, and while
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currently the focus is still on the development of more efficient tools to study energy surfaces

and to compute phase diagrams without experimental input, perhaps an even greater challenge

is faced by the experimentalist: the need for new and more refined synthesis techniques that

will provide physical access to the plethora of new compounds and modifications waiting on the

energy landscapes of chemical systems.
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[349] Ž. Čančarević, J. C. Schön, and M. Jansen. Z. Anorg. Allg. Chem., 632:1437–1448, 2006.
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[368] Ž. Čančarević, J. C. Schön, and M. Jansen. Z. Anorg. Allg. Chem., 631:1167–1171, 2005.

75



[369] J. C. Schön, A. Hannemann, G. Sethi, I. V. Pentin, and M. Jansen. submitted to Serb. J.

Ceram. Res., 2011.

[370] P. Kroll, T. Schröter, and M. Peters. Angew. Chem. Int. Ed., 44:4249–4254, 2005.

[371] C. Jiang, Z. Lin, and Y. Zhao. Phys. Rev. Lett., 103:185501, 2009.

[372] M. Wessel and R. Dronskowski. J. Am. Chem. Soc., 132:2421, 2009.

[373] A. R. Oganov, C. W. Glass, and S. Ono. Earth Planet. Sci. Lett., 241:95–103, 2006.

[374] A. R. Oganov, S. Ono, C. W. Glass, and A. Garcia. Earth Planet. Sci. Lett., 273:38–47,

2008.

[375] M. A. C. Wevers, J. C. Schön, and M. Jansen. J. Solid State Chem., 136:223–246, 1998.

[376] V. Ozolins, E. H. Majzoub, and C. Wolverton. Phys. Rev. Lett., 100:135501, 2008.

[377] I. V. Pentin, J. C. Schön, and M. Jansen. Z. Anorg. Allg. Chem., 636:1703–1709, 2010.

[378] S. Ono, T. Kikegawa, Y. Ohishi, and J. Tsuchiya. Am. Miner., 90:667, 2005.

[379] S. Ono, T. Kikegawa, and Y. Ohishi. Am. Miner., 92:1246, 2007.

[380] S. V. Barabash, V. Blum, S. Muller, and A. Zunger. Phys. Rev. B, 74:035108, 2006.

[381] A. R. Oganov, Y. Ma, C. W. Glass, and M. Valle. Psi-k Newsletter, 84:142–171, 2007.

[382] S. Curtarolo, D. Morgan, and G. Ceder. Calphad, 29:163, 2005.

[383] J. N. Hart, N. L. Allan, and F. Claeyssens. Phys. Chem. Chem. Phys., 12:8620, 2010.

[384] J. K. Solbakk and K. O Stromme. Acta Chem. Scand., 23:300, 1969.

[385] N. Onoda-Yamamuro, H. Honda, R. Ikeda, O. Yamamuro, T. Mtsuo, K. Oikawa,

T. Kamiyama, and F. Izumi. J. Phys. Cond. Matter, 10:3341–3351, 1998.

[386] J. C. Schön, P. Salamon, and M. Jansen. in prep., 2011.

[387] A. Kulkarni, K. Doll, J. C. Schön, and M. Jansen. J. Phys. Chem. B, 114:15573–15581,

2010.

76



[388] A. Gavezzotti. J. Amer. Chem. Soc., 113:4622–4629, 1991.

[389] J. R. Holden, Z. Du, and H. L. Ammon. J. Comp. Chem., 14:422–437, 1993.

[390] R. J. Gdanitz. In A. Gavezzotti, editor, Theoretical Aspects and Computer Modeling, pages

185–201. Wiley, New York, 1997.

[391] P. Verwer and F. J. J. Leusen. In K. B. Lipkowitz and D. B. Boyd, editors, Reviews of

Computational Chemistry, volume 12, pages 327–365. Wiley-VCH, New York, 1998.

[392] B. P. van Eijck and J. Kroon. J. Comp. Chem., 20:799–812, 1999.

[393] G. M. Day et al. Acta Cryst. B, 61:511–527, 2005.

[394] P. G. Karamertzanis and C. C. Pantelides. Mol. Phys., 105:273–291, 2007.

[395] W. H. Baur and D. Kassner. Acta Cryst. B, 48:356–369, 1992.

[396] N. Padmaja, S. Ramakumar, and M. A. Wiswamitra. Acta Cryst. A, 46:725–730, 1990.

[397] G. Filippini and A. Gavezzotti. Mol. Cryst. Liq. Cryst., 219:37–41, 1992.

[398] S. L. Price. Adv. Drug Deliv. Rev., 56:301–319, 2004.

[399] G. M. Day, W. D. S. Motherwell, and W. Jones. Phys. Chem. Chem. Phys., 9:1693–1704,

2007.

[400] S. M. Woodley, C. R. A. Catlow, P. D. Battle, and J. D. Gale. Chem. Comm., 2004:22–23,

2004.

[401] N. Engel. Acta Cryst. B, 47:849–858, 1991.

[402] M. A. Zwijnenburg, S. T. Bromley, M. D. Foster, R. G. Bell, O. Delgado-Friedrichs, J. C.

Jansen, and T. Maschmeyer. Chem. Mater., 16:3809–3820, 2004.

[403] L. M. R. Albelo, A. R. Ruiz-Salvador, D. W. Lewis, A. Gomez, P. Mialane, J. Marrot,

A. Dolbecq, A. Sampieri, and C. Mellot-Draznieks. Phys. Chem. Chem. Phys., 12:8632,

2010.

[404] M. W. Deem and J. M. Newsam. Nature, 342:260–262, 1989.

77



[405] http://www.iza-structure.org/database.

[406] S. M. Woodley, M. B. Watkins, A. A. Sokol, S. A. Shevlin, and C. R. A. Catlow. Phys.

Chem. Chem. Phys., 11:3176, 2009.

[407] M. B. Watkins, S. A. Shevlin, A. A. Sokol, B. Slater, C. R. A. Catlow, and S. M. Woodley.

Phys. Chem. Chem. Phys., 11:3186, 2009.

[408] N. W. Ockwig, O. Delgado-Friedrichs, M. O’Keefe, and O. M. Yaghi. Acc. Chem. Res.,

38:176–182, 2005.

[409] S. M. Woodley, P. D. Battle, J. D. Gale, and C. R. A. Catlow. Phys. Chem. Chem. Phys.,

6:1815–1822, 2004.

[410] S. M. Woodley. Phys. Chem. Chem. Phys., 6:1823–1829, 2004.

[411] S. M. Woodley. Phys. Chem. Chem. Phys., 9:1070–1077, 2007.

[412] J. C. Schön and M. Jansen. unpublished.

[413] M. Laradji, D. P. Landau, and B. Dünweg. Phys. Rev. B, 51:4894–4902, 1995.

[414] R. Hirschl, J. Hafner, and Y. Jeanvoine. J. Phys.: Cond. Matter, 13:3545–3572, 2001.

[415] C. Wolverton, V. Ozolins, and M. Asta. Phys. Rev. B, 69:144109, 2004.

[416] S. Curtarolo, A. N. Kolmogorov, and F. H. Cocks. Comp. Coupl. Phase Diagr. Ther-

mochem., 29:155–161, 2005.

[417] D. Fuks, S. Dorfman, S. Piskunov, and E. A. Kotomin. Phys. Rev. B, 71:014111, 2005.

[418] N. L. Allan, G. D. Barrera, M. Y. Lavrentiev, C. L. Freeman, I. T. Tordov, and J. A.

Purton. Comp. Mater. Sci., 36:42–48, 2006.

[419] J. A. Purton, N. L. Allan, M. Yu. Lavrentiev, I. T. Todorov, and C. L. Freeman. Chem.

Geol., 225:176–188, 2006.

[420] S. Bärthlein, G. L. W. Hart, A. Zunger, and S. Müller. J. Phys.: Cond. Matter, 19:032201,

2007.

78



[421] R. Kaplow, T. A. Rowe, and B. L. Averbach. Phys. Rev., 168:1068–1079, 1968.

[422] R. L. McGreevy. In C. R. A. Catlow, editor, Computer Modelling in Inorganic Crystal-

lography, pages 151–184. Acad. Press, San Diego, 1997.

[423] A. LeBail. In Proc. EPDIC-7. preprint, 2000.

[424] A. Mellergard and R. L. McGreevy. Acta Cryst. A, 55:783–789, 1999.

[425] C. R. A. Catlow, R. G. Bell, and J. D. Gale. J. Mater. Chem., 4:781–792, 1994.

[426] D. K. Belashchenko. Inorg. Mater. (Engl. Trans.), 30:966–976, 1994.

[427] H. Putz, J. C. Schön, and M. Jansen. J. Appl. Cryst., 32:864–870, 1999.

[428] A. A. Coelho. J. Appl. Cryst., 33:899–908, 2000.

[429] O. J. Lanning, S. Habershon, K. D. M. Harris, R. L. Johnston, B. M. Kariuki, E. Tedesco,

and G. W. Turner. Chem. Phys. Lett., 317:296–303, 2000.

[430] H. Putz. Endeavour 1.0. Crystal Impact GbR, Bonn, 2000.

[431] M. Becker and M. Jansen. Sol. State Sci., 2:711–715, 2000.

[432] W. A. Crichton, G. B. M. Vaughan, and M. Mezouar. Z. Krist., 216:417–419, 2001.

[433] M. Pompetzki and M. Jansen. Z. Anorg. Allg. Chem., 628:641–646, 2002.

[434] M. Schreyer and M. Jansen. Angew. Chem. Int. Ed., 41:643, 2002.

[435] M. Schreyer and M. Jansen. Sol. State Sci., 3:25–30, 2001.

[436] D. Santamaria-Perez, J. Haines, U. Amador, E. Moran, and A. Vegas. Acta Cryst. B,

62:1019–1024, 2006.

[437] J. B. Christian and M. S. Whittingham. J. Solid State Chem., 181:1782–1791, 2008.

[438] M. Beekman, J. A. Kaduk, Q. Huang, W. Wong-Ng, Z. Yang, D. Wang, and G. S. Nolas.

Chem. Comm., 2007:837–839, 2007.

[439] J. Beck and S. Benz. Z. Anorg. Allg. Chem., 635:962–965, 2009.

79



[440] R. E. Dinnebier, B. Hinrichsen, A. Lennie, and M. Jansen. Acta Cryst. B, 65:1–10, 2009.

[441] D. Fischer and M. Jansen. J. Am. Chem. Soc., 124:3488, 2002.

[442] J. V. Badding. Ann. Rev. Mater. Sci., 28:631–658, 1998.

[443] P. F. McMillan. Chem. Commun., 8:919–923, 2003.

[444] H. Huppertz. Z. Krist., 219:330–338, 2004.

[445] N. E. Brese and M. O’Keeffe. In Struct. Bonding, page 307. Springer, Heidelberg, 1992.

[446] D. Fischer, A. Müller, and M. Jansen. Z. Anorg. Allg. Chem., 630:2697–2700, 2004.
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Figure 1: Sketch of an energy landscape consisting of minima regions (green level lines) and

mountain regions (red level lines). Blue dotted line indicates one of the many possible trajecto-

ries, i.e. random walks, of the system. Regions contained in black rectangles are locally ergodic

regions on the time scale of observation encountered during the simulation; dashed black rectan-

gles are locally ergodic regions that have not been visited during this particular simulation run.

Note that locally ergodic regions do not have to contain a local minimum - entropic barriers can

be sufficient to establish local ergodicity[40].
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Figure 2: Excerpt of the tree graph of the MgF2 system[103] including entropic barriers, in-

dicated by the grey/black bars. Black/grey bar: Probability to leave the minimum during

the simulation time at the given energy level was below 1% and 20%, respectively. Notation

for minima: VI-a: rutile, VI-b: anatase, VI-c: half-filled rock salt structure, VII-a: structure

consisting of monocapped prisms, VI-d: CaI2 structure, VI-e: irregular structure containing F6-

prisms around Mg-atoms, V-a: structure containing F5-trigonal bipyramids and square pyramids

around Mg-atoms. At standard pressure, the only known modification of MgF2 with an ordered

structure exhibits the rutile structure-type.
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Figure 3: Free enthalpy landscape of SrO at p = 0 GPa for eight different temperatures (T =

150 K,..., 2850 K)[114] computed using global landscape explorations followed by free energy

calculations in the quasi-harmonic approximation on empirical potential and ab initio level.

The energetic contributions to the barriers stabilizing locally ergodic regions exhibiting differ-

ent structure types are given by the energy difference between the minima (black circles) and

transition regions (white circles). Entropic barrier contributions (for a typical example see e.g.

[103]) are not shown to avoid overloading the figure.
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Figure 4: Five isothermal projections of the miscibility dome in the phase diagram for the AlSb-

GaSb-InSb system at [250 350 450 520 570] K, based on the HF-calculations[342]. Red curve -

250 K, blue curve - 350 K, magenta curve - 450, cyan curve - 520 K and black curve - 570 K.

Figure 5: Predicted high-pressure structure of CaCO3 exhibiting a corner-connected chain of

CO4 tetrahedra[373]. The calcium atoms are ten-fold coordinated by oxygen.
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Figure 6: Predicted (ZnO)48 bubble cluster, and subsequently predicted mesoporous structure

(called ’framework F48’, with space group Fm3̄) generated by using the bubble cluster as a

secondary building unit.[406] F48 is shown in three different perspectives.

Figure 7: Excerpt of the tree graph of the energy landscape of Na3N on empirical energy level

at standard pressure, depicting some of the most important local minima [8, 9, 10, 11]. I-Na3N

corresponds to a strongly distorted Li3Bi-structure type with 12(+2)-fold coordination of the

nitrogen atoms by sodium atoms. Experimentally, the ReO3-type [11], the Li3N-, the Li3P- and

the Li3Bi-structure types [12, 13] have all been synthesized, the latter three using high-pressure

experiments starting from the ReO3-type. Furthermore, at intermediary pressures another mod-

ification exhibiting the YF3-type was observed [12, 13] that resembles several structures found

as local minima on the enthalpy landscapes of the alkali nitrides.
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Figure 8: X-ray powder diffractograms of LiBr deposited via the LT-ABD method, as function

of temperature (bottom to top: 223 K, 243 K, 263 K, 283 K, 298 K) [15]. The line diagram

indicates the peaks corresponding to the wurtzite modification of LiBr.
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