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Energy landscapes: calculating pathways and rates
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The stationary points of a potential energy surface provide a convenient framework for
coarse-graining calculations of thermodynamics and kinetics. Thermodynamic properties can
be extracted from a database of local minima using the superposition approach, where
the total partition function is written as a sum over the contributions from each minimum.
To analyse kinetics, we must also consider the transition states that link individual local
minima, and evaluate rate constants for the corresponding elementary rearrangements. For
small molecules the assignment of separate thermodynamic quantities, such as free energies,
to individual isomers, and the notion of isomerisation rates between these structures, is usually
straightforward. However, for larger systems the experimental states of interest generally
correspond to sets of local minima with some common feature, such as a particular structural
motif. This review focuses upon the discrete path sampling approach to obtaining phenomen-
ological two-state rate constants between ensembles of local minima that are distinguished by
suitable order parameters. Examples are discussed for atomic and molecular clusters, and for
two peptides.
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1. Introduction

Obtaining thermodynamic or kinetic properties for complex molecules or models of bulk
matter using computer simulation is often a difficult task. The problems associated with
length and time scales that are hard to access computationally are further
exacerbated if there are large potential energy barriers (compared to the thermal
energy kBT) between important regions of configuration space. Here kB is Boltzmann’s
constant and T is the temperature. Transitions between such regions then correspond
to ‘rare events’, and developing alternative approaches to treat the kinetics is an
active area of current research [1–12]. A number of these methods involve some sort
of additional coarse-graining of the phase space, such as the interface formulation [4]
of transition path sampling [5, 6], milestoning [9], Markovian state models [8], master
equation approaches [10, 13], and discretised reaction paths [11]. The main focus
of the present review is on the discrete path sampling approach [2, 7, 14],
where coarse-graining is achieved using stationary points of the underlying potential
energy surface (PES).

For small molecules it is usually straightforward to consider separate partition
functions or densities of states for distinct isomers. These isomers correspond to local
minima on the PES, and we can associate these states with distinct free energies so
long as they are separated by barriers that are large compared to kBT.
Isomerisations, or transitions between local minima, each correspond to distinct rate
constants. The same framework may be applied to larger systems, where the number
of local minima usually grows exponentially with the number of atoms [15, 16].
For such systems the experimental states of interest often correspond to sets of local
minima distinguished by an order parameter, such as the number of native hydrogen
bonds for a protein. To calculate thermodynamic properties for such a state we add
the partition functions for the component minima to obtain a partition function for
the set of local minima. In the same way, the complete partition function for the
whole system can be written as a sum over the partition functions of all the local
minima. This summation is the basis of the superposition approach to thermodynamics
[14, 15, 17–22], and is formally exact.

The appropriate superposition expressions for the microcanonical and canonical
ensembles are

�ðE Þ ¼
X
�

��ðE Þ and ZðTÞ ¼
X
�

Z�ðT Þ, ð1Þ

where ��ðEÞ and Z�ðTÞ are the microcanonical density of states and canonical partition
function for local minimum �, respectively. The superposition decomposition is
rigorous if the total configuration space can be partitioned into contributions associated
with all the local minima. This breakdown can be achieved by defining the ‘catchment
basin’ [23, 24], or ‘basin of attraction’, for each local minimum as the region of
configuration space for which steepest-descent paths converge to that minimum [14].
Since steepest-descent paths are defined by a first-order differential equation,
they are determined uniquely by any point lying on the path that has a non-zero
gradient. It is assumed that the boundaries between catchment basins, which
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correspond to transition surfaces between minima, make a negligible contribution to the
thermodynamics.

The superposition approach has several attractive features. In particular, the
contributions to any thermodynamic property calculated from the resulting partition
function can be broken down into terms corresponding to different local minima, or
regions of configuration space. Furthermore, the total partition function written in
the superposition form is naturally ergodic, providing access to the global
thermodynamics of systems involving two or more states separated by large potential
energy barriers. The local minima involved are also sometimes referred to as ‘inherent
structures’, following Stillinger and Weber, who extended the superposition approach
to bulk systems [15]. Although harmonic vibrational densities of states are normally
used when implementing the superposition method, anharmonic [25–30] and quantum
[29, 31] corrections have both been considered.

Transforming the PES into the basins of attraction of local minima also provides the
basis for the basin-hopping global optimisation algorithm [14, 32, 33]. In this approach
moves are proposed in configuration space followed by minimisation of the potential
energy. Moves between local minima are then accepted or rejected using
a Metropolis criterion involving the potential energy difference and a fictitious tempera-
ture, which is an adjustable parameter. We have recently adapted this method to obtain
total densities of states and partition functions in the ‘basin-sampling’ (BS) approach
[34]. Here we first perform a Wang-Landau-type [35–37] sampling to obtain the
potential energy density of local minima, where each proposed move includes a minimi-
sation step, as in basin-hopping. Average anharmonic vibrational partition functions
are then calculated using a representative sample of local minima in each potential
energy bin using a distance constraint, or ‘tether’. This part of the calculation is similar
to the confinement approach [38], but unlike that method it does not require additional
minimisations to identify the instantaneous catchment basin. The first basin-sampling
results for atomic clusters suggest that the method is almost as accurate as parallel tem-
pering [39–43], and can be much faster for quasi-ergodic systems [44–49]. This technique
therefore represents a systematic way to assure proper sampling of local minima for
superposition calculations in larger systems.

Local minima on the PES are stationary points (where the gradient of the potential
energy vanishes) and any infinitesimal displacement of the internal coordinates
increases the energy. To discuss kinetics we must also consider transition states,
which are defined here geometrically [50] as stationary points with a single imaginary
normal mode frequency. Positive and negative displacements along this particular
normal mode lower the energy, and usually correspond to the steepest-descent
paths that lead to two local minima. These minima are then said to be ‘adjacent’ and
connected by the transition state in question. Infinitesimal displacements along the
other vibrational normal modes raise the energy, just as for a local minimum. Kunz
and Berry [51] employed connected stationary point databases to calculate global
dynamics using a master equation approach [52, 53]. A number of studies followed
this work, including applications to clusters [26–28, 54–56], peptides [57, 58] and
model proteins [59]. In these studies, the stationary point databases were obtained
by starting from the global potential energy minimum and performing a fixed
number of transition state searches for a specified number of low-lying structures.
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For a sufficiently long search, this approach would eventually include all the
higher-energy minima that might be important in mediating the kinetics between
the particular regions of configuration space. However, in the spirit of the
dynamics-based transition path sampling [5, 6] it should be more efficient to develop
a sampling scheme for local minima and transition states that is specifically geared
to converging a phenomenological two-state rate constant. The discrete path
sampling approach [2, 7, 14] was developed for this purpose, and has now been applied
to a variety of atomic and molecular clusters, as well as several peptides and a small
protein [2, 7, 60–63].

2. Discrete path sampling

Many different methods have been suggested for studying ‘rare events’ via computer
simulation [1, 5, 6, 64–83]. The present review focuses on the discrete path sampling
(DPS) approach, which is based on stationary points of the PES, as described in the
Introduction. Here a discrete path is defined as a connected sequence of local
minima together with the intervening transition states, which links particular endpoint
structures [2]. The number of steps is defined as the number of transition states in the
sequence, which is one less than the total number of minima. In the simplest case,
two minima may be linked by a single transition state. The link is defined by the two
steepest-descent paths that lead downhill in energy from the transition state following
infinitesimal displacements parallel and antiparallel to the Hessian eigenvector
corresponding to the unique negative eigenvalue. Discrete paths between endpoints
that are well separated in configuration space are likely to involve many intervening
local minima and transition states.

Suppose that we wish to calculate the phenomenological two-state rate constant
between states A and B. We first need some way to define these states unambiguously,
which may entail the use of an order parameter of some sort. In particular, we must be
able to determine whether a given local minimum belongs to A or B, or to neither, in
which case it will be placed in the set of intervening minima, I. The most straightfor-
ward case involves fixed A and B sets, which are predefined. However, it is also possi-
ble, in principle, to change the A and B sets during or after the construction of the
stationary point database.

2.1. Rate constant formulations

For single-exponential, two-state kinetics to apply we must have local equilibrium
within each of the A and B regions on the time scale corresponding to A$B transi-
tions. These transitions must therefore correspond to the slowest relaxation time
scale in the system [73, 84]. In this case the occupation probability of minima a 2 A
and b 2 B at time t, paðtÞ and pbðtÞ, can be written as

paðtÞ ¼
peqa pAðtÞ

peqA
and pbðtÞ ¼

peqb pBðtÞ

peqB
, ð2Þ
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where the superscript ‘eq’ stands for ‘equilibrium’. Assuming that the dynamics between
adjacent local minima are Markovian, so that the system loses its memory of the
previous minimum before it makes another transition, the overall kinetics can be
represented by the master equation [52, 53]

dp�ðtÞ

dt
¼

X
�6¼�

½k��p�ðtÞ � k��p�ðtÞ�, ð3Þ

where k�� is the rate constant from minimum � to minimum � and the sums are over all
adjacent minima.

First suppose that all minima belong to either the A or the B set. Then assuming local
equilibrium within the A and B regions we can write the master equation as

dpAðtÞ

dt
¼ kABpBðtÞ � kBApAðtÞ and

dpBðtÞ

dt
¼ kBApAðtÞ � kABpBðtÞ, ð4Þ

where pAðtÞ ¼
P

a2A paðtÞ, pBðtÞ ¼
P

b2B pbðtÞ,

kAB ¼
1

peqB

X
a2A

X
b2B

kabp
eq
b and kBA ¼

1

peqA

X
a2A

X
b2B

kbap
eq
a : ð5Þ

This result is instructive, because it reveals that the phenomenological rate constants
can be evaluated in terms of minimum-to-minimum rates between A and B minima
on the boundary between the two regions, weighted by the conditional equilibrium
probability peqa =peqA or peqb =peqB . This separation into a probability, which can be
calculated from thermodynamics, and a purely dynamical factor is a well-known
result that is used in other approaches to rare events [64, 84–86].

More generally, it is often the case that some minima will belong to the intervening
set, I, although this does not preclude the existence of direct A$B connections
via single transition states as well. Applying the steady-state approximation for each
minimum i 2 I then gives

dpiðtÞ

dt
¼

X
�

ki� p�ðtÞ � piðtÞ
X
�

k�i � 0,

so that piðtÞ ¼

X
�

ki� p�ðtÞX
�

k�i
:

ð6Þ

We can now systematically replace every occurrence of piðtÞ in the master
equation using equation (6), and each substitution introduces a linear combination of
probabilities pjðtÞ ( j 2 I), paðtÞ and pbðtÞ, along with extra factors of kji, kai and
kbi, respectively. Hence dpAðtÞ=dt and dpBðtÞ=dt can finally be written as sums over all
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possible paths that start and finish on the boundaries of the A and B regions:

dpAðtÞ

dt
¼

X
a a0

kai1 ki1i2 � � � kina0 pa0 ðtÞX
�1

k�1i1
X
�2

k�2i2 � � �
X
�n

k�nin

þ
X
a b

kai1 ki1i2 � � � kinb pbðtÞX
�1

k�1i1
X
�2

k�2i2 � � �
X
�n

k�nin
�
X
a

X
i

kia paðtÞ,

dpBðtÞ

dt
¼

X
b b0

kbi1 ki1i2 � � � kinb0 pb0 ðtÞX
�1

k�1i1
X
�2

k�2i2 � � �
X
�n

k�nin

þ
X
b a

kbi1 ki1i2 � � � kina paðtÞX
�1

k�1i1
X
�2

k�2i2 � � �
X
�n

k�nin
�
X
i

X
b

kib pbðtÞ, ð7Þ

where, for example, a b indicates that the sum is over all the possible paths that
begin from a minimum b 2 B and end in a minimum a 2 A, passing only through
minima i 2 I. We can immediately identify the kAB term in the expression for
dpAðtÞ=dt, and the kBA term in dpBðtÞ=dt, so that

kSSAB ¼
1

peqB

X
a b

kai1 ki1i2 � � � kinb p
eq
bX

�1

k�1i1
X
�2

k�2i2 � � �
X
�n

k�nin

and kSSBA ¼
1

peqA

X
b a

kbi1 ki1i2 � � � kina p
eq
aX

�1

k�1i1
X
�2

k�2i2 � � �
X
�n

k�nin
,

ð8Þ

where we have also used the local equilibrium condition from equation (2). The SS
superscript is used to emphasise that the steady-state condition has been applied
to intervening minima, and distinguish these rate constants from those obtained
using different approximations below. Note that dpAðtÞ=dt ¼ �dpBðtÞ=dt holds
when we use kSSAB and kSSBA in equation (4), because dpIðtÞ=dt ¼ 0 by assumption.
Detailed balance applies to any particular a$ b discrete path, and to the overall
rates, so that kAB=kBA ¼ peqA =peqB .

Terms of the form kji=
P

� k�i can be replaced by the branching probability Pji in
equation (8). If the escape routes from a given minimum i are regarded as competing
Poisson processes, then escape via any route follows Poisson statistics with rate
k ¼

P
� k�i [87]. The waiting time for a transition to occur to any adjacent minimum

is exponentially distributed as k expð�ktÞ [88], and the mean waiting time for escape
is �i ¼ 1=

P
� k�i. Hence Pji ¼ kji�i and

kSSAB ¼
1

peqB

X
a b

Pai1 Pi1i2 � � �Pin�1in kinb p
eq
b

¼
1

peqB

X
a b

Pai1 Pi1i2 � � �Pin�1in Pinb �
�1
b peqb ,

ð9Þ
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and similarly for kSSBA. The sums in equation (9) are again over all paths that start from
a B minimum and end at an A minimum after passing through only I minima, which
may be revisited. The sum of the branching probability product over all such paths
starting from b 2 B is the probability that the system will visit an A minimum
before it returns to the B region, which we write as CA

b . Similarly, CB
b ¼ 1� CA

b is
the probability that a random walk starting from b will return to any minimum in
the B region before it encounters an A minimum. CA

b is referred to as a committor
probability, defined as

CA
b ¼

X
A b

Pai1 Pi1i2 � � �Pin�1in Pinb: ð10Þ

Hence we can write the rate constants that involve the steady-state approximation as

kSSAB ¼
1

peqB

X
b2B

CA
b p

eq
b

�b
and kSSBA ¼

1

peqA

X
a2A

CB
a p

eq
a

�a
: ð11Þ

The parameter Pfold
� , defined as the probability that a protein will fold before unfolding,

starting from some initial condition � [8, 89, 90], is a more specific example of a
committor probability.

In deriving the above expressions for kSSAB and kSSBA we considered a Markov process
in which the state space consisted of all the local minima on the PES. To remove the
steady-state approximation, we now describe the kinetics in terms of a Markov process
in the restricted space consisting only of the A and B minima. Writing a master
equation in terms of effective rate constants Kab and Kba for transitions between A
and B minima we obtain

kNSS
AB ¼

1

peqB

X
b2B

X
a2A

Kab p
eq
b ¼

1

peqB

X
b2B

KAb p
eq
b

and kNSS
BA ¼

1

peqA

X
a2A

X
b2B

Kba p
eq
a ¼

1

peqA

X
a2A

KBa p
eq
a ,

ð12Þ

where the superscript ‘NSS’ stands for ‘non-steady-state’. If we treat transitions from
minimum b to the A and B regions as independent Poisson processes then the mean
waiting time between transitions is tb ¼ 1=ðKAb þ KBbÞ, with an analogous expression
for A minima. Here KBb corresponds to the effective rate constant for a trajectory
to return to any member of the B set starting from b. If we now identify
KAb=ðKAb þ KBbÞ ¼ KAbtb with the committor probability CA

b then we obtain

kNSS
AB ¼

1

peqB

X
b2B

CA
b p

eq
b

tb
, and kNSS

BA ¼
1

peqA

X
a2A

CB
a pa

eq

ta
: ð13Þ

The difference between these rate constants and the steady-state analogues lies in the
average waiting times between events. In equation (13) tb is the average waiting time
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for transitions between minimum b and any minimum in the A or B sets. In contrast, �b
is the waiting time for a transition from minimum b to any of its adjacent minima, so
that �b � tb. In the steady-state limit the waiting times in all the intervening minima
should be negligible, and in this case tb! �b and the rate constants obtained from
equations (13) and (11) should coincide. If these results do not agree, it is likely that
the steady-state approximation does not hold, and one or more kinetic intermediates
are present.

To evaluate the waiting times ta and tb we can use the kinetic Monte Carlo (KMC)
approach [91–95]. The KMC simulations generate a memoryless (Markovian) random
walk between the local minima, which is governed by the branching probabilities P��.
An efficient algorithm to propagate such trajectories is the ‘n-fold way’ of Bortz, Kalos
and Lebowitz [91], where the ratios between transition probabilities of different events
are preserved, but rejections are eliminated. Methods to accelerate such
calculations also exist, such as ‘Monte Carlo with absorbing Markov chains’ [96] and
alternative sampling schemes [97, 98]. In the n-fold scheme, we choose the next step
from minimum i according to the probabilities P�i. The simulation time can simply
be incremented by �i if only the mean first passage time (MFPT) between the endpoints
is of interest.

The KMC runs required to calculate ta and tb are generally short, because they
terminate as soon as the trajectory encounters any A or B minimum. For example, if
the potential energy barrier between the A and B regions is large compared to kBT,
trajectories started from a B minimum will probably return to a B minimum in a few
steps, and similarly for trajectories started from an A minimum. The averages over
KMC runs used to calculate ta and tb should converge rapidly in this case, and need
not include any events where the trajectory actually crosses the potential energy barrier.
Such events will be rare, and their contribution to the average will not be very different
from the trajectories that return to the starting region, because waiting times for minima
in the intervening barrier region should be relatively small. As noted above, a significant
difference between t� and �� for � 2 A or B indicates a breakdown in the steady-state
approximation and in the two-state description.

An alternative formulation for the two-state rate constants is obtained by initiating
KMC trajectories from minima in the starting region, and following them until they
reach any minimum in the other region. This approach provides an MFPT from
one region to the other when averaged over a suitable number of KMC runs. The
corresponding rate constants will be denoted by a superscript KMC, and are
calculated as

kKMC
AB ¼

1

peqB

X
b2B

peqb
T Ab

and kKMC
BA ¼

1

peqA

X
a2A

peqa
T Ba

, ð14Þ

where T Ba is the MFPT for a KMC trajectory initiated at minimum a to reach any B
minimum, etc. In contrast to ta and tb the MFPT’s T Ba and T Ab include an arbitrary
number of revisits to any minima in the starting region. Hence T Ba � ta � �a. In parti-
cular, for a barrier that is large compared to kBT, the KMC runs used to calculate
MFPT’s will include many revisits to the starting region [97].
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The committor probabilities required for the ‘SS’ and ‘NSS’ rate constants can be
calculated using a first-step analysis [99], for example,

CA
� ¼

X
�

CA
�P��: ð15Þ

An analogous expression is used to calculate Pfold
� in reference [8]. Our implementation

of this method uses the successive overrelaxation technique with an extrapolation factor
of 1.999 [100]. We have also found it advantageous to store the branching probabilities
P�� using the compressed row storage scheme [101] for sparse matrices.

To derive a formal connection between the above KMC rate constants and kNSS
AB and

kNSS
BA we again consider a Markov process in the state space defined by the local minima

in regions A and B. We can then write a first-step relation [99] between the MFPT’s as

T Ab1 ¼ tb1 þ
X
b2

Cb2
b1
T Ab2 , ð16Þ

where tb1 is the expected waiting time for a transition from b1 to any other A or B
minimum, and Cb2

b1
is the corresponding committor probability that the transition is

to minimum b2 within this state space. Adding and subtracting T Ab1 from T Ab2 in
the sum and rearranging then gives

CA
b1
T Ab1 ¼ tb1 þ

X
b2

Cb2
b1
T Ab2 � T Ab1

� �
� tb1 þ Yb1 , ð17Þ

which defines the quantity Yb1 . Now we can write

peqB kKMC
AB ¼

X
b1

peqb1
T Ab1

¼
X
b1

peqb1C
A
b1

tb1 þ Yb1

,

¼
X
b1

peqb1C
A
b1

tb1
�
X
b1

peqb1C
A
b1
Yb1

tb1 tb1 þ Yb1

� �
¼ peqB kNSS

AB �
X
b1

peqb1
tb1T Ab1

X
b2

Cb2
b1
T Ab2 � T Ab1

� �
¼ peqB kNSS

AB �
X
b1<b2

T Ab2 � T Ab1

� � peqb1C
b2
b1

tb1T Ab1

�
peqb2C

b1
b2

tb2T Ab2

" #

¼ peqB kNSS
AB �

X
b1<b2

T Ab2 � T Ab1

� � peqb1C
b2
b1

tb1T Ab1

�
peqb1C

b2
b1

tb1T Ab2

" #

¼ peqB kNSS
AB �

X
b1<b2

T Ab2 � T Ab1

� �2
T Ab1T Ab2

peqb1C
b2
b1

tb1
:

ð18Þ
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In the penultimate line we have used the detailed balance condition Kb1b2p
eq
b2
¼ Kb2b1 p

eq
b1
,

which combined with the identity Cb2
b1
¼ Kb2b1 tb1 gives peqb2C

b1
b2
=tb2 ¼ peqb1C

b2
b1
=tb1 . Here,

as in equation (12), we use a capital K to denote effective rate constants within the
restricted state space of A and B minima; the corresponding minima need not be
connected by a single transition state. If the B minima are in rapid equilibrium relative
to the time scale for transitions to the A region, then any T Ab will be large compared to
any tb. In fact, to a first approximation the MFPT’s from alternative B minima will only
differ by terms of order tb. In this limit the last term of equation (18) vanishes. Hence

lim
B eq

kKMC
AB ! kNSS

AB and lim
�i��b

kNSS
AB ! kSSAB, ð19Þ

and similarly for the A to B rate constants. We have therefore established a clear
hierarchy of approximations: the KMC rate constants are equal to the ‘NSS’ values
when local equilibrium is established in the A and B regions, and the ‘NSS’ rate
constants are equal to the steady-state values when the waiting times for minima in
the I region can be neglected. It is particularly noteworthy that the local equilibrium
assumption for the A and B regions enables us to eliminate revisits to A and B minima.

2.2. Building stationary point databases

In the preceding section we have presented three different formulations for phenomen-
ological two-state rate constants, all of which assume that a connected database of local
minima and transition states is available. We now consider how this database might be
constructed to provide a useful description of kinetics over a specified temperature
range. The scheme outlined here was employed to produce all the results discussed in
subsequent sections. However, alternative methods to build databases are still under
consideration, and future DPS studies may employ a different approach.

Each DPS study described below started with the definition of local minima in fixed
A and B sets, and the construction of an initial discrete path linking any A minimum to
any B minimum. This first path may have to span a large distance in configuration
space, which can itself present a difficult problem. However, the connection algorithm
presented in section 3, which is based on analysis of the shortest path in a network
with missing connections, has enabled this part of the calculation to be
automated. The geometry optimisation techniques involved in characterising local
minima, transition states, and the steepest-descent paths that connect them, are
also described in section 3.

For the results reported in section 5 the stationary point databases were produced by
considering a current discrete path and systematically perturbing it. The current path
at any point in the calculation is usually the path with the largest contribution to
kSSAB (or kSSBA, depending on which rate constant is required), for which a specified
maximum number of perturbations has yet to be completed. For the A B rate this
contribution is

1

peqB
Pai1 Pi1i2 � � �Pin�1in Pinb �

�1
b peqb : ð20Þ
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Note that there is a conditional probability term in this contribution, i.e. peqb =peqB , and
so the sampling is not based purely on how fast the path is, but also on how likely
the starting minimum is to be occupied in equilibrium. Hence, criticisms [102–104] of
schemes based only on the fastest paths [105–107] should not apply.

The perturbations to the current path consist of choosing a minimum at random
and replacing it with a minimum that does not appear on the path in question.
The replacement minimum must be connected to the original minimum by a single
transition state, so that the perturbation has a chance of generating a new path that
is kinetically relevant. Suitable minima may already exist in the database, and if not,
a candidate is generated using a single-ended transition state search (section 3).
A connection is then sought between the replacement minimum and the two minima
one or more steps away from the original minimum on either side of it on the current
path. The two minima chosen can also be randomised subject to maximum and
minimum separations along the path. These two connections are obtained using the
double-ended network-based shortest-path algorithm described in section 3. If this
process succeeds then any new minima and transition states are added to the database,
and the resulting discrete path is compared with previous paths that have been
perturbed, and checked for shortcuts via known transition states. If the contribution
to the appropriate steady-state rate constant calculated from equation (20) is larger
than that of the original path then the new path becomes the current path. Otherwise
it is recorded, and the original path is restored for a further perturbation. If the
maximum number of perturbations has been reached for the current path then we
move instead to the recorded path with the largest contribution to the rate for which
the maximum number of perturbations has not been exceeded. The sampling terminates
when a specified number of paths with the largest contributions to the rate constant
have all been perturbed the maximum number of times. These limits can be increased
for a subsequent run to check the convergence of the overall rates. For long initial
paths it can also be beneficial to run a number of direct double-ended searches between
minima in the path to seek shortcuts, and there is a provision for this in our PATHSAMPLE
program. PATHSAMPLE basically acts as a driver and bookkeeping routine for our public
domain code OPTIM, which performs all the geometry optimisation and pathway
searches [108].

The main results of the stationary point sampling phase of the DPS calculation are
the recorded discrete paths obtained via perturbations, and the database of local
minima and transition states. An infinite number of distinct discrete paths connecting
the A and B regions can be constructed from the database, so long as there is at
least one path containing two or more intervening minima. For such paths we should
include arbitrary recrossings between intervening minima, since these all contribute
to the sums in equation (11). For simple cases, all the important contributions to the
rate constants may be contained in the recorded discrete paths that were generated
explicitly during the sampling phase. However, it is possible to include all the pathways
through the database using the techniques described in section 2.3. It is also possible
to identify the path with the largest contribution in equation (11) during the sampling
phase using Dijkstra’s algorithm [109, 110]. Some of the later DPS results described
below employed this approach to make sure that the most relevant paths were consid-
ered during the perturbation phase.
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2.3. Calculation of rate constants

We now address the extraction of phenomenological two-state rate constants from
the stationary point database. For every formulation considered here, we require the
conditional occupation probabilities peqa =peqA and peqb =peqB , along with the rate constants
for transitions between adjacent minima, k��. For nontranslating, nonrotating systems
the simplest approximation to these quantities is to use harmonic vibrational densities
of states. In this case the microcanonical density of states and the canonical partition
function associated with minimum � with potential energy V� are

��ðEÞ ¼
n�ðE� V�Þ

��1

�ð�Þðh��Þ
� and Z�ðTÞ ¼

n�e
�V�=kBT

ð�h��Þ
� , ð21Þ

where � ¼ 1=kBT, n� ¼ 2NA!NB!NC! � � � =o�, o� is the order of the point group for
the system in question with chemical formula ANA

BNB
CNC
� � �, and n� is the number

of distinct permutation-inversion isomers of the minimum in question [14]. �� is the
geometric mean vibrational frequency of minimum �, and � is the number of vibrational
degrees of freedom. We can then write the canonical conditional occupation probability
of minimum a0 within the A set as Za0 ðTÞ=ZAðTÞ, etc., where ZAðTÞ ¼

P
a2A ZaðTÞ.

To consider rates between particular permutation-inversion isomers of the same
minimum we need to break this degeneracy factor down appropriately. This breakdown
can be achieved automatically by distinguishing atoms of the same element using
fictitious masses when assigning the point group.

Unimolecular rate theory [111–116] can be used to calculate the elementary rate
constants corresponding to the pathways mediated by a single transition state.
For example, the transition state theory expression for the canonical rate constant
from minimum � to minimum � via a given transition state is [111–119]

k��ðTÞ ¼
kBT

h

Z��ðTÞ

Z�ðTÞ
e�ðV���V�Þ=kBT, ð22Þ

where Z�� omits the unique mode with the imaginary frequency for the transition state
linking minima � and �, which has potential energy V��. k��ðTÞ corresponds to the rate
constant for a particular minimum-to-minimum transition. However, we often wish to
group all the distinct permutation-inversion isomers of each minimum and transition
state together. In the harmonic approximation the resulting microcanonical and
canonical rate constants are

k��ðEÞ ¼ �
���ð Þ

�

����
� ���1 E� V��

E� V�

� ���1

ð23Þ

and k��ðTÞ ¼ �
���ð Þ

�

����
� ���1 e�ðV���V�Þ=kBT, ð24Þ

where the symmetry number � ¼ oa=o�� for a non-degenerate rearrangement
and � ¼ 2oa=o�� for a degenerate rearrangement between permutation-inversion
isomers of the same structure. ���� is the geometric mean vibrational frequency for
the transition state excluding the unique imaginary frequency.
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One advantage of the DPS approach is that the partition functions and
minimum-to-minimum rate constants could be recalculated using increasingly sophisti-
cated approaches once the stationary point database has been constructed. Consistent
levels of theory must be used, so that detailed balance remains satisfied for each
transition state. Another advantage is that the rates may be calculated over a range
of total energy or temperature from the same database. The database construction is
based upon contributions to the phenomenological two-state rate constant calculated
at some fixed temperature. The contributions of different stationary points to the
overall rate are temperature dependent, but it would only be necessary to build a
fresh database for conditions where new stationary points start to make a significant
contribution.

Several distinct approaches have previously been used to extract two-state rate
constants from a DPS stationary point database [2, 12, 14]. For simple cases, where
only a few discrete paths are significant, we can obtain kSSAB and kSSBA by summing
these contributions, which should all have been encountered during the pathway
perturbation process. More work is required to sum all the possible contributions
from the entire stationary point database. Not only must all the possible paths between
A and B be enumerated along with their contributions to equation (11), we must also
include all possible recrossings between minima from the I set. These recrossings
must be distinguished from dynamical corrections for recrossing of the transition
surface, which are not included in transition state theory, for example. Such corrections
would enter into the minimum-to-minimum rate constants k��, and could be calculated
by evaluating the reactive flux [73, 84–86].

All the above contributions in equation (11) can be summed using a matrix
multiplication (MM) technique [7]. We first define a weighted adjacency matrix M

with non-zero elements

Mab ¼ kabp
eq
b =peqB ,

Mai ¼ kai,

Mij ¼ kij

.P
� k�j,

Mib ¼ kibp
eq
b

.
peqB

P
� k�i,

or

Mab ¼ kabp
eq
b =peqB ,

Mai ¼ kai=
P

� k�i,

Mij ¼ kij

.P
� k�j,

Mib ¼ kibp
eq
b

.
peqB ,

ð25Þ

where i, j 2 I. Both the above formulations should converge to the same result for kSSAB,
and an analogous matrix can be defined to calculate kSSBA. The contribution to kAB

from paths with n steps (transition states) linking minima a and b is Mn½ �ab.
Hence we simply sum matrix elements of increasing powers of M until
a convergence condition is satisfied. For large databases a sparse representation is
essential for M.

The MM approach converges fastest when only a small number of discrete paths
make a significant contribution to kSSAB and kSSBA. In particular, at low temperatures
only paths corresponding to the lowest overall potential energy barrier are likely to
contribute. This is the regime where the master equation and KMC approaches
become less efficient, and the MM method was therefore used to obtain low
temperature rates in the early DPS studies [7]. However, when numerous long paths
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make an important contribution to the rate, the MM calculation can be slow to
converge, and numerical precision may be lost.

The master equation [52, 53] and KMC methods [91, 94, 120–122] provide two
alternative approaches to analysing the global kinetics of a stationary point database.
In both cases the steady-state approximation and assumption of local equilibrium
in the A and B regions are relaxed, providing a useful comparison with kSSAB and kSSBA.

The master equation method [52, 53] involves diagonalisation of a matrix whose
dimension equals the number of local minima, Nmin. The non-zero eigenvalue with
the smallest magnitude, �, corresponds to the slowest relaxation process, which
decays as expð�j�jtÞ, where �<0. If � is well separated from the eigenvalue that
is next-smallest in magnitude then the sum of the two-state rate constants can be
calculated as kAB þ kBA ¼ j�j. This condition, combined with detailed balance, can
be used to extract the individual rate constants. Unfortunately, the diagonalisation
process scales with the number of minima as OðN3

minÞ, and problems of numerical
precision may arise at low temperature, even when projection methods are applied
[123]. Some of these difficulties can be overcome by grouping and pruning the database
[14, 59, 60, 62, 63], which reduces the dimension of the problem. Sets of minima can be
grouped together according to various dynamic or thermodynamic criteria to simplify
the kinetic analysis; expressions for the corresponding group free energies and rates
are given in section 4. In contrast, pruning the database simply refers to the removal
of minima that are deemed to be unimportant. For example, recursively
removing minima with only one connection usually has little effect on the calculated
rate constants.

The KMC runs do not suffer from the same numerical precision issues as master
equation calculations. However, the required computer time may increase exponentially
as the temperature falls and kBT becomes small compared to the intervening potential
energy barrier between the A and B regions. The problem in this case is that the KMC
trajectory revisits minima in the starting region an inordinate number of times before it
manages to cross the barrier. In these circumstances the committor probability formu-
lation of kNSS

AB and kNSS
BA can provide a viable alternative, especially if the minima are

regrouped according to an energy threshold [12].
The most powerful approach for kinetic analysis of stationary point databases now

appears to be the graph transformation (GT) method [12]. The theory extends previous
results for ‘leapfrog’ moves to second neighbours in KMC calculations [7] and
the Monte Carlo with absorbing Markov chains approach [96]. The method can also
be viewed as a development of the n-fold way [91] where we exclude not only the
transitions from the current state to itself, but also those involving adjacent minima.
Starting from the complete database, we progressively remove local minima from
the I region but renormalise the branching probabilities and waiting times to leave
the MFPT between the A and B regions unchanged.

Consider the removal of minimum i 2 I for specificity, and a KMC trajectory
that arrives at minimum � adjacent to i. If i is removed then the trajectory
must continue by stepping to any of the minima adjacent to either � or i. We denote
these minima by the set �. We must also define new branching probabilities, P0��
for all � 2� and a new waiting time for escape from �, �0�, so that the MFTP
between A and B is conserved. The new branching probabilities must therefore
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account for all possible recrossings involving minimum � before escape to �. Hence we
obtain [12]

P0�� ¼ ðP�iPi� þ P��Þ
X1
m¼0

ðP�iPi�Þ
m
¼ ðP�iPi� þ P��Þ=ð1� P�iPi�Þ: ð26Þ

This renormalisation can be applied for any �. Although it changes the branching
probabilities out of A and B minima, these are only used when calculating the rate
constants for transitions out of the corresponding region. It is easy to show that the
new branching probabilities are normalised, so that

P
�2� P

0
�� ¼ 1.

To calculate the corresponding waiting time in � we replace each branching
probability P�� by eP�� ¼ P�� expð	��Þ and use the result that

d

d	
eP�1�2

eP�2�3
eP�3�4 � � �

eP�n�1�n

� �
	¼0

¼ P�1�2P�2�3P�3�4 � � �P�n�1�n ð��2 þ ��3 þ � � � þ ��n Þ,

ð27Þ

which gives the waiting time multiplied by the corresponding probability factor for any
path. Hence we obtain [12]

�0� ¼
d

d	

X
�2�

P�iPi�e
	ð�iþ��Þ þ P��e

	��

1� P�iPi�e	ð�iþ��Þ

" #
	¼0

¼
�� þ Pi��i
1� P�iPi�

: ð28Þ

Because the renormalised branching probabilities include the effect of all possible
paths involving minimum i the probability associated with any given a$ b path is
preserved. Any discrete path that jumps from � to � acquires a time increment equal
to the average value, �0�, for escape to minima in �, so that the MFPT’s corresponding
to particular a$ b paths are not conserved. However, it is possible to prove that the
average MFPT for paths between the A and B regions does not change under this
transformation [12]. If we remove all the I minima, and denote the final renormalised
branching probabilities and waiting times by a single prime, then rate constants can
be calculated as

kGT
AB ¼

1

peqB

X
b2B

peqb
�0b

X
a2A

P 0ab and kGT
BA ¼

1

peqA

X
a2A

peqa
�0a

X
b2B

P 0ba: ð29Þ

These rate constants are not exactly the same as those obtained from the committor
probability or KMC formulations discussed above. In particular, �0b corresponds to
the waiting time for a transition to any of the A or B minima aside from b itself.
However, it is also possible to adapt the GT approach to calculate precisely the rate
constants corresponding to the KMC approach or kNSS

AB and kNSS
BA [124].

TheGT approach avoids the steady-state approximation for the Iminima and the local
equilibrium assumption for regions A and B. Most importantly, the computational
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expense of the transformation is independent of temperature, and so GT becomes the
method of choice at low temperatures, where master equation, committor probability,
and KMC calculations all become unfeasible.

If the A and B sets are fixed and include all the minima of interest in these regions
then the relative equilibrium occupation probabilities can also be calculated within
the superposition approximation. In this case, detailed balance requires
kAB=kBA ¼ peqA =peqB . Hence it is only necessary to obtain the rate constant corresponding
to one direction from a kinetic analysis. The reverse rate constant can then be obtained
from the above equation. In more general cases one or both of the two states might
correspond to a high entropy region of configuration space, and we must then consider
how many minima we need in the A and B sets. Suppose that we require the rate
constant kAB from B to A, and that the A state is a liquid-like phase, or the denatured
state of a protein. If a two-state description is applicable then local equilibration in the
two states must be fast compared to the A B rate, and if we calculate rates for
different B minima, they should only differ by a small term corresponding to the
local equilibration time in B. Hence we can proceed by calculating rate constants
from a chosen set of B minima, and calculate an average by weighting the terms kAb

according to peqb =peqB . In practice, the operational test of convergence for an individual
kAb contribution would be to sample more discrete paths until the result satisfies some
predefined condition. Similarly, to test the convergence of kAB we can include more
members of the B set in the average until it appears to be stable. To converge each
kAb contribution we need to include sufficient discrete paths and A minima to converge
the average value.

The DPS sampling described above, which aims to produce a kinetically relevant
database of stationary points, should be clearly distinguished from the schemes that
involve explicit dynamics via transition path sampling [5, 6]. In the latter approach,
it is possible to accept and reject proposed moves to new dynamical paths using
a Metropolis criterion. Importance sampling of this kind cannot be used in DPS
calculations because analytical results are not available for the probability of locating
different transition states using the methods described in section 3. It is also important
to emphasise that the advantage of DPS in focusing on stationary points relies upon the
Markov assumption for the minimum-to-minimum dynamics, and upon the statistical
rate theory and models for the vibrational density of states. It is these approximations
that uncouple the calculations from the short time scale corresponding to vibrations,
and enable us to use geometry optimisation techniques instead of explicit dynamics
to overcome large potential energy barriers.

3. Characterising stationary points and pathways

To exploit the coarse-grained approach described above, we clearly need efficient
methods to locate the required stationary points on the PES and link them together.
All the DPS studies discussed in the following sections employed Nocedal’s L-BFGS
algorithm [125, 126] to approximate the two unique downhill steepest-descent paths
that usually connect a transition state to two local minima. These paths are constructed
by minimisation of the potential energy following infinitesimal positive and negative
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displacements along the Hessian eigenvector corresponding to the unique negative
Hessian eigenvalue at the transition state. Energy minimisation is generally much
faster than methods that follow the steepest-descent paths accurately. However,
some of the approximate paths can actually lead to different local minima, because
they deviate from the true steepest-descent trajectories. In particular, the larger steps
taken during L-BFGS minimisation may cause the calculation to skip over a low barrier
separating the correct minimum from an adjacent one. Since the number of such events
is small, and the extra step that is missed out corresponds to a low barrier, the effect on
the calculated rate constants is not usually significant.

Locating transition states is generally harder than characterising local minima,
because the stationary point is balanced on a knife-edge in one degree of freedom.
The DPS results described below employed two types of transition state search,
namely single-ended, where only a starting configuration is specified, and double-
ended, where we try to link two particular endpoint minima. In fact, all transition
state candidates from double-ended searches are refined using hybrid eigenvector-
following [127, 128], which is also used in the single-ended searches. The eigenvector
and smallest nonzero Hessian eigenvalue that define the uphill search direction were
either obtained iteratively from the analytic Hessian, avoiding full diagonalisation, or
from a variational approach where the Hessian is not required [129]. In the latter
method we define the Rayleigh-Ritz ratio as

�ðxÞ ¼
xTHx

x2
, ð30Þ

where x is the displacement from the current configuration, superscript T denotes the
transpose and H is the Hessian matrix. We then minimise �ðxÞ after rewriting the
ratio as [69, 127]

�ðxÞ �
VðXþ 
xÞ þ VðX� 
xÞ � 2VðXÞ

ð
xÞ2
, ð31Þ

where V(X) is the potential energy at configuration X and 
 � 1. The gradient is then

@�ðxÞ

@x
¼
rVðXþ 
xÞ � rVðX� 
xÞ


x2
�
2�ðxÞx

x2
: ð32Þ

To prevent the minimisation from arriving at a solution corresponding to overall
rotation or translation, these directions are projected out using the known analytical
forms for the corresponding eigenvectors [14, 130, 131]. An uphill step is then taken
along the chosen eigenvector, followed by L-BFGS minimisation in the tangent space
[127, 128]. The minimisation consists of a small, fixed number of steps, so that the
uphill direction does not change too much, thus avoiding collapse to a minimum.

The magnitude of the uphill step is given by

x ¼
	2g

j"2jð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4g2="4

p
Þ
, ð33Þ

Energy landscapes: calculating pathways and rates 253



where g is the component of the gradient along the eigenvector in question, and "2

is the corresponding Hessian eigenvalue [132–134]. We also adopt a trust radius
scheme [134–137] for the maximum step size for this direction. The gradient at the
current point, n, and the previous point, n� 1, are used to estimate the Hessian
eigenvalue as

"2est ¼
gn � gn�1

xn�1
, ð34Þ

where xn�1 is the step length for cycle n� 1, etc. The trust ratio is defined as

r ¼
"2est � "2n

"2n

���� ����, ð35Þ

and the maximum step is changed depending upon whether r is greater or less than
a specified trust radius [134–136].

For the peptides in section 5.3 all the geometry optimisations were performed using
internal coordinates according to the linear scaling scheme of Németh et al. [138, 139].
For calculations in Cartesian coordinates with explicit Hessians the eigenvalues
corresponding to overall translation and rotation were shifted to the top of the
spectrum [14]. Double-ended searches between specified local minima were performed
using the doubly nudged elastic band (DNEB) approach [140], which builds upon
previous strategies involving a chain of states [65, 141–146]. The chain consists of
images, which correspond to a discretised representation of the geometry along a
path through configuration space that connects the two endpoints. Each image
experiences a force derived from the gradient of the potential energy and a contribution
corresponding to harmonic springs that connect adjacent minima. In particular, the
DNEB method retains a portion of the spring gradient perpendicular to the path.
With this modification L-BFGS minimisation can be applied to the images in the
band until they are reasonably stable. Images that lie above their neighbours are then
selected as starting points for hybrid eigenvector-following calculations with tight
convergence conditions.

For local minima that are widely separated in configuration space, the shortest
discrete path with the fewest steps may involve dozens, or even hundreds, of intervening
transition states and the corresponding local minima. Furthermore, we cannot hope to
find all of these transition states in one DNEB calculation. Hence a strategy is required
for guiding successive DNEB searches by judicious choice of the next pair of local
minima to connect. This procedure has been automated using Dijkstra’s
shortest path algorithm [109, 110] by defining a suitable weight (or cost) function
between every pair of known minima. If we know a transition state that connects the
pair, then the weight is zero, otherwise a weight is calculated as a monotonically
increasing function of the minimum Euclidean distance between the points [147].
Dijkstra’s algorithm is then used to find the discrete path with the minimum total
weight, and double-ended transition state searches are initiated for every missing
connection in this path. The Dijkstra connection procedure enables an initial
discrete path to be located between members of the A and B states in a single call to
OPTIM [108].

254 D. J. Wales



4. Disconnectivity graphs

Disconnectivity graphs [14, 65, 148–150] have played a key role in recent efforts to
explain how diverse processes such as protein folding, crystallisation, self-assembly,
and the appearance of ‘magic number’ clusters occur via directed searches of the
PES. In each case the probability of finding the structure in question via a random
search is inconsistent with the experimental time scales observed, as Levinthal pointed
out in the field of protein folding [151]. However, if the PES is organised in the right
way, the system is effectively guided to the structure in question. This organisation
can be visualised using disconnectivity graphs.

At a given total potential energy, V, a connected database of local minima can be
partitioned into disjoint sets, or ‘superbasins’ [148]. The members of each set can be
interconverted via one or more transition states without exceeding the threshold V,
while the lowest transition state on a discrete path between members of different
sets lies above this energy. The superbasin analysis is usually performed at a regularly
spaced set of potential energies, V1 < V2 < V3 < � � �. In the corresponding disconnec-
tivity graph the potential energy increases on the vertical axis, while the horizontal
axis is usually arbitrary, although it can be used to reflect properties of the minima
[152]. As V increases more and more local minima become accessible. We draw a ver-
tical line upwards from the energy corresponding to each local minimum to connect it
with the appropriate superbasin node at the next superbasin energy. Lines are joined
together at superbasin analysis energy Vn if the corresponding minima lie in the same
superbasin at that energy. A minimum lies in its own superbasin until Vn exceeds the
potential energy of the lowest transition state that connects it to a different minimum.

The line that terminates at the bottom of the graph corresponds to the global poten-
tial energy minimum of the system. As the potential energy increases more local minima
become accessible, and their branches merge together when they can interconvert via
a discrete path where the highest transition state lies below the superbasin analysis
energy. If this threshold is raised high enough then eventually all the branches will
merge into one at the top of the graph, because all the local minima can interconvert.
The energy interval at which the superbasin analysis is carried out affects the form
of the graph. If it is too large then interesting structure will be washed out; if it
is too small then the graph may contain too much detail to provide any insight into
topological features of the landscape.

Figure 1 illustrates three archetypal potential energy landscapes [149]. Since each
graph splits into two parts if an edge is cut, they are technically classified as tree

‘weeping willow’‘palm tree’ ‘banyan tree’

Figure 1. One-dimensional potential energy functions (left) and the corresponding disconnectivity graphs
(right). The dotted lines indicate the energies at which a superbasin analysis was performed.
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graphs [155]. The ‘palm tree’ pattern corresponds to a surface with a well-defined global
minimum and relatively small downhill barriers. This is the motif that we associate with
good ‘structure seekers’, where efficient relaxation to the global minimum is expected
over a wide range of temperature. It provides a direct visualisation of the ‘folding
funnel’, first envisaged for proteins as a set of kinetically convergent pathways [156].
In contrast, for the ‘willow tree’ pattern the downhill barriers are large compared to
the potential energy difference between successive minima. This motif is realised in
the PES of C60 [149, 157]. Efficient relaxation to the global minimum is still possible
if the system has enough thermal energy to overcome the barriers, since there is a
potential energy gradient to ‘guide’ the system downhill [158–160]. The ‘banyan tree’
motif is qualitatively different from the others, since whole sets of minima can be
disconnected by cutting certain edges. This hierarchical structure results from barrier
heights on two or more different energy scales.

The calculations of global thermodynamics and kinetics do not depend upon the
disconnectivity graph approach. However, it may be possible to make predictions
from the form of a graph without further calculations. In particular, it is the palm
tree graph that may help to unify the nonrandom searches that result in protein folding,
crystallisation, ‘magic number’ clusters in mass spectra, and self-assembly. By choosing
an order parameter based upon structural similarity to the global minimum we can
produce a free energy surface with ‘funneling’ properties [156, 161–172]. We can also
identify a landscape supporting a single potential energy funnel with the principle
of ‘minimal frustration’ [161, 162, 166, 168]. Here, frustration would correspond to
alternative low-lying minima separated from the global minimum by large barriers,
i.e. to separate potential energy funnels. The single potential energy funnel
should also produce a large value for the ratio Tf /Tg, where Tf is the ‘folding’
temperature, below which the potential energy and free energy global minima coincide,
and Tg is the ‘glass’ temperature, at which relaxation slows down below some given
time scale [173, 174]. For a large value of Tf /Tg the PES supports a global
free energy minimum that is kinetically accessible over a wide range of temperature
[14, 161, 175, 176].

Two particular examples of the palm tree motif are shown in figures 2 and 3. The first
graph is for a bulk model of silicon that employs the Stillinger-Weber potential [153]
and uses periodic boundary conditions for a supercell containing 216 atoms. Here we
associate nucleation and growth of the crystal with the palm tree structure. The
second example illustrates self-assembly of an icosahedral shell from twelve rigid pen-
tamers [150]. Each pentamer has five attractive sites around the equator, and a single
repulsive site at the apex. This simple intermolecular potential was designed to study
the minimal conditions required for a hollow icosahedral shell to become a kinetically
accessible global minimum. Disconnectivity graph calculations revealed that palm tree
landscapes occur for pyramids that are not too flat, and not too spiky [150]. This model
provides a crude representation of a simple virus capsid. It is interesting to note that
Crick and Watson first suggested that such capsids might be composed of repeated sub-
units on the basis of the limited genetic information that could be contained in the shell
[177]. The disconnectivity graph analysis further suggests that capsid formation may
also exploit the properties of a funnelled potential energy landscape to achieve self-
assembly [150].
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Surfaces with two well-defined potential energy palm tree structures correspond
to systems with competing morphologies, which can also be considered in terms
of ‘frustration’. Examples will be illustrated for atomic clusters in section 5.1. Such
landscapes often lead to a separation of time scales for relaxation, as for previous lattice
models [178–180]. The first fast component corresponds to direct relaxation to the global

Figure 2. Disconnectivity graph containing the lowest 850 minima in the neighbourhood of the
Stillinger-Weber silicon [153] crystal [154], which is illustrated at the bottom. The supercell contains 216
atoms, and � is the pair well depth.
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free energy minimum, whilst the second slow component corresponds to trajectories that
are first trapped in the competing structure, and subsequently escape. In some cases one
region of the PES is favoured by potential energy, and the other by entropy. As the
temperature increases from absolute zero, the global free energy minimum will change,
and the system exhibits a first-order-like phase transition, where the singularity in the
heat capacity is rounded in finite systems [14, 181, 182]. In particular, the change in
the global free energy minimum from one morphology to another may be marked by
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Figure 3. Disconnectivity graph for an icosahedral shell composed of twelve pentagonal pyramids [150].
Some of the low-lying minima are illustrated close to their corresponding branches in the graph. The energy
is in reduced units [150].
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a feature in the heat capacity [48, 49, 183, 184]. Additional palm tree features can lead
to further relaxation components, and eventually to a glassy landscape, with a large
number of low-lying structures all separated by relatively high barriers. Numerous
examples have been described, including a three-colour, 46-bead model protein
[59, 185–187] and binary salt clusters [188, 189].

Disconnectivity graphs have also been presented using enthalpy [190] and free energy
[59, 191]. To use free energy we must consider how to treat groups of minima in
superbasins and their connections. One approach is to use the mincut-maxflow theorem
[192] empoyed in analysing network flows [191]. An alternative is to extend the
superposition approach to consider groups of transition states [59, 63]. Consider two
groups of local minima, J and L. The occupation probability and free energy of
group J, for example, are written as

peqJ ðTÞ ¼
X
j2J

peqj ðTÞ and FJðTÞ ¼ �kBT ln
X
j2J

ZjðTÞ: ð36Þ

The relative free energy of the set of transition states that connect a minimum in group
J with a minimum in group L is given by

FJLðTÞ ¼ �kBT ln
X

j2J$l2L

ZjlðTÞ, ð37Þ

where ZjlðTÞ is the partition function for the transition state connecting l to j, with
the degree of freedom corresponding to the reaction coordinate removed, as in
equation (22). The sum is over all L to J connections and the rate constant from J to
L becomes [193]

kLJðTÞ ¼
X

j2J$l2L

peqj ðTÞ

peqJ ðTÞ
kljðTÞ ¼

kBT

h
expð�½FJLðTÞ � FJðTÞ�=kBTÞ, ð38Þ

where kljðT Þ is the rate constant for a transition from minimum j to minimum l via
a particular transition state. If there is more than one transition state connecting
a given pair then we simply add the contributions. The entropy appears in these
expressions both through the number of minima contributing to each region, and
through the vibrational densities of states.

5. Results

5.1. Lennard-Jones clusters

The Lennard-Jones (LJ) potential is defined as [194]

V ¼ 4�
XN
i<j

�

rij

� �12

�
�

rij

� �6
" #

, ð39Þ
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where � is the pair well depth, 21=6� is the equilibrium pair separation, and rij is the
distance between atoms i and j. Clusters of N Lennard-Jones atoms, denoted LJN,
display a rich variety of behaviour, and serve as benchmarks for global optimisation
[33, 195–198], and analysis of thermodynamics [181, 182, 199] and dynamics [1, 2, 7,
51, 200, 201] in finite systems. For example, the permutational isomerisation of a
two-dimensional LJ7 cluster provided one of the first applications of the transition
path sampling approach [200], which in turn enabled benchmark comparisons for
DPS calculations [2].

Most LJ clusters composed of a hundred atoms or fewer have global potential
energy minima that are based on icosahedral packing via an underlying Mackay icosa-
hedron [202]. However, at certain sizes, where complete high-symmetry structures occur
for alternative packing schemes, and the best incomplete Mackay icosahedron is
relatively high in energy, different morphologies are observed [33, 203–208].
The corresponding potential energy landscapes exhibit a low entropy region of config-
uration space containing the global minimum, and a high entropy region containing
icosahedrally based structures. The global minimum is therefore relatively difficult to
locate, because it lies at the bottom of a narrow potential energy funnel, separated
from the funnel corresponding to the much more numerous structures based on
icosahedral packing by a large barrier. This potential energy barrier scales
extensively with system size, so that ergodicity-breaking effects grow stronger for
larger systems of this type. The change in global free energy minimum from a low
potential energy to a high entropy region of configuration space often produces
a small heat capacity feature for the corresponding solid-solid first-order-like transition
[48, 49, 183, 184].

The LJ38 cluster exhibits a double-funnel PES [14, 48, 49, 149, 183, 184]
where the global potential energy minimum is a truncated octahedron based upon
face-centred-cubic (fcc) packing (figure 4). There is a heat capacity feature for this
cluster at kBT=� � 0:11 [48, 49, 183, 184], where the free energy global minimum
changes from the fcc to the icosahedral region. The interconversion rates between
the icosahedral (Ih) and fcc (Oh) regions of configuration space were calculated
using DPS with fixed definitions of the A and B regions containing 5 (Oh) and 395
(Ih) minima. These sets were taken from a previous master equation study of the
dynamics [183], which employed a stationary point database containing 6,000 minima
and 8,633 transition states. The assignment of the A and B states was based
upon the master equation eigenvector corresponding to the slowest relaxation, which
contains coefficients for each minimum. The magnitude of the coefficient indicates
how strongly the corresponding minimum is involved in this relaxation, and
the sign enables us to separate the minima in different regions, since it indicates the
direction of the flux. Recalculating both master equation and DPS rates for the new
database as a function of the cutoff value used in assigning the Ih and Oh minima
revealed good agreement over a wide range of values. In particular, DPS sampling
located a path with a larger contribution than any obtained in the previous
master equation study [183]. Agreement only begins to break down when the
cutoff used to assign the minima becomes too large, so that structures with significant
equilibrium occupation probabilities are included in the intervening set [2].
An Arrhenius fit, k ¼ a expð��=kBTÞ, to the rates calculated in the temperature
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range 0:03 � kBT=� � 0:4 has coefficient of determination R2 ¼ 0:9997 with [7]

kIh Oh
: a ¼ 2:13
 106 �LJ, � ¼ 4:29 �,

kOh Ih : a ¼ 1:16
 103 �LJ, � ¼ 3:43 �,
ð40Þ
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Figure 4. Disconnectivity graph for the LJ38 cluster including the lowest 200 local minima; permutation-
inversion isomers are not distinguished. The global potential energy minimum lies at the bottom of the ‘palm
tree’ feature highlighted in red. The lowest minimum based upon an incomplete Mackay icosahedron is also
illustrated below the corresponding branch of the graph. The energy is in �.

Energy landscapes: calculating pathways and rates 261



where �LJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=M�2

p
is the reduced unit of frequency, with M the atomic mass.

The DPS calculation used to produce this fit was performed at kBT=� ¼ 0:1, and
runs at different temperatures were found to give essentially the same results [2].
A two-state description is appropriate throughout this temperature range [183], as
evidenced by the master equation eigenvalue spectrum and a net flow index analysis
[51, 209]. For parameters appropriate to argon we find a rate of 55 s�1 at
T ¼ 13:7K, where kIh Oh

� kOh Ih . At kBT=� ¼ 0:09 one particular discrete path
contributes about 45% of the total rate. When the temperature is raised to
kBT=� ¼ 0:12 this contribution falls to about 23% while a two-step path contributes
6%. This result shows how discrete paths with higher potential energy barriers but
more favourable entropies become increasingly competitive at higher temperature.

The next largest LJ cluster to exhibit a double-funnel landscape is LJ75, where the
global minimum is a Marks decahedron [212] (figure 5). This system exhibits a heat
capacity feature at around kBT=� ¼ 0:08 [34, 47] where the global free energy minimum
switches from the decahedral (D5h) region to the icosahedral (Ih) region. For this cluster
the fixed A and B sets were assigned based on a disconnectivity graph analysis of
a stationary point database produced in earlier work [210]. The icosahedral and
decahedral sets contained 909 and 91 minima, respectively. A new disconnectivity
graph constructed following DPS runs is shown in figure 5. In this cluster the most
important single discrete path contributes virtually 100% of the rate at kBT=� ¼ 0:02,
which decreases to 48% at kBT=� ¼ 0:13, and 17% at kBT=� ¼ 0:2. An Arrhenius
fit to the calculated rates in the range 0:02 � kBT=� � 0:3 has coefficient of
determination R2 ¼ 0:9995 with [7]

kIh D5h
: a ¼ 4:11
 108 �LJ, � ¼ 10:88 �,

kD5h Ih : a ¼ 5:97
 101 �LJ, � ¼ 9:61 �:
ð41Þ

The largest potential energy barriers on the dominant path are 9.60 and 10:78 �,
respectively, which are very close indeed to the values in the Arrhenius fit. The forward
and backward rates from the fit are equal at kBT=� ¼ 0:081 where the value is about
5
 10�39s�1 for parameters appropriate to argon.

Permutational isomerisation has been considered for centre-to-surface atom
migration in the ‘magic number’ Mackay icosahedral [202] clusters LJ13 and LJ55, for
which the global minima both have point group Ih. Figures 6 and 7 illustrate the
effect of tagging one of the 13 atoms in LJ13 on the disconnectivity graph. Tagging
makes one particular atom distinguishable from the others, which affects the point
group assignment. Both graphs include 1,467 local minima, but in figure 6 all
2
 13!=120 distinct permutation-inversion isomers of the icosahedron are included in
the single branch corresponding to the global minimum. This graph clearly exhibits
the palm tree motif, with a single potential energy funnel. The gap between
the global minimum and the next-lowest structure is 2:64 �. In contrast, in figure 7
we distinguish 2
 12!=120 minima with the tagged atom in the middle from the
2
 12!=10 C5v minimum with the tagged atom on the surface. Since
2
 12!=120þ 2
 12!=10 ¼ 2
 13!=120 the number of distinct minima is unchanged,
but the net effect is that the branches corresponding to the global minimum represent
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different numbers of permutation-inversion isomers in the ratio 1 : 12. In general, the
number of distinct minima in figure 7 for a given structure is equal to the number of
symmetry-distinct sites for the tagged atom in that configuration.

Relaxation from any high energy minimum to any permutation-inversion isomer
of the global minimum is rapid over a wide temperature range for the palm tree surface
in figure 6 [7, 56, 149]. If we now tag one atom and start from a non-equilibrium
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Figure 5. Disconnectivity graph for LJ75 in which permutation-inversion isomers are not distinguished.
Only the 500 lowest minima are included for clarity, although the full DPS database of stationary points
was used to establish the connectivities. Minima assigned to the decahedral region of configuration space are
highlighted in red. The global minimum and the lowest energy structure based on icosahedral packing are
illustrated next to the corresponding branches in the graph. The energy is in units of �.
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distribution, in which only isomers with the tagged atom in the centre are occupied,
then the slowest relaxation mode corresponds to transitions between the two funnels
in figure 7 [7]. Two-state kinetics are observed over a wide range of temperature,
with a clear separation between the slowest relaxation and the next-slowest in the
master equation eigenvalue spectrum. The assignment of the slowest mode to relaxation
between the two funnels was confirmed using the net-flow index [51, 209] for the
eigenvector in question [7].
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Figure 6. Disconnectivity graph for the LJ13 cluster including all the 1,467 local minima identified for this
system in previous work [210]. The global minimum is a Mackay icosahedron [202], depicted using Xmakemol
[211], while the next-lowest minima correspond to the three distinct capping sites when one atom is removed
from the icosahedral shell and placed on the surface. In this graph all permutation-inversion isomers of each
structure are grouped together. The energy is in units of �.
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The rate constants for permutational isomerisation obtained from the MM, KMC
and master equation approaches agree quantitatively over the temperature range
0:04 � kBT=� � 0:3 [7]. AnArrhenius fit has coefficient of determinationR2 ¼ 0:9996 for

kAB : a ¼ 1:95
 103 �LJ, V ¼ 4:63 �,

kBA : a ¼ 2:34
 104 �LJ, V ¼ 4:63 �: ð42Þ
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C5v Ih

Figure 7. Disconnectivity graph for LJ13 in which permutation-inversion isomers of the shaded atom are
distinguished. Permutation-inversion isomers of the other twelve atoms are grouped together for every mini-
mum and transition state. The tagged atom can occupy either a central or a surface site in the global
minimum, leading to two separate branches in the graph for isomers with Ih and C5v symmetry. The database
in question contained 1,608 minima and 6,115 transition states and the graph includes all the minima.
The stationary points used to construct this graph were characterised in a DPS calculation of the isomerisa-
tion rate between the two distinct isomers of the global minimum [14]. The energy is in units of �.
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The prefactors differ by a factor of twelve due to symmetry, and the barrier agrees
quantitatively with the potential energy difference between the highest minimum on
the most important discrete path. At kBT=� ¼ 0:1 the centre-to-surface rate corresponds
to about 8
 10�5 s�1 for parameters appropriate to argon.

LJ55 is the next size at which a complete Mackay icosahedron is the global
minimum. The low energy region of the landscape again conforms to the palm tree
pattern [14, 22, 149, 210], and the energy difference between the global minimum and
the next-lowest is 2:64 �. The properties of this cluster have been investigated
in many different studies [14, 20–22, 25, 149, 199, 210, 213–230]. There are four
symmetry-distinct sites for a tagged atom in the 55-atom Mackay icosahedron: one
in the centre, one in the middle shell, and two in the outer shell. Hence there are
four different branches corresponding to these distinct isomers of the global minimum
in figure 8. The total number of different permutation-inversion isomers for this
structure if all the atoms are distinguishable is 2
 55!=120. The branches in figure 8
correspond to 2
 54!=10, 2
 54!=4, 2
 54!=10 and 2
 54!=120 minima, from left
to right. Hence the relative equilibrium populations are 12 : 30 : 12 : 1, or 42 : 12 : 1 for
surface :middle shell : centre when we add the contributions for the two surface sites.
The forward and reverse rates for centre-to-surface isomerisation therefore differ by
a factor of 42 due to symmetry.

The kinetic analysis of the DPS stationary point database proved to be especially
difficult for this system, due to the size of the potential energy barrier between the
states of interest [7, 12]. For example, at the lowest temperatures considered the barrier
is several hundred kBT. Arrhenius fits for this isomerisation were revised in the light of
calculations using the GT approach, which agree well with the values obtained for kNSS

AB

and kNSS
BA when the local minima are regrouped according to a suitable energy threshold

[12]. The resulting fit has coefficient of determination, R2 ¼ 0:99999 for

kAB : a ¼ 1:38
 108 �LJ, � ¼ 14:05 �,
kBA : a ¼ 6:52
 109 �LJ, � ¼ 14:04 �,

ð43Þ

where B represents the minima with the tagged atom in the surface, and A the minima
with the tagged atom in the centre. The value of � agrees very well with the potential
energy difference between the highest transition state on the lowest-energy discrete path
between A and B. The ratio of prefactors deviates a little from 42 because additional
minima are included in the A and B sets after regrouping [12]. At kBT=� ¼ 0:1 the
centre-to-surface rate constant has order 10�40 s�1 for parameters appropriate to argon.

5.2. Water clusters

Water clusters are of great interest because of the insight they may be able to provide
into the fundamental aspects of intermolecular forces, solvation, and the properties
of bulk water. As a consequence, the number of different model interaction potentials
proposed for water molecules is enormous; here we concentrate on the rigid molecule
TIP4P representation [232, 233]. Global optimisation of rigid-body water clusters is
significantly more difficult than for most Lennard-Jones clusters with a comparable
number of degrees of freedom, due to the interplay between the orientational and
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centre-of-mass coordinates [234, 235]. Nevertheless, there is no dispute over the global
minima of the TIP4P clusters (H2O)8, (H2O)9 and (H2O)20 [234, 236] considered in the
DPS studies described below.

For (H2O)8 there are two particularly low-lying minima with point groups D2d and
S4, each based on a cube of water molecules [223, 237–242]. These structures have
also been identified experimentally, both as free clusters [243] and bound to a benzene
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Figure 8. Disconnectivity graph for LJ55 in which permutation-inversion isomers of the shaded atom are
distinguished. This tagged atom can occupy four distinct sites in the icosahedral global minimum, producing
four separate branches. The stationary points used to construct this graph were characterised in a
DPS calculation of the isomerisation rate between isomers of the global minimum where the tagged atom
occupies central (region A) and surface (region B) sites [7]. The energy is in units of �.
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molecule [244]. The water octamer has also been characterised in a crystal structure
[245]. Microcanonical DPS rate constants were reported for the interconversion
of these two isomers for comparison with previous transition path sampling
(TPS) calculations [242]. The latter results were obtained for conversion of two specific
permutation-inversion isomers, and the corresponding DPS rate constants were
therefore considered. At a total energy of �253:13 kJ/mol one particular four-step
discrete path was found to contribute 90% of the calculated rate constant.
The corresponding path consists of four sequential donor–acceptor exchange rearrange-
ments [240] (figure 9). The next-largest contribution (4%) comes from a three-step path
(figure 10), which appears to correspond to the free energy transition state in the
transition path sampling study, where rearrangements were restricted to a single face
of the cube [242]. The rates calculated for contributions from three-step paths of this
kind in the DPS and TPS studies agree to within a factor of about five [2].
Quantitative agreement would not be expected when harmonic densities of states are
employed in the DPS calculations along with transition state theory rate constants
for the minimum-to-minimum rearrangements.

A further comparison between DPS and TPS rates is available for (H2O)9.
The rearrangement between two low-lying minima corresponds to a single-step discrete
path (figure 11), i.e. to a pathway mediated by a single transition state, and there are no
other significant contributions to the rate [2]. The transition state in question has an
unusual three-centre hydrogen bond in which one hydrogen is coordinated to
two different oxygens. The DPS [2] and TPS [246] rates for the fastest path are in
quantitative agreement, indicating that harmonic transition state theory works well
for this system.

Interconversion of competing morphologies for the (H2O)20 cluster is a much more
demanding challenge. Previous disconnectivity graphs for this system revealed a more

S4 − 305.52

C1 − 287.34

C1 − 295.09

C1 −282.61

C2 − 297.68

C1 − 285.85

C1 − 295.40

C1 − 287.14

D2d − 305.41

Figure 9. Four-step path linking S4 and D2d cuboids in the water octamer. The point group symmetries and
energies (kJ/mol) for the TIP4P potential [231] are given below each stationary point.
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hierarchical structure, reminiscent of the banyan tree pattern [14, 149]. In fact, there
are three low-lying morphologies for this cluster separated by large potential energy
barriers. The three structures are based on fused cubes (or ‘box-kites’) [22, 234, 240,
247], stacked pentagonal prisms (sharing pentagonal faces), and square-face-sharing
pentagonal prisms (including the global minimum). An equilibrium simulation of this
system that includes more than one morphology has not yet been possible, even
using parallel tempering [39–41, 248]. The results of a DPS study to link the global
minimum with the lowest box-kite structure illustrate this difficulty quite clearly [7].
The disconnectivity graph in figure 12 shows that a large potential energy barrier
separates the two morphologies. One of the paths that makes a significant contribution
to the rate is illustrated in figure 13. Most of the 19 elementary rearrangements can be
described as donor–acceptor exchanges [239]. In this case a significantly faster rate
would probably be obtained if we chose to link higher-lying minima belonging to the
two morphologies in question. However, the barriers for interconverting minima with
different hydrogen-bonding patterns in each class are themselves rather large.
This effect illustrates the complexity introduced by the interplay between orientational
and centre-of-mass coordinates: minima with essentially the same centre-of-mass
coordinates but different hydrogen-bonding arrangements span a wide range of
energy [234]. The profile in figure 13 suggests that a steady-state approximation is
not likely to be very accurate, due to the presence of low-lying intervening minima.
Not surprisingly, the calculated rate constants in the range 30K � T � 150K are
very small, with barriers from Arrhenius fits in the region 35 to 40 kJ/mol [7].

D2d − 305.41

C1 − 287.47
C1 − 287.61

C1 − 280.32

C1 − 287.41 C1 − 287.11

S4 − 305.52

Figure 10. Three-step path linking S4 and D2d cuboids in the water octamer. The point group symmetries
and energies (kJ/mol) for the TIP4P potential [231] are given below each stationary point.

Energy landscapes: calculating pathways and rates 269



5.3. Peptides

DPS studies have recently been performed for two peptides, namely the neurotransmit-
ter pentapeptide met-enkephalin (NHþ3 -Tyr-Gly-Gly-Phe-Met-COO�) [60] and the
16-amino acid ‘GB1’ peptide from residues 41–56 (the C-terminal fragment) of the
B1 domain of protein G [62]. Both studies employed the CHARMM19 force field
[249] and the EEF1 implicit solvation potential [250]. Symmetrised parameters were
defined for the dihedral and improper dihedral angle terms in residues ASN, GLN
and TYR, to ensure that rotamers have the same energies and geometries [251].

For met-enkephalin experiments indicate that the ‘folded’ conformation in
aqueous solution populates an ensemble of different structures [252]. Numerous ther-
modynamic studies have used this system for benchmarking new sampling methods
[32, 43, 253, 254]. Most of these studies identify two significant structures, namely,
the lowest energy ground state, which is a type II0 � turn, and configurations with
a type II � turn, which lie higher in energy. A free energy disconnectivity graph is
shown in figure 14, where further grouping of minima was performed to simplify the

Cs − 344.44

C1 − 334.78

C1 − 340.85

Figure 11. One-step path for isomerisation of (H2O)9; one intermediate geometry is included on each side of
the transition state to clarify the mechanism [2]. The point group symmetries and energies (kJ/mol) for the
TIP4P potential [231] are given below each stationary point.
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appearance [60]. This particular grouping scheme combines local minima if they are
connected to a central low energy minimum by transition states that lie below a certain
energy barrier [60]. The corresponding regions of configuration space are most likely to
be in local equilibrium on the time scale of folding for an appropriate choice of barrier
height. Grouping reduced the dimension of the global kinetic analysis problem
sufficiently for a master equation analysis to be feasible.

The global potential energy minimum found from basin-hopping [32, 33] has a type
II0 � turn, consistent with previous work [32, 255–257]. Both superposition and parallel
tempering calculations identified the global free energy minimum at room temperature
with configurations based upon the same structure as the global potential energy
minimum [60]. Figure 15 shows the occupation probabilities of three particular states
on relaxation from an initial non-equilibrium distribution. The groups containing
extended configurations and configurations with a type II � turn both exhibit
maximum occupation probabilities before the equilibrium distribution is achieved.

0 20 40 60 80 100 120 140 160 180
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Figure 13. A nineteen-step path linking the TIP4P global minimum of (H2O)20 (left) to the lowest energy
box-kite structure [7]. All the structures have point group C1 except for the final box-kite minimum, which has
S4 symmetry. The graph indicates the potential energy, V, as a function of the integrated path length, s,
calculated for approximate steepest-descent paths. The geometries of the transition states and minima are
shown above and below this curve, respectively.
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Both could therefore be considered as intermediates on the folding path, although the
rate-determining step in a two-state description is between the configurations with �
turns. The corresponding DPS folding rate was calculated as 3:1
 107 s�1 at 298K
[60], in reasonable agreement with previous work [258–260].
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Figure 14. Free energy disconnectivity graph for met-enkephalin at 298K. Each node represents a group of
minima constructed as described in reference [60]. The lowest 38 groups are shown, as these are calculated to
contain 90% of the population. The energy is in units of kcalmol�1. The low energy region of the graph
contains two funnels, highlighted in red and blue.
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The GB1 peptide forms a � hairpin in the intact protein [261] and when isolated in
solution [262]. Folding experiments based upon tryptophan fluorescence indicate
two-state kinetics with a folding rate constant of 1/(6 ms) at 297K [263]. A simple
model, where each residue can adopt a random coil or hairpin conformation, suggests
that the first step in folding is formation of the turn region [263, 264]. Various
simulation studies have also addressed this system [103, 265–271], and have generally
found a � hairpin to be the dominant conformation in solution at room temperature,
except for one replica-exchange study [272]. However, the equilibrium structure is not
rigid, and most simulations find that only about half the native hydrogen bonds
from the crystal structure are present at any one time [268, 273, 274], in agreement
with NMR data [275]. There is also some evidence that existing empirical force fields
may overbind the secondary structure [268].

For this system, the DPS stationary point database was constructed in a series of
different runs, applying Dijkstra’s algorithm [109, 110] to ensure that the discrete
path making the largest contribution to the rate constants was considered. Minima
were grouped according to a kinetic scheme based on downhill barrier heights [62],
facilitating a master equation analysis, which was compared with the results for the
ungrouped minima. The final calculated folding time was between 30 and 90 ms,
which is about an order of magnitude slower than the experimental value of 6 ms.
This result constitutes reasonable agreement given that harmonic vibrational
densities of states are employed, as well as an implicit solvent description. A free
energy disconnectivity graph is shown in figure 16, and the occupation probabilities
for various groups as a function of time (calculated from KMC) are shown in
figure 17. Representative structures from the different groups are also illustrated
in these figures.
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Figure 15. Results of master equation dynamics calculations for met-enkephalin at 298K starting from a
high temperature distribution (800K) [60].
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For this system, an overall two-state description is not appropriate, as there are sets
of local minima between the extended and native states that are significantly populated.
A detailed analysis of the stationary point database identified two significant intermedi-
ates. The first of these states, which dominates up to a time of about 10�6 s, consists
mostly of minima like F and G, with relatively loose structures. These configurations
exhibit significant intramolecular hydrogen bonding, but there is no identifiable
hydrophobic core. The second intermediate, whose occupation probability peaks
around 10�5 s in figure 17, contains more compact structures like C, D and E.
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Figure 16. Free energy disconnectivity graph for GB1 at 298K, grouped as discussed in the text [62].
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Nevertheless, the folding kinetics can be described approximately by a single-
exponential form, based upon the rate-determining step from the minima in groups
C, D and E to the folded state.

The principal folding intermediate identified in a previous multicanonical Monte
Carlo study was described as a free energy minimum (the ‘H’ state) with no native
hydrogen bonds but a well-packed hydrophobic core [265]. Minima in groups C, D
and E characterised in the DPS study do correspond to a small decrease in the
radius of hydration of the hydrophobic core, defined by the non-hydrogen atoms in
the sidechains of the tryptophan, tyrosine, phenylalanine and valine residues.
However, a few native hydrogen bonds were also identified in some of these minima.
It is possible that these hydrogen bonds become well defined in the DPS study
simply because all the structures considered correspond to local minima.

The free energy surfaces calculated by Zhou et al. [268] suggest that the choice of
order parameters can affect conclusions about the order of folding events. These
authors did not find a significant ‘H’ intermediate. However, a parallel replica
dynamics investigation [269] provided evidence for an intermediate ‘H’ state with
some key hydrophobic contacts formed. A transition path sampling unfolding study
also located a metastable ‘H’ intermediate, and concluded that the rate determining
step for unfolding was from the folded state to ‘H’ [270].

It would be useful to conduct further benchmarking calculations for GB1 to try and
resolve some of the above discrepancies. In particular, another recent analysis suggests
that alternative structures may also be significant for this peptide [103]. Future DPS
studies are therefore likely to revisit this system. In particular, new methods to construct
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Figure 17. Time evolution of the average occupation probabilities of different groups of minima for GB1
calculated from KMC simulations [62].
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the stationary point database are currently under development. These schemes will
probably be more efficient than the framework used to generate the results discussed
in this review.
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