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How did I get to know Steve ?

Finite time thermodynamics
Phase space geometry and reaction dynamics
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Three body scattering
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Figure 3.14.  The evoluton of the unstable manifold shown on the conliguration space(r, 71
Thin lines indicate the equi-energy lines of the potental with B = R (a) 7~ 0. (b)) 7 ~ (30
(el 7~ Odm (d) 7~ L5 [Reprinted with permission [rom M. Toda, Phys Rer. Let, Vol 74
(1995, p 2670, Copyright 0 1995, American Institute of Physics)
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e Geometry of Chemical Reaction Dynamics in Gas and
Condensed Phases: 06/10/2013 - 06/14/2013
Tamiki Komatsuzaki, Mikito Toda, R. Stephen Berry
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Dynamical reaction theory based
on phase space geometry



Phase space geometry

e Saddle, 1ts stable/unstable manifolds, and how
they intersect

 Normally hyperbolic invariant manifolds, its
stable/unstable manifolds, and how they
intersect

Separation of time scales 1n unstable behavior

represented by Lyapunov exponents



Phase space geometry for 2 dof

Figure 318. Bottleneck in the predissoaation of Hel, (a) orbits trapped within the canton
created by the nonlinear resonance and (b)) orbits trapped between the cantori and the
separatrix. [Reprinted with permission rom M. 1. Davis and 5 K. Gray, J. Chem. Phys, Vol
B4 (1986), p. 3389, Copyright 0 1986, American Institute of Physics. ]



Phase space geometry for 3 dof
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Figure 3.11. An example of homoclinic tangency in a model of Hel, that includes the
reedom of internal rotation. [ Reprinted with permission [rom R, E. Gillilan and G. 8. Ezra, J.
Chem. Phys, Vol 94 (1991, p. 2648, Copynght (0 1991, Amerncan Institute of Physics. ]



Breakdown of
separation of time scales

e New phenomena in reaction processes

 Dynamical switching of reaction
coordinates



Reaction coordinate
vs chaos of vibrational motions
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Figure 32,  Breakdown of normal hyperbolicity at a saddle.



Beyond Statistical Reaction Theory

A Dynamical Switching of a Reaction Coordinate
to Carry the System Through to a Different Product State
at High Energies
Phys. Rev. Lett. 106, pp.054101, (2011)
H. Teramoto, M. Toda and T. Komatsuzaki

Breakdown Mechanism of Normally Hyperbolic Invariant
Manifold in terms of unstable periodic orbits and
homoclinic/heteroclinic orbits in Hamiltonian Systems

To appear in Nonlinearity

H. Teramoto, M. Toda and T. Komatsuzaki

Experimental Observability of Dynamical Switching

H. Teramoto, M. Toda, M. Takahashi, H. Kono
and T. Komatsuzaki, Submitted



Hydrogen atom 1n crossed electric
and magnetic fields

week ending

PRL 106, 054101 (2011) PHY SICAL REVIEW LETTERS 4 FEBRUARY 2011

Dynamical Switching of a Reaction Coordinate to Carry the System through to a Different
Product State at High Energies

Hiroshi Teramoto, " Mikito Toda,” and Tamiki Komatsuzaki'

'Molecule & Life Nonlinear Sciences Laboratory, Research Institute for Electvonic Science, Hokkaido University,
Kita 20 Nishi 10, Kita-kn, Sapporo 0000020, Japan
:E.":;umpff.t Svstem Laboratory, Department of Physics, Faculty of Science, Nara Women's University, Nara, 630-8506, Japan
(Received 30 November 2010; published 31 January 2011)

Questions of how the nature of a reaction coordinate that dominates the reaction ceases to exist and
whether some new features emerge as an increase of total energy of systems are investigated for many
degrees of freedom Hamiltonian systems. As a model system, a hydrogen atom in crossed electric and
magnetic fields is scrutinized. It is shown that, when the total energy increases, the reaction coordinate no
longer dominates the reaction as did at the lower energies. In tum, a new reaction coordinate emerges,
connecting totally different reactant and product states. Furthermore, depending on which parts of the
phase space the system traverses through the saddle, the system nomuniformly experiences the switching
of the reaction coordinate leading to the different produoct state. The universal mechanism of the cessation
and the switching of the reaction cocordinate at high energy regimes above the saddle is investigated.

DOL: 10 103/PhvsRevien 106,054 101 PACS numbers: 0545 —a, 452000, 82.20.—w



Switching of reaction coordinate
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Separation of time scales 1n
macroscopic reactions

Figure 31. Flow of BZ reaction when limit cycle exists,



Possibility of new mechanism

e Switching of limit cycles
 Chaotic wandering



Phase space structures
and dynamical reaction theory

e Possibility of new mechanism in both
microscopic and macroscopic description

 Research fields to be explored further
both 1n molecules and rate equations



Collective behavior of Proteins



Motivation of my talk

 Proteins ' a tiny existence which
performs information processing

statistical behavior of small systems
dynamics vs ensemble

e Multiple scales coexist 1n 1ts behavior
without large scale gaps

emergence of collective motion



Proteins are hierarchical

Hierarchy of structures of proteins
multiple hierarchy

Hierarchy in dynamics ?

Correspondence between hierarchies of
structures and dynamics ?

Is the hierarchy rigid ?



Problem 1:
How do proteins function ?

e Traditional view of proteins

 Proteins have definite and rigid
conformations

o Key vs. key holes
<= Essential for biological functions



Problem 1:
How do proteins function ?

 Conformation change and fluctuation
 Reaction center 1s rigid ?

 Relation between conformational change
and fluctuation



Problem?2:
How do proteins fluctuate ?

* hinges vs. cracking ?
e Random vs. organized ?
* Correlation in space and time ?



Problem3: How are fluctuation
related with function of proteins ?

 Functionally important motions ?



Purposes and methods

e KExtract collective behavior
from dynamical viewpoint

e Resort to

Wavelet transformation
and
Dimensional reduction such as

SVD, CCA, TICS, Kernel ...



Wavelet Transformation

e Extension of Fourier Transformation
to non-stationary time series

 Window to extract local change of
oscillation

e Continuous vs. discrete transformation



Morlet Wavelet Transtformation
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Singular Value Decomposition

e Extension of eigenvalue decomposition
to rectangular matrix ( singular values
are non-negative real )

 Wide range of application including
reduction of dimensionality, statistical
analysis, quantum 1nformation



Degrees

SVD for each time.

Singular Value Decomposition

A matrix M can be divided 1nto following

form M =U ZV

U : Left Singular vectors
2 : Singular Values
V : Right Singular vectors

Feature of _
Space Amplitude
Frequency
other
0
W g

Complex conjugate

Feature of
frequency
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Functional PCA

 Time ordering of data
e Time scales
 Nonstationarity



Target Protein

Thermomyses lanuginosa lipase (TLL)
- 269 residues
- The active sites are covered by the “lid”

- Seven structures are reported for TLL in PDB.

The initial structure of our
MD simulation

Open
. conformation s



Dataset

Time-series Data of Molecular Dynamics Simulation
e Software: AMBER9 (SANDER)

e Apply MD to “1TIB” for 2ns

with the time step of 10ps
— Temporal sequence data for 200 steps

=>» Apply the feature extraction method to
the trajectory data

e Use the data for the time steps between 0.2ns and 1.8ns
e Low-pass filter : M;=15 and M,=50

The frequency range with its period between 133ps and 40ps
e The result of SVD

— we obtain at most K=min(3N, 2(M;—M,+1)) non-zero singular values
and their left-singular and right-singular vectors



The weight W)

Reduction of the degrees of
freedom

The weight of the first and second singular values

The weight of the singular values
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In the following analysis,
we focus on the first singular vector.



Collective motion of Ca atoms

* The first left singular vector e;_,(t)

— The first left-singular vector describes the most dominant spatial features of
the dynamics

e “Collective motion” of the protein
The motion when neighboring Ca atoms oscillate along similar directions

e Characterize “collective motion” around the p-th
Ca atom

— The three-dimensional vector: up(t) |

¢ eizl(t) - (Ul(t), ...,Up(t), ceey UN(t)), alom p 7
* We call uy(t) “the Oscillation vector” Hom @




Indexes characterizing collectivity

of the p-th Ca atom the oscillation vectors

Neighborhood } [ Similarity of

Inner Product

along the sequence
of the protein
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3 | Dpr(t) :The number of atoms within the radius r from the p-th Ca atom
r,(t) :The coordinate vector of the p-th Ca atom at time t



The strength of collective motion

Correspondence
with secondary structures
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Index for collectivity

gf secondary structures

structure Lid 5 &y
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Focus on secondary structures
with conformational change

“Lid” (correspond to the structure v15)
varies its form according to conformational changes.

Closed conformations
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The structure v6 forms a loop in the open conformations,
while it forms a-helix in the close conformations
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Correlation with other structures
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( Structure including the Lid : v15 )
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* The structures including
active sites are v23, v30, 40.



Conclusions

Method to extract hierarchy of collective motion
combining wavelet transformation and SVD

Correlation of collectivity among secondary
structures

Apply the methods to a protein TLL

— Index for collective motion within secondary structures
indicate not only their collectivity but also show
“cracking”

— Correlation between those with conformational change
and functionally important structures

Future work

— Correlation network and its modular structure

— Apply our methods to “intrinsically disordered proteins”
— Collectivity of higher structures



Dynamics from micro to macro
through mesoscopic levels

 Phase space structure enables us to find
new reaction mechanism in both
microscopic and macroscopic levels

e Various hierarchical structures exist
both 1n space and time

e How do they correlate 1n mesoscopic
levels leading to functionally important
movement?
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