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ABSTRACT

The study of glasses and supercooled liquids is not for the faint hearted. The phe-
nomenology is mysterious, and at first glance there appear to be as many ‘universal’
explanations of it as there are glass formers. At a fundamental level, this mysterious
behaviour must be due to the underlying potential energy surface (PES), which is a
consequence of the form of the interatomic or intermolecular potential function. Cur-
rently, little is known of the relationships between this hypersurface and the kinetics

and thermodynamics of glass formers.

We eschew conventional simulation techniques to focus on the PES itself. We used
global optimisation techniques to find the first fully crystalline structure for an archety-
pal model glass former, so that the inability of this system to form a crystal could be
better understood. Searching techniques for local minima and interconnecting transi-

tion states on the PES were used to characterise regions of the PES close to crystal.

We then concentrated on low-lying regions of the PES, generating large databases of
minima and transition states to better understand relaxation and transport processes
below the glass transition. Large numbers of transition states with potential energy
barriers kinetically accessible below the glass transition were found, leading to a clas-
sification of rearrangements in terms of those that contribute directly to diffusion, and
those that do not. Low frequency harmonic modes corresponding to the experimen-
tally observed boson peak were found, as was evidence that two-level systems could be
present. The results at constant volume were also verified using a new algorithm that

allowed the box lengths of the simulation supercell to vary.

Finally, we used a kinetic Monte Carlo scheme to simulate the supercooled liquid.
Surprisingly, we found that for constant volume the energetic barrier heights to diffusion
were essentially independent of temperature: instead the super-Arrhenius behaviour ob-
served in molecular dynamics was due to increased connectivity between higher energy
minima. Thus we provided an explanation for the connection between entropy and

transport processes, which has been observed in both theory and experiment.
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ABBREVIATIONS
bce Body-centred-cubic
BFGS Broyden-Fletcher-Goldfarb-Shanno minimization algorithm
BLJ Binary Lennard-Jones
CVD Chemical vapour deposition
EF Eigenvector-following
EF/BFGS Hybrid eigenvector-following / BFGS algorithm
fee Face-centred-cubic
FLD Frustration-limited domains
hcp Hexagonal-close-packed
INM Instantaneous normal modes
KA Kob-Anderson
KMC Kinetic Monte Carlo
LBFGS Limited memory version of the BFGS algorithm
LJ Lennard-Jones
MC Monte Carlo
MCT Mode coupling theory
MD Molecular dynamics
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The static structure factor for the wavevector q.
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UNITS

Generally, the most appropriate units to use for results described in this dissertation

are the ‘natural’ units, which are defined by the parameters of the potential function:

€ Energy
o Distance
m Mass

mo?/e Time

€0 Pressure
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THE MYSTERIES OF SUPERCOOLED

LIQUIDS AND THE GLASS TRANSITION

Had I been present at the Creation, I would have given some useful hints

for the better ordering of the universe.

Alfonso ‘The Wise’ 1221-84
King of Castile and Leon 1252-84

There can be little doubt that Alfonso ‘The Wise’ would have placed the glassy
state at the top of his list of handy hits for the Creator. Early in our scientific edu-
cation, we learnt that liquids freeze at their freezing point: and during everyday life
we observe little that might contradict this simplistic interpretation. In fact, our sci-
ence teachers were telling us half-truths: liquids can be ‘supercooled’, remaining fluid
below the temperature at which the solid state becomes thermodynamically favoured.
Furthermore, many materials never form their equilibrium solid, instead they exist in
an amorphous glassy state, in which they have the mechanical properties and appear-
ance of a solid, whilst at an atomic level retaining the appearance of the liquid from
which they were formed. Numerous solid state physicists have been intrigued by the
phenomenologies of both this strange ‘twilight zone’ between solid and liquid, and the

supercooled temperature range that precedes it as the material is cooled from the melt.
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0K | 30K Glass transition, T, Crystal melting point, Tp,

Low temperature specific heat anomalies Mode coupling critical temperature, T, (§1.2.4)

attributed to boson p(eak imd two-level systems
SL11

Vogel-Tamman-Fulcher Tp (§1.1.1)
Second order phase transition temperature, T (§1.2.1)
Kauzmann vanishing excess entropy temperature, Tk

Figure 1.1: Schematic diagram summarising the characteristic temperatures relevant to the

phenomenology of supercooled liquids and glasses.

It is surprisingly common for materials to form glasses—amorphous solids—when
cooled below their melting point, despite the existence of a crystalline state with lower
free energy. The glassy and supercooled liquid states have many anomalous properties:
including deviations from the Arrhenius law, ‘stretched exponential’ relaxation, excess
low frequency vibrational states and, perhaps, quantum mechanical two-level tunnelling
systems. Two principal questions need to be answered: why do materials form glasses,
and what produces their rich phenomenology?

In 1969 Goldstein® realised that the behaviour of glass formers at low temperature
is a consequence of the form of the potential energy surface (PES). In the landscape
dominated! regime, the dynamical behaviour takes place on two distinct timescales:
fast intrawell oscillations and slow jumps over energy barriers between local minima on
the 3N + 1 dimensional PES. This treatment is applicable at temperatures where the
two time scales are distinct. Above this point, the liquid is so fluid that the system
does not have time to equilibrate within individual minima.

The work that we are presenting in this dissertation is concerned entirely with en-
ergy landscapes of model glasses, in an attempt to understand better the phenomenol-
ogy of the deeply supercooled and amorphous solid regimes. In the body of this in-
troduction, we will summarise the intriguing properties of glass formers, some key
statistical mechanical theories, and outline some recent theoretical studies of energy

landscapes.



Introduction 3
1.1 PHENOMENOLOGY OF SUPERCOOLED LIQUIDS AND GLASSES

The description of thermodynamic and kinetic properties of glass formers is dominated
by a plethora of characteristic temperatures, which are derived from statistical mechan-
ical theories or extrapolations, or are simply the temperatures at which transitions take
place. Figure 1.1 is an attempt to summarise these temperatures graphically, for ease
of reference.

Starting from the high temperature end, T), is the melting point of the crystal,
below which the liquid is, by definition, supercooled and is in metastable equilibrium.
T, is the temperature at which idealised mode coupling theory (MCT) predicts that
the relaxation times will diverge (§1.2.4). T, is the experimental glass transition tem-
perature, generally defined as the point at which the viscosity of the supercooled liquid
reaches 10" poise. Tp, Tk and T5, although obtained in different ways, are often con-
sidered equivalent, and are discussed in §1.1.1, §1.1.2 and §1.2.1, respectively. Finally,
in the 0 - 30 K region, anomalies are observed in the specific heat capacity: these are

discussed in §1.1.6.

1.1.1 SUPER-ARRHENIUS BEHAVIOUR

The transport properties of many supercooled liquids slow down much more rapidly
approaching the glass transition than the Arrhenius law, exp (—AGT / RT) might pre-
dict. The activation free energies for these processes, AG!, appear to increase as the
temperature decreases. Several fitting functions have been proposed, of which the

Vogel-Tammann-Fulcher equation is probably the most commonly used:>*

T =T9exp [A/(T —Tp)], (1.1)

where 7 is the relaxation time, A is a constant, and Ty is a non-zero temperature
at which the relaxation time appears to diverge. The VTF expression is usually a
good fit over 2 to 4 orders of magnitude in relaxation time, in the temperature range
approaching the glass transition.
Angell has used a Tgy-scaled Arrhenius plot of the viscosity to classify liquids as
)5

‘strong’ or ‘fragile’.”> Figure 1.2 is a schematic illustration of such a fragility plot.

Liquids at the strong extreme, for which the activation energy is constant, tend to
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Figure 1.2: Schematic ‘fragility plot’, after Angell.> Relaxation and transport processes in
strong liquids have an Arrhenius temperature dependence, with a constant activation energy.
As the glass transition temperature, Ty, is approached from above, the activation energy in

fragile liquids appears to increase.

be covalent network formers, of which the most familiar example is SiOy. A strength
parameter, Dp, is sometimes defined as Dy = A/Ty. Dy tends to infinity for strong
liquids, because Ty = 0 for materials that obey the Arrhenius law exactly. An analo-
gous equation can be used to describe the pressure dependence, with a similarly defined
strength parameter, Dp.%7 Another common definition of kinetic fragility is the ‘steep-

ness index’,® my, which is defined as:

dlog T
m = _— ) 12
" D |y, (-2

where 7 is the characteristic relaxation time of the liquid, and T} is the glass transition
temperature.

It is a reasonable assumption that the dominant process limiting transport and
relaxation in SiOg is the breaking of the Si—O bond. At the other extreme, the inter-
actions in fragile liquids tend to be weaker and less directional, such as Coulomb or

van der Waals forces. In fragile liquids, the glass transition is often marked by a large
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jump in the heat capacity, a feature that Angell has associated with a higher density
of minima on the energy landscape per unit energy increase, with low barriers between
them.® This discontinuity in the heat capacity defines ‘thermodynamic fragility’. This
is an example of the apparently coincidental correlations between kinetic and thermo-
dynamic properties that are common in the phenomenology of supercooled liquids and
glasses.

Stillinger has hypothesised that the super-Arrhenius behaviour of fragile liquids is
due to a potential energy landscape in which the minima are arranged into ‘megabasins’
or ‘craters’.!’ Thus, as the temperature decreases the system spends more time at the
bottom of these megabasins, and the effective activation energy increases. At the other
extreme, strong liquids would have a ‘uniformly rough’ energy landscape, leading to

Arrhenius temperature dependence.

1.1.2 THE KAUZMANN PARADOX AND THE ‘ENTROPY CRISIS’

Liquids have higher specific heats than crystals, and so the entropy difference between
the liquid and the crystal decreases as the liquid is cooled. Kauzmann pointed out!!
that extrapolation of experimental data for the excess entropy implied that it would
vanish for many liquids at a non-zero temperature, Tx. If this trend were continued
below Tk, the entropy of the liquid would eventually become negative! Of course, the
idea of such an ‘entropy crisis’ violates the third law of thermodynamics.

In practice, however, the glass transition intervenes, rapidly decreasing the heat
capacity to a value similar to that of the crystal. Kauzmann’s paradox is that the glass
transition, a kinetic phenomenon, should enable the system to avoid a thermodynamic
crisis.

Strong liquids tend not to have very small values of Tx. Indeed, Angell has pointed
out that Tk correlates well with the VITF divergence temperature, Ty, and has sug-
gested that Ty = Tk, and that they correspond to the configurational ground state

temperature. 12

1.1.3 STRETCHED EXPONENTIAL RELAXATION

The relaxation of a liquid in response to an external perturbation, such as its polar-
isation in response to an electric field or the stress due to an applied strain, can be

described by a response function, F(t) = [0(t) — o(o0)] / [0(0) — o(00)], where o is the
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measured quantity. In simple liquids, these functions have the conventional Debye form,
a single exponential. In many supercooled liquids, they are often better fitted by the

Kohlrausch-Williams-Watts (KWW) stretched exponential relaxation function:'314
F(t) = exp [— (t/T)e] 0<0<1. (1.3)

Conventional exponential Debye relaxation corresponds to § = 1. Fragile liquids tend
to depart from Debye behaviour and 6 is generally found to decrease with increasing
fragility. Palmer et al. found that this type of stretched exponential function can
arise from a model with hierarchically constrained dynamics, where some transition
states may only be accessed once others have been overcome.!> Thus slower degrees
of freedom constrain faster ones, generating a wide range of relaxation times. This
type of relaxation is observed in such a wide variety of systems that it seems likely
it is produced by a number of different mechanisms. These have been classified by
Edholm and Blomberg as either serial or parallel.'® Serial mechanisms correspond to
the model of Palmer et al, where the system proceeds through a number of barriers with
different heights; parallel models invoke an ensemble of molecules, each with a different
exponential relaxation rate. These authors found that stretched exponential relaxation
was reproduced well by a barrier distribution proportional to 6 exp [fz — exp 6z]: 0 is
the KWW exponent and x = € — 19, where € is the energy and 7y is a constant. They
also derived a stable method to derive the barrier distribution from the exponential

function.

1.1.4 oa—pf BIFURCATION

Johari and Goldstein used dielectric loss spectroscopy to study relaxation processes in
rigid molecules, such as chlorobenzene,'” and then non-rigid molecules, such as aliphatic
alcohols.'® In dielectric loss spectroscopy, a sinusoidal oscillating electric field is applied
across the sample. The complex field and displacement® are given by E* = Ey exp (iwt)
and D* = Dy exp (iwt — d¢), with Dy and Ejy their respective amplitudes. A complex
permittivity for the dielectric can then be defined by:

D* = 'E* = (¢ —i")E*. (1.4)

*The electric displacement, D = ¢oE + P where ¢ is the permittivity of free space, E is the applied

electric field and P is the polarisation."®
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The real and imaginary parts of €* are thus related to the phase angle . by;
ginary

€ = |€| cos d¢; €' = || sin ¢; € /€' = tané.. (1.5)

€” is known as the dielectric loss factor, as it can be shown that it is proportional to
the rate of energy dissipation,?’ and tan J, is the loss tangent. €' and €” are obviously
frequency dependent, and it is generally found that €’ exhibits a peak at a frequency
Q¢. € decreases monotonically from its static value €g, to a limiting high frequency
value €. In the materials studied by Johari and Goldstein, ez and €4, are sufficiently
similar that the peak positions in tan d. and €’ can be considered equivalent.

It is inferred that the position of the peak in €’ corresponds to the rate of dielectric
relaxation in the material, and thus it is inversely proportional to the characteristic
relaxation time. Hence an Arrhenius plot, In ), against 7!, should yield the activation
energy for dielectric relaxation.

Johari and Goldstein found that it was apparently a ‘near universal’ property of
glass formers that above the glass transition the position of €2, had super-Arrhenius
temperature dependence, with the activation energy in the 30 — 110kcal/mol range,
and that the peak disappeared close to T;. Above and below T}, there was an ad-
ditional peak with Arrhenius behaviour, and an activation energy between 4 kcal/mol
and 10kcal/mol. They labelled these peaks o and 3, respectively, and inferred that
the a peak corresponded to structural relaxation—which is frozen out at the glass
transition— and the 8 peak corresponded to some form of ‘secondary relaxation’. Such
a bifurcation had previously been well-documented in polymer glasses,?! with the obvi-
ous mechanism being that primary relaxation corresponded to movement of the polymer
chains themselves, whereas the movement of polar side groups produced the secondary
relaxation. At high temperatures, polymer glasses tend to exhibit a single peak in the
€” spectrum, with Arrhenius temperature dependence and the same activation energy
as the low temperature 8 processes. Bifurcation cannot be observed directly, owing to
the breadth of the o peak. Thus a bifurcation temperature, T, g, can only be obtained
from extrapolation.

While there is a simple and convincing explanation for this bifurcation in polymer
glasses, Johari and Goldstein were only able to speculate about possible mechanistic

explanations in the molecular glasses that they had studied.!”>18:22
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1.1.5 STOKES-EINSTEIN DECOUPLING

Another decoupling often occurs at a temperature around 1.2 Tg.23’30 Above this
temperature, both the translational and rotational diffusion coefficients are inversely
proportional to the viscosity, as predicted by the Stokes-Einstein and Debye-Stokes-

Einstein equations:

kgT
D, = 1.6
t 6mnrs’ (1.6)
Dy =+ = FeT (1.7)

"~ 6. 8myrd
D; and D, are the translational and rotational diffusion coefficients, respectively, r;
is the spherical radius of the molecule and 7 is the viscosity. The rotational diffusion
time, 7., is the mean time taken for a molecule to rotate by 1radian.

Approaching Ty, it is found that D, and the viscosity remain inversely propor-
tional, as predicted, while D, is enhanced, sometimes by more than two orders of
magnitude.?»2?%31 The size of the enhancement of D; depends on the choice of probe
molecule used to measure translational diffusion: the enhancement is greatest for those
of a similar size to those of the substrate, while it is negligible for much larger probe
molecules.?®

The breakdown of the Stokes-Einstein equation is often taken to mean that, on aver-
age, the molecules translate further for each rotation. However, Ediger has pointed out
that this is only the case if the supercooled liquid is dynamically homogeneous.?® If the
liquid is heterogeneous, Stokes-Einstein breakdown is still possible even if translational
and rotational mobility remain proportional to each other within ‘slow’ or ‘fast’ regions.
This is because the correlation functions that contribute to the two diffusion constants
are averaged differently: D, is dominated by slowly rotating molecules, while the most
important contributions to D; are from fast-moving molecules. This is because, to a
first approximation, experiments measure (1) for rotation, while they measure <7'_1>71

for translation.

1.1.6 LOW TEMPERATURE ANOMALIES: BOSON PEAKS AND TWO-LEVEL SYSTEMS

Many thermodynamic properties of glasses are anomalous at low temperatures, for

instance the specific heat, which is predicted by Debye theory to be proportional to 73
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as T — 0, has an excess linear term. In the 0 — 10 K region, a two-level tunnelling
model has been invoked to explain the anomalies,3? 3% while between 10 and 30 K extra,
low-frequency vibrational states, known as the ‘boson peak’, are generally accepted to
produce the excess.34 36

Two-level systems have been suggested as the cause of the anomalous specific heat
and thermal conductivity of glasses in the 0 — 10 K region.3? 34 A two-level system is
a pair of minima separated by a barrier that produces a splitting of around 1K, after
tunnelling has been taken into account.?” Angell has noted that anomalous behaviour
in the 0—10 K and 10— 30 K regions tend to occur together if they are seen at all, 363839
and inferred that the same low frequency, anharmonic modes are associated with the
boson peak and two-level systems. It is certainly conceivable that the potential will be
very anharmonic at the bottom of a minimum that is connected to a low lying transition
state, as is the case in a two-level system.

At low frequency, the density of states in Debye theory, gp(w), is expected to

be proportional to w?

. Most crystalline materials follow this behaviour well at low
frequencies. In glasses, the boson peak is visible as an excess in g(w) at low frequency
(v ~ 1THz) over that predicted by Debye theory. This phenomenon has been observed
with a number of experimental techniques, including neutron scattering® and Raman
spectroscopy.*!

The analysis of vibrations in crystals is simplified by the periodicity. A wave vector,
q, can be introduced, which is related to the size of the unit cell and characterises the
vibrational eigenvalues. For a crystal of M unit cells with N atoms in each, there are
M values of q, each with 3N corresponding values of the vibrational eigenvalue, w;(q).
Hence, in a crystal, there are 3N ‘branches’ in the Brillouin zone. Acoustic branches
and optic branches are distinguished by the behaviour of the vibrational eigenvalues,
the w;j(q), as the wavevector q tends to zero: for the three acoustic branches w;(q)
tends to zero in this limit, while for the remaining 3N — 3 optical branches, w;(q)
tends to a finite value. In the q = 0 limit, the displacements of the atoms are totally
in phase for acoustic modes. The modes can be further subdivided into transverse
and longitudinal, depending on the direction of the eigenvector with respect to the
scattering vector, q. However, for a general value of q, the modes are a mixture of
both optic and acoustic, and longitudinal and transverse components. In amorphous
solids the unit cell is essentially infinite, and so the Brillouin zone collapses to q = 0,

and for a given branch, as g increases the loci of points in the w — g relationship become
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increasingly smeared out and ill-defined. For a more detailed discussion of vibrations
and neutron scattering, see Ref 42.

Although the boson peak has been the subject of much work, its origin remains
controversial. Theoretical investigations of the boson peak that can be directly com-

pared to the results presented here, include MD simulations of vitreous silica,*3:44

a
soft-sphere glass*> and the unit density Lennard-Jones glass.*6 These studies tend to
suggest that the vibrations responsible for the boson peak are (quasi)localised and an-
harmonic, although Mazzacurati et al. suggested that the low frequency vibrations in
a Lennard-Jones system were best described as a combination of uncorrelated random
motion and well defined sinusoidal waves.*¢ Schober and Oligschleger observed in their
simulations of a soft sphere glass*> that the number of modes with v < 0.16 decreased
by 6% on ageing at 10% of the glass transition temperature for approximately 5000
vibrational periods.*® This observation also suggests that at least some of the low
frequency modes may be centred around defects, which are annihilated on ageing.

A number of simulations and experiments have suggested that the low frequency
modes in silica contributing to the boson peak can be described as strongly anharmonic,
localised relative rotations of coupled SiO4 tetrahedra.*%47:48 Taraskin and Elliott
suggested that these modes may be produced by hybridisation of plane waves and
low frequency band-tail states.** The band-tails are produced by the disorder, which
destroys the band like structure of the crystalline vibrational density of states (VDOS),
pushing states up and down in frequency. Thus, the plane waves can either interact
with states that originate from a low-lying optic band or from the short wavelength
part of the acoustic band. These authors also measured the Ioffe-Regel crossover for
this system.*® This is the point at which the mean free path of a wave equals its

wavelength:

lir = A1R- (1.8)

At this point, a wave can no longer be readily defined, and so the Ioffe-Regel crossover
is a popular criterion for localisation. Using two different methods, they found that
Arr was = 1 THz, extremely close to the boson peak frequency.

The boson peak is almost a universal characteristic of glasses, although its intensity

tends to decrease with increasing fragility.!? Das has suggested in a recent paper that
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this correlation is due to the speed at which defects relax: long lived defects in strong
glasses might give rise to extra intensity at an intermediate frequency following the
quasielastic Raman peak.’® He proposed that in fragile liquids the defects have a
shorter lifetime, and so have less effect in the intermediate frequency range.

The soft potential model (SPM) has been used to simulate both the boson peak
and two-level systems.5™:32 In this model, it is assumed that there exists a single type
of soft structure, which gives to rise to low frequency anharmonic modes and two-level
systems. The modes are described using a quartic polynomial in the mass-weighted

displacement:

V(z) =e[q(@/o)? +H@/o)® + (&/0)]. (1.9)

where o is the length scale of the potential, and % is the mass-weighted displacement,
T = /M. 7 and { are adjustable parameters, whose variation is described by distri-
bution functions. The soft potential can describe both single and double wells. Schober
and Oligschleger used soft modes obtained from MD simulations of a soft sphere glass
to form distribution functions for these parameters.*> Their results agreed well with
the assumption of the model that € is described by a narrow distribution, while 7 and

t are described by random variations of the environment around the soft potentials.

1.1.7 EFFECTS OF PRESSURE

Measurements of D and m7 are not always consistent: Paluch et al. found in dy-
namic light scattering studies of the fragile glass former EPON 828 that Dy was pres-
sure independent, while m7 decreased—the liquid became less fragile—as the pressure
increased.’® The sensitivity of the relaxation time and glass transition temperature
to the pressure is given by the pressure coefficients (dIn7/dP)p_, and (dTy/dP)p_o,
respectively. In general, both of these increase with increasing fragility.>*
Experimental studies of transport processes in glasses under high pressure have
found that the free volume model of Cohen and Turnbull®® fits experimental results
reasonably well. In this model, the rate of diffusion in a hard sphere mixture depends
on the probability of voids opening up through the redistribution of free volume. These
authors obtained an equation analogous to the Arrhenius law, D = Aexp [—yv*/vy],

in which A and v are constants, and v* is the ‘activation volume’. vy = ¥ — vg, the
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difference between the average volume per molecule in the liquid, ¥, and the van der
Waals volume of the molecule, vg.

The fragility of some glass-formers is affected by pressure, but the origin of this
dependence is unclear. Liquids that are classed as fragile under atmospheric pressure
either have fragilities that are not affected by pressure within experimental error, such
as ortho-terphenyl,? chlorobenzene-decalin,3” poly(vinyl acetate) and poly(ethyl acry-
late);%® increase with pressure, like glycerol and dibutyl phthalate;’° or decrease with
pressure, like epoxy resin,’ poly(methyl acrylate), poly(vinyl chloride) and polystyrene.®®
Salol exhibits a maximum in its fragility as the pressure increases, which Schug et al.
attributed to increased hydrogen bonding at high densities.’® The fragility can even be
path dependent: Huang et al. found that the for some polymers the steepness index,
my, at the same (T}, Py, V) state point depended on whether it had been reached

under isobaric or isochoric conditions.?8

1.2 DOMINANT THEORIES OF THE GLASS TRANSITION

1.2.1 ApaM, GIBBS AND DIMARZIO’S CONFIGURATIONAL ENTROPY THEORIES

The theories of Gibbs and Dimarzio,%° and Adam and Gibbs®! suggested an underlying
thermodynamic explanation for both the thermodynamics and kinetics of supercooled
liquids and glasses, in terms of the configurational entropy.

Gibbs and Dimarzio used the familiar model of semiflexible polymer chains on a
lattice, in which each lattice site is either occupied by only one monomer, or is vacant.
They extended Flory’s expression for the number of ways of packing polymer chains in
solution®? to describe a pure polymer containing vacancies, and thus were able to derive
an expression for the canonical partition function of the system. This analysis predicted
a second-order phase transition at a temperature 75, below Ty, as the functional forms
of the free energy, entropy and volume of the system were different above and below 75,
but were equal at T' = T5. Their model predicted that the configurational entropy of the
glass would be zero at 75, as the glass became trapped in the lowest possible potential
energy configuration. Configurational entropy theories and the apparent coincidence of
Ty, T and Tk have given rise to the concept of an ‘ideal glass’. The glass occupies its
configurational ground state: the lowest amorphous potential energy minimum.

Comparison with experimental results for a number of polymer glasses suggested

that the glass transition was the laboratory manifestation of the ideal second order
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transition: increased sluggishness of the supercooled liquid prevented observation of
the predicted discontinuities at T,. However, Stillinger has argued that for glasses of
limited molecular weight, with physically realistic potentials, there cannot be either
divergence of relaxation times or an ideal second order transition at the Kauzmann
temperature.%® Assuming that there is an ideal glass and a Kauzmann point at positive
temperature, he deduced that either (a) structural excitations out of the ideal glass state
are localised and require bounded enthalpy, but the number of them is not proportional
to N, unlike independent excitations, or (b) that the barriers to excitation diverge
as the concentration of excitations goes to zero. Neither of these conditions appear
reasonable for glass-formers with small molecular weight and realistic potentials, but his
arguments do not necessarily apply to polymer glasses where the mean molecular weight
is proportional to the system size. In such systems there may not be configurations
that are low in energy that can be created by introducing point defects in the ideal
glass.

Adam and Gibbs subsequently developed these ideas, deriving their famous equa-
tion, which relates the relaxation time of the supercooled liquid directly to the config-

uration entropy, S:

C'Ap
TS, '’

(1.10)

T = Tp exp

where Ay is the free energy barrier per molecule or polymer segment in the cooper-
ative group, and C’ and A are constants. The derivation treats a polymer glass as a
collection of independent subsystems, each composed of z monomers, that rearrange
in a cooperative fashion. The next assumption is that the free energy barrier to rear-
rangement in this cooperative region is proportional to z, i.e. equal to zAu. While
this is reasonable for polymer glasses, in which relaxation takes place by the rotation
of polymer segments, it is not obvious why this should necessarily be the case in non-
polymeric or non-networking forming glasses with low molecular weight, such as OTP,
or the binary Lennard-Jones model glasses discussed later in this dissertation. The
temperature dependence of the minimum number of segments that can take part in
a rearrangement, z*, is derived using assumptions about the corresponding minimum

configurational entropy, s}, giving the crucial result:
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_ Nys;
=5

z*

(1.11)

In the simplest case, there are only two configurations available to the rearranging
subsystems— ‘before’ and ‘after’—and so s} = kg In2. Thus, z* is inversely proportional
to the macroscopic configurational entropy of the system, S., and so the rearranging
subsystems appear to increase in size as the temperature is lowered. '

The geometric progression for the average transition probability was then truncated
at the term in z*, to yield equation (1.10). VTF % behaviour can be retrieved from
equation (1.10) if the specific heat of the glass, Cp, is assumed to be constant and
the relaxation time is reciprocally related to the transition probability. Angell has
commented on the derivation of the Adam-Gibbs equation that ‘the general view of
theoreticians [is] that it cannot be understood’.56

The mathematics of relating entropy to subsystem volume is robust, but we ques-
tion whether this shows that the cooperativity of rearrangements necessarily increases
as the configurational entropy decreases. The Adam-Gibbs argument would not only
apply to amorphous materials. Consider vacancy migration in, say, an fcc crystal. At
sufficiently low temperatures, for a subsystem of a given size, only configurations con-
taining one or zero vacancies will contribute significantly to the partition function. At
a given temperature, we can define the average volume of crystal that contains a single
vacancy, which diverges as we approach absolute zero provided that the crystal remains
in equilibrium. However, while this minimum volume of crystal that has configurational
entropy s; is diverging, the barrier to diffusion obviously is not. The rearrangements
available consist either of migration or destruction of this vacancy. However, these
rearrangements involve at most O (10) atoms, and so it is obviously not the case that
the barrier depends linearly on the value of z* at low temperatures. We argue that
the relationship between barrier height and the size of relaxing subsystems inherent

in the derivation of the Adam-Gibbs equation is only applicable to polymers, because

fAdam and Gibbs used a slightly unusual definition for the configurational entropy, S. =
ks ln W, (U,V), where W, is the number of configurations corresponding to the macroscopic average
potential energy, U, and average volume of the system, V. Thus S is the logarithm of the maximal

term in the partition function.
tAdam and Gibbs®' related their model to the Williams-Landel-Ferry (WLF) equation,®® % which

is mathematically equivalent to the VTF equation (1.1), but more popular for polymer glasses owing

to the apparent universality of its parameters.
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the covalent bonds and steric hindrance between monomers force them to relax coop-
eratively. Thus, in our view, it does not follow that glass-formers with low molecular
weight should behave similarly.

Dzugutov suggests that interpretation of the cooperative dynamics of supercooled
liquids in terms of Adam-Gibbs theory is ‘logically incorrect’, as the equation con-
tains the configurational entropy—a property of the static structure—from which time-
limited cooperativity is decoupled.’” Johari has correctly pointed out that some care
should be taken in the determination of S..6% Tt is often assumed that at the glass tran-
sition the entropy difference between the glass and the crystal, AS(T,), is is equivalent
to the configurational entropy, S;(7y). This assumption neglects any excess vibra-
tional contributions to the entropy in the glass, which may be considerable owing to
anharmonicity and an excess low frequency density of states.

Notwithstanding some of these counter-arguments, the Adam-Gibbs equation has
successfully described the dynamics in several glass forming systems. Sastry’s®” results
with the binary Lennard-Jones model are of particular interest to us. He obtained
the configurational entropy using the relationship S. = Siotar — Syip, Where Sy;p is
the vibrational entropy within the harmonic approximation. The temperature and
configurational entropy dependence of the diffusivity predicted by Adam-Gibbs, In D ~
(T'S.)~!, was an excellent fit to the simulation results. As shown above, configurational
entropy must be proportional to T' — T} if the Adam-Gibbs and VTF equations are to
be consistent. Sastry found S, to be almost linear with 7" — Tj, with a slight increase
in slope at lower temperatures.5
Hodge has observed that 6, the KWW non-exponential parameter, is proportional

70 »* was obtained from a non-linear variant of the

to In z* (T,) for some polymer glasses.
Adam-Gibbs equation, by assuming that s = kg In2. The excellent fit obtained, while
without theoretical basis, suggests an interesting relationship between cooperativity

and stretched exponential relaxation.

1.2.2 TUNIVERSAL SCALING LAW FOR DIFFUSION

Dzugutov has produced some remarkable results with a very simple scaling law be-
tween the diffusion constant and the difference in entropy between the liquid and the

equivalent ideal gas.”' The collision frequency derived from Enskog theory,’ 7 T'f, §

$The collision rate in Enskog theory is given by 'z = 402g(0)p+/mksT/m, where o is the hard
sphere diameter, g(o) the magnitude of the radial distribution function (RDF) at the point of contact,
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and the ‘effective’ hard sphere diameter o are used to define a dimensionless diffusion

constant, D*:

D* = DTlo™?, (1.12)

where D is the diffusion constant. The argument is then that the frequency of local
structural relaxation is limited by the number of accessible configurations per atom,
which is taken to be proportional to exp (S), where S is the excess entropy - the
difference between the system’s entropy and that of the perfect gas under the same
thermodynamic conditions. In the liquid domain, there appears to be a nearly univer-
sal law that D* = 0.049 exp (S2), where S5 is the excess entropy given by the two-body
approximation.” The relationship even appears to be successful for diffusion of solid
Ag in Agl, in which the cations are distributed randomly within a lattice of I~ ions.
Agreement was not so good for silicon modelled by the Stillinger-Weber (SW) poten-
tial,”™ which was believed to be a consequence of the strong directional element in the
interatomic potential invalidating the use of the Enskog collision frequency.

In a recent letter, Dzugutov has further developed his entropic-based theories of
transport processes, studying diffusion in a metastable liquid of hard spheres.”® Obvi-
ously, in the hard sphere liquid the free energy barrier to diffusion is entirely entropic,
and D, the diffusion constant, is proportional to exp (S,), where S, is the height of the
entropy barrier. At high packing fractions (n, > 0.5), the diffusion constant deviates
from the behaviour predicted in equation (1.12). Dzugutov envisaged this as a quali-
tative change in the form of the free energy landscape. At low density all the possible
configurations are abundantly connected, and the hard-sphere atoms are able to move
in an essentially independent manner. As the system is compressed, the diffusive mo-
tion of the hard-spheres are coupled within a certain range, which leads to extra high

entropic barriers to diffusion.

1.2.3 FRUSTRATION LIMITED DOMAINS

Kivelson and co-workers have attempted to explain the phenomenology of supercooled

liquids and the glass transition with their frustration limited domain (FLD) theory.”” !

The basis of this theory is the idea that the preferred local structure around atoms in

p the number density and m the mass. In practice o and g (o) are taken as the position and magnitude

of the first maximum in the RDF.
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the melt does not tile space, and is therefore different from the crystal structure. It is
well known that this is the case for identical spherical particles, in which the preferred

local orientation is polytetrahedral,??

while the crystal is close-packed.

A crossover temperature, 7%, is proposed, which would be the melting tempera-
ture of a crystal with the preferred local structure, were it to tile space. As such a
hypothetical crystal would have a lower free energy than the real crystal, T* > T,,.
Above this temperature, relaxation times follow an Arrhenius law, with an activation
energy, denoted E,, which has negligible temperature dependence. Below T, clusters
(domains) of the locally preferred structure form. The supercooled liquid, containing
these FLDs is treated as being in equilibrium, although obviously this is metastable
below T}, with respect to the crystal.

The derivation of the temperature dependence of the relaxation times below T

comes from considering the free energy density of a domain with locally preferred

structure of size L:

F(L) _ 2
75 =T a+ sL”. (1.13)

o is the surface tension, and a is the free energy difference per unit volume between the
liquid and the crystal, as in the standard nucleation picture. The additional term sL?
represents the ‘frustration induced strain’, with the coefficient s not know a priori, but
its scaling form is obtained by minimising equation (1.13). Further dynamic scaling

arguments yield the following universal scaling expression for the activation free energy:

E for T > T*
E(t) = - ’ (1.14)
Eo + BkgT* (1— ) #3 for T < T~

B is a measure of the departure from Arrhenius behaviour, and thus is a measure of
the kinetic fragility of the liquid. Within the FLD model, the larger the value of B,

the less frustration.

1.2.4 MODE COUPLING THEORY

Mode coupling theory®3%6 (MCT) is a highly complex mathematical theory of super-

cooled liquids and glasses. It not relevant to this dissertation to discuss in detail the
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mathematics of MCT, but instead we will outline its principles and discuss its key
results and their relevance to our studies of potential energy landscapes.
MCT relates the dynamics of supercooled liquids to F(q,t), the density autocorre-

lation function for the wavevector q:

F(q,t) = N~ < ép*(a,t)dp(q,t) > (1.15)

where dp(q, t) are the fluctuations of the Fourier components of the microscopic density,

pla,t) = Z;VZI expiq.r;j(t). The equation of motion of F'(q,t) is then:

t
F(q,t) + Q%(q)F(q,1) +/O [M%(q,t —t') + Q2(¢)m(q,t — t")|F(q,t')dt' =0. (1.16)

(1, is just the vibrational frequency of sound waves with wavevector q, which can be
obtained from the static structure factor, S (q) = (pqp—q). The equation is essentially
that of a damped harmonic oscillator, with the addition of the nonlinear terms M9(q, t)
and m(q,t), which are known as the ‘memory kernel’. m(q,t) becomes the dominant
term when the liquid is strongly supercooled.

The key approximations of mode coupling theory in all its forms are in the spec-
ification of the kernels M°(q,t) and m(g,t). In the idealised form of the theory,
presented by Bengtzelius, Gotze and Sjolander in 1984,%7 m(q,t) is expressed as a
product of correlation functions with different wave vectors to second order only:
m(g,t) = Zk+p:q V(g;k,p)F(k,t)F(p,t), where V(q;k,p) are the mode coupling
vertices, and can be calculated from the static structure factor. Thus this formulation
of MCT describes the dynamics of flow in supercooled liquids in terms of coupling be-
tween pairs of phonon-like vibrations. Processes that involve ‘hopping’ rearrangements,
in which a small number of molecules exchange positions or migrate via vacancies, can-
not be described in this way, and so are not included in the idealised MCT. This is also
the case for nucleation, which is believed to involve four-particle and possibly higher
order correlations.®” Thus MCT in its idealised form treats the liquid as if it were in
equilibrium, describing its transport properties and relaxation by the coupling of den-
sity fluctuations. Temperature is included implicitly in the mode-coupling equations,
as Q2(q), M%(q,t) and V(q; k,p) depend on temperature.

Gotze and Sjogren published the numerical solutions of the idealised mode-coupling

equations in 1988.%8% At temperatures close to a critical temperature, T}, three distinct
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regimes in the decay of the normalised density autocorrelation function, ¢(t), are visible.
In the first regime, ¢(¢) decays towards a non-zero value, f€. Initially, this decay is
rapid and essentially independent of temperature, corresponding to the ballistic motion
of particles within cages formed by their nearest neighbours. ¢(t¢) then exhibits an
inflexion point in the next regime, which develops into a plateau at temperatures very
close to the critical temperature. This is known as the [-regime, where the atoms
are trapped within their cages, and so the ¢(t) cannot decay any further. At longer
timescales still, provided that T > T,, ¢(t) decays to zero, as these nearest neighbour
cages break up and reform. This final decay to zero is known as the a-regime, in which
structural relaxation takes place. As T' — T, the timescale for S-relaxation diverges,
and below T, the plateau extends to t = co. The non-zero limit of ¢(¢) as ¢ tends to oo
corresponds to a breaking of ergodicity—the system is now trapped in a glassy state and
no longer explores phase space uniformly. One should note that these o and § regimes
are defined differently from the Johari-Goldstein « and 3 processes discussed in §1.1.4,
although the « processes are generally taken to be the same in both descriptions. The
MCT g is quite different from the Johari-Goldstein 3, and these are often referred to
as ‘fast’ and ‘slow’, respectively.

Hopping processes have been included in an extended version of MCT.8%:89 Coupling
to currents is included, but the strength of this coupling, J, cannot be calculated from
measurable properties like the static structure factor, S(q), unlike the parameters in
the idealised equations. In this phenomenological model it is found that even below
T,, ¢(t) decays to zero at long times, and thus the inclusion of these hopping processes
restores ergodicity at all temperatures.

Since 1984, when the theory was proposed in its idealised form,36.87

numerous
experiments and simulations have been designed to test the predictions of MCTY In
general, MCT appears to be very successful at describing the dynamics of glass formers
in the -regime and at high temperatures. MCT is particularly good at predicting the
properties of some polydisperse colloids prepared to have short range steric interactions
akin to hard spheres, a favourite model of theoreticians.”’™3 The energy landscape of
a hard sphere system is trivial, consisting of an accessible volume of phase space in

which no hard spheres overlap and there are no energy barriers, and an inaccessible

region in which the potential energy is infinite.

YFor an extensive review of recent tests of MCT, see Ref 90.



Introduction 20

Kob and Andersen?* % used MD to study an archetypal model for a glass former,
the AggBgg binary Lennard-Jones mixture, which we will discuss in detail in later
chapters. Their simulation runs were sufficiently long to verify that the system was
in quasi-equilibrium—there was no systematic evolution of the temperature, potential
energy or pressure—and thus they could measure a statistically significant diffusion
constant. A fit of the temperature dependence to an idealised MCT power law, D ~
(T — T.)", yielded T, = 0.435. Notably, the fit to this power law was better than to
the VIF equation (1.1). Nauroth and Kob®" then used partial structure factors to
predict T, by calculating coupling constants. Their theoretical value of T, was around
0.922, a discrepancy which they ascribed partially to hopping processes, which would be
implicitly included in the original power law fit. Thus, we might tentatively suggest this
theoretical value of T, as a potential cross-over temperature, where hopping processes
become important. This hypothesis is validated by the excitation profiles (§1.3) for this

1., as the predicted value of T, from Ref 97 appears

system published by Sastry et a
to coincide with the temperature at which the mean value of the inherent structure
energy || of the system starts to fall off its high temperature plateau.

MCT is complementary to our studies of the potential energy hypersurface. Its
region of applicability is mainly in the moderately supercooled region, where the glass
former relaxes via highly collective rearrangements that have barriers low compared
to kT and are well described by coupled phonon-like modes. Furthermore, at these
relatively high temperatures the interactions between atoms are dominated by their

repulsive cores, and so the success of MCT, which in its simplest form only takes

account of the first peak in S(q) is unsurprising.

1.3 POTENTIAL ENERGY LANDSCAPES

Theoretical studies of potential energy landscapes tend to focus on the stationary points
on the 3N + 1 potential energy surface, at which the gradient vector vanishes. At
minima, all the eigenvalues of the second derivative (Hessian) matrix are positive, and
at a true transition state—by Murrell and Laidler’s definition®®—exactly one Hessian

eigenvalue is negative.

IThe inherent structure of an atomic configuration is obtained by steepest-descent minimisation.
Thus, ‘inherent structure’ is synomynous with ‘minimum at the bottom of the basin of attraction in
which the liquid’s current configuration lies’. The inherent structure method is discussed in more detail

in §1.3.2.
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Empirical observations and some theoretical arguments suggest that the number of

structurally distinct minima of the PES increases exponentially, as the system size, N,

increases.'%07192 The number of minima with potential energy per particle, e, in the
infinitesimal range between e + de/2 is thus given by:10%:103

dQ

— =CexpNo(e), (1.17)

de
where C, and o(e) are N-independent quantities, although they are expected to depend

on the density and the material in question. o(e) is the basin enumeration function,
and configurational entropy arises from the presence of multiple minima at depth e. A
parabolic o(e) gives rise to a Gaussian distribution of minima, which has been observed
in simulation and obtained from heat capacity measurements, as expected from the

69,103,104

central limit theorem. Heuer and Biichner have argued that, for Lennard-

Jones type system the configurational density of states is Gaussian at both global and

local levels.104

Thus, it appears not to be solely a consequence of the central limit
theorem, but is a fundamental property of the PES, which arises from the form of the

potential energy function.

1.3.1 RANDOM ENERGY MODELS AND INSTANTANEOUS NORMAL MODES

The notion that the configurational density of states is Gaussian is the basis of random

energy models (REM), first analysed by Derrida.'%

The model exhibits both an entropy
crisis and super-Arrhenius temperature behaviour of the typical escape time from a
minimum, and in the mean-field limit can be shown to be mathematically equivalent
to mode-coupling theories.'® Derrida’s original proof of the properties of the REM is
somewhat involved:'% here we present a summary of the results based on Wolynes’
review.106

We start from a Gaussian distribution of states, centred at £ = 0, with variance

AFE2:

1 —E?
P(E)= ——— — ). 1.18
®)= Sz (zar7) (19
For simplicity, we use the microcanonical ensemble. The average density of states for

a given energy is the product of the finite number of configurations available to the

system (), and the distribution function:
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(n(E)) = QP (E). (1.19)

We then obtain an expression for the entropy, S, by approximating n (E) by (n (E)),
and using the definition for the microcanonical temperature, that 1/7,, = S/0E:

Qo AE?
S =kgl — . 1.20
Be <\/27TAE2> 2kpT? (1:20)
This entropy reaches zero at a finite temperature, given by:
AE
To (1.21)

" k5209 — In (27AE?)

As the system tends to Ty from above, the heat capacity has a parabolic form, before
vanishing at T, when the system becomes trapped in a single state. Such an apparent
phase transition is known as ‘random first order’, owing to its lack of any latent heat,
but its discontinuity in its similarity order parameter.'%6 A crude approximation to the
barrier height can be obtained because most minima are surrounded with states with
zero energy. At equilibrium at a temperature 7', the thermally occupied minima have
mean energy (E) = —AE?/kgT. Thus, a crude approximation to the mean barrier
to escape from a minimum becomes smaller as the temperature increases, and so the

typical escape time is given by,

T =Tpexp [AE?/2(kpT)?] . (1.22)

This equation was used by Ferry'®” to describe the viscosity in various liquids, al-
though he subsequently improved his fit by using the VTF law (§1.1.1). Although this
model is rather crude, it is appealing inasmuch as it provides a possible explanation
for the mysterious correlation between configurational entropy and relaxation, derived
heuristically by Adam and Gibbs®! (§1.2.1).

Recently random energy models have been related to the theories of transport
properties based on instantaneous normal modes (INM).19%"114 The INM methodology
builds on Zwanzig’s theoretical relationship between the hopping rate between minima
on the PES and the self-diffusion constant.!'> The INM are the eigenfunctions of the

Hessian, the matrix of second derivatives of the energy with respect to mass-weighted
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atomic or molecular coordinates, and its eigenvalues are the squares of the correspond-
ing instantaneous angular frequencies. The INM are obtained by averaging over an
equilibrium distribution of configurations sampled in a molecular dynamics trajectory.
At sufficiently high temperatures a significant fraction of the INM will be imaginary,
corresponding to negative eigenvalues of the Hessian. INM theory derives a relation-
ship between these imaginary frequencies f,, and the hopping rate between minima, wy,.
Remarkably, it appears that for many supercooled liquids D ~ (f,). A problem in the
application of the theory is that there are INM present in the normal mode spectrum
that are just due to anharmonicity within the basins on the PES, and therefore do not
contribute to diffusion. Partial minimisation of the configurations appears to filter out
most of these irrelevant imaginary frequencies.16:117

A relationship between f, and the configurational entropy, S. has recently been

d,'"® and La Nave et al. have found a linear relationship between S, and

propose
In (f4w), the fraction of imaginary normal modes with double-well potential energy
profiles.!!® Keyes then related these observations to the REM described above,''* by
treating the states in the REM as an ensemble of minima and saddles. It is then assumed
that a stationary point with I negative eigenvalues is connected to I states of lower
energy, and so fy(e) can be obtained since we know the distribution of states with energy
e’ connected to a state of energy e. The model reproduces the relationship between
between S, and In f,. Qualitatively, this is because f, for a state of energy e is given
by the proportion of states with lower energy: so f, for the system is approximately
given by the fraction of states with energy below the most probable value, e*. Likewise,
a first approximation to the configurational entropy is the logarithm of the number of
minima with energy lower than e*.

In the uncorrelated REM, P(ele’) = P(e) - i.e. the density of states with energy e’
connected to a state of energy e is simply the global density of states. From a dynamical
point of view, this leads to incorrect scaling with the total number of states, {2y, when
calculating dynamical quantities. Keyes et al. have developed an alternative expression
for P(ele’) that reproduces the correct scaling properties with .13

Subsequently, the relationship between the fraction of so-called diffusive imaginary
normal modes and the configurational entropy has been found to hold for the BKS silica
potential, despite the existence of a fragile-to-strong transition.'?? Irrespective of one’s
opinion of the validity of the INM approach, the suggestion that the correlation between

entropy—a thermodynamic quantity—and relaxation times is due to connectivity of
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phase space is interesting, as it may explain why entropic theories of the glass transition
(§1.2.1, §1.2.2) are so successful.

Kohen and Stillinger approximated a glassy energy landscape by mapping the in-
herent structures onto the vertices of a high dimensional hypercube.'?! The vertices
were then projected onto the (z,y) plane according to their Euclidean coordinates. In
general, a large number of vertices will be projected onto a single point in the (z,y)
plane, and it was assumed that this set of inherent structures is degenerate. Three dif-
ferent functional forms of the potential function, e(z,y), reproduced strong, fragile and
‘degenerate’ glassy behaviour respectively. The degenerate glass is so-called as it has a
degenerate ground state, unlike the potentials used to reproduce strong and fragile be-
haviour. It also exhibits linear temperature dependence of its low temperature specific
heat, within classical statistical mechanics. As discussed in Section 1.1.6, most amor-
phous materials have a linear contribution to the specific heat in the 0 — 10 K region,
but it is generally accepted that this is due to quantum mechanical two-level systems.
Kohen and Stillinger admit that ‘...it will be a substantial challenge to determine if any
real substances fall into the degenerate glass category.’'2!

Wales and Doye'?? developed a simple model, in which relaxation between groups
of minima on a hypothetical PES was treated via transition state theory. A non-
ergodic partition function was formulated, which excluded regions of configuration space
that were not accessible in a given timescale. A set of seven parameters was used to
characterise the topology of the PES and its vibrational properties. The full spectrum
of strong-fragile behaviour was reproduced, with fragility being associated with a large
number of local minima, lower effective potential energy barriers and higher vibrational
frequencies. Increasing free energy barriers to relaxation with decreasing potential
energy were a necessary condition for super-Arrhenius dynamics. A system with the
thermodynamic properties of a strong liquid and the dynamics of a fragile liquid was
produced by increasing the energy density of minima while keeping the vibrational
frequencies constant. Such a parameter set may be unphysical as systems with many
local minima are also expected to have a high vibrational frequencies. Stillinger and
Debenedetti'?® reached a similar conclusion by constructing hypothetical landscapes
from single basins with a cosine form. They constructed a number of PES’s with the
same basin enumeration functions, but with different barrier distributions, implying
that there is no mathematical reason for the empirical correlation of thermodynamic

and kinetic fragility. Instead, they suggested that there was an underlying physical
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cause. Wales has presented a possible explanation for this correlation in terms of

catastrophe theory.!?*

1.3.2 RESULTS FROM QUENCHED SIMULATION TRAJECTORIES

The inherent structure method developed by Stillinger and Weber!'%:100:125 hag been
used to analyse the behaviour of glassy systems in the ‘landscape dominated’ regime.
The inherent structure of a configuration is the local minimum reached by following the
steepest-descent path.!% Molecular dynamics (MD) or Monte Carlo (MC) trajectories
can be periodically quenched to yield the minima that the system has visited. Thus
monitoring the transitions between inherent structures in simulations confirmed the
existence of slow barrier crossings and localised rearrangements at low temperatures,
as assumed in the Goldstein picture.'%!

Sastry et al. inferred a variation in the barrier distributions for the binary Lennard-
Jones glass from MD simulations.”® Configurations were quenched to local minima—
their inherent structures—during a series of cooling runs following equilibration. The
mean energy of the inherent structures was found to be practically independent of
temperature for 7' > leaa/kp. Between T ~ leaa/kp and T ~ 0.4epn/kp the
inherent structure energy decreases with temperature, before reaching a second plateau.
The height of the low temperature plateau decreases as the cooling rate slows. The
variation of the inherent structure energy with temperature in this way is known as the
‘excitation profile’. We have already mentioned the apparent coincidence between these
two cross-over temperatures and the MCT critical temperatures derived from theory®’
and fitting to MD results,” in §1.2.4.

Inherent structures obtained from the runs at different temperatures were raised
to a series of excitation temperatures, T,. The variation in barrier height was inferred
from the mean-square distance in configuration space through which the system moved
in a given time. However, the mean square distance moved cannot be a simple function
of the barrier distribution alone: it is also determined by the connectivity. A key aspect
of the present contribution is that this missing factor is properly accounted for.

The excitation profile itself is also interesting. The excitation profile is closely
related to the basin enumeration function, o (e). At low temperatures we assume
that it is possible to disaggregate the Helmholtz free energy, A, into three distinct

contributions: 103,126,127
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Figure 1.3: Schematic diagram of the relationship between the basin enumeration function o (e)

(left panel) and the excitation profile (right panel). Adapted from Ref 103.

A e @) + a’
NkgT _ kgT ° keT

(1.23)

where € is the most probable basin energy sampled, o (€) is the number of basins with
energy € and o’ is the vibrational free energy within the basins. Assuming that the
k%

vibrational contribution to the free energy is constant;* we can use the free energy

minimisation condition to derive:

do 1
—_— = . 1.24
de kBT ( )

Using this relationship, we can then derive the temperature dependence of the average
energy of the basins sampled by the system. Figure 1.3 illustrates the relationship
between o (e) and the excitation profile. In the high temperature limit, the system
occupies basins at energies close to the maximum of the parabolic ¢ (e), forming a high
temperature plateau region, as observed by Sastry et al.”® At low temperatures, as
o (e) — 0, the gradient of the basin enumeration is still finite, and thus do/de(emin)

gives us an estimate of the Kauzmann temperature, Tx. At this point, the system

**In fact, in later chapters we will find that the vibrational free energy is not constant, which has
also been observed elsewhere.®® However, this effect is not sufficiently large to affect the qualitative

relationship between the excitation profile and the basin enumeration function, o ().
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occupies the configurational ground state minimum, with energy emin. For finite cooling
rates, this minimum will never be reached as the system becomes trapped in higher
energy minima.

Angell has argued that the excitation profile is closely related to the fragility.'2®
The thermodynamic fragility is defined by the magnitude of the heat capacity jump
at the glass transition. Therefore fragile liquids will tend to have steeper excitation
profiles, again assuming that the vibrational contribution to AC), the change in heat
capacity, is negligible. A steeper excitation profile corresponds to a broad, high peak
in the basin enumeration function. Angell has extended this argument to relaxation
properties, using a bond lattice model, in which there is ‘ideal mixing’ between broken
and unbroken bonds, deriving a two parameter relationship that performed as well as
the VTF equation.'?®

The question of whether inter-basin transitions are Markovian or not is extremely
pertinent to the current work. If it is the case that the motion between basins on the
PES is Markovian, then the next basin visited is only on dependent on the current
basin, not on any previous basins visited in the trajectory. In Chapter 5 we present
results from kinetic Monte Carlo simulations, in which transition probabilities between
minima are necessarily Markovian. Keyes and Chowdhary have carried out simulations
on a 32-atom unit density Lennard-Jones system.'?® Quenching was carried out every
five MD time steps, and diffusive motion was characterised by a distance between
sequential minima on the trajectory. A ‘Markov’ diffusion constant, Dy, was derived,
in which the diffusion constant was simply a function of the average separation between
minima, visited on the trajectory. Above a crossover temperature, close to the dynamic
critical mode-coupling temperature, T, Dy was an overestimate of the true diffusion
constant measured by MD, suggesting that at high temperatures there was a high degree
of back-correlation between diffusive rearrangements. At low temperatures, diffusion
is well-described a random walk between basins. Furthermore the diffusion constant
obtained by including correlations between adjacent minima in the trajectory, D; was
still significantly greater than the correct diffusion constant, and was only ~ 10%
smaller than Dy, indicating that these correlations might be long-lived. However, the
question remained unanswered whether coarse-graining individual basins of attraction
into megabasins—as in Stillinger’s picture!—might recover Markovian behaviour.

Many recent studies have focused on saddle points with more than one negative

eigenvalue: for a small subset see Refs. 130-135. Obviously, an explanation of the
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dynamics of supercooled liquids in terms of crossing higher order saddle points is inti-
mately related to INM theory (§1.3.1). INM theory derives a relationship between the
diffusion constant and the fraction of negative eigenvalues of the Hessian, (f,), which
must be connected to the average index of saddle points sampled. However, the Mur-
rell and Laidler theorem® states that any pair of minima connected by a high index
(> 2) saddle point must also be connected by one or more true transition states with
lower potential energy barriers. Therefore it appears difficult to see why higher order
saddles would be sampled significantly in the supercooled temperature range, unless
there was a large entropic driving force for this to occur - i.e. the rate at which the
number of saddle points grew with increasing index was sufficiently large to overcome
the energetic barrier.

The mean index, I, of stationary points sampled in MD trajectories has been found
to decrease linearly with decreasing temperature for the supercooled liquid,'' ap-
proaching zero at a temperature close to the mode-coupling critical temperature, T,
(1.2.4). I does not quite reach zero below T, indicative of the presence of some low
energy barriers at low potential energy. The relationship between temperature, or po-
tential energy, and I suggests that it might be possible to generalise the Murrell and
Laidler theorem—i.e. stationary points of index < K — 2 linked by a saddle of index
K must also be linked by one or more saddles of index < K — 1 of lower energy.!3¢

T. has therefore been interpreted as a crossover between the deeply supercooled
region, in which the system vibrates around local minima, occasionally jumping to
other true transition states to other minima: and a moderately supercooled, ‘saddles-
ruled’ region, in which diffusion takes place via excitation to high index saddles, followed
by relaxation to minima or lower index saddles.'?® This hypothesis is rather difficult
to quantify, as the ‘basin’ defined by a saddle point, as opposed to a local minimum,
is ill-defined; and a rate theory describing transitions between higher index stationary
points has yet to be formulated.'37

A popular method of finding stationary points on the PES is the transformation
to the ‘squared gradient landscape’ W (x) = VE (x) - VE (x):!3! all stationary points
of the original PES, U (x), are minima of W (x) irrespective of their index. Doye and
Wales have pointed out that this approach is rather problematic, partly because most
minima of |VE|* are not stationary points of the original PES.!37 Although this had
been previously pointed out,!3% 131,135 phrevious authors had assumed that they were

not as significant Doye and Wales’ more systematic search revealed. Furthermore, these
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authors found no evidence that the system resided closer to saddle points than minima
at high temperature, using both the |[VE \2 mapping and standard eigenvector-following
(§2.1.1).137

Given the inconclusive nature of the evidence to support theories involving higher-
index saddle points, and the problematic nature of these theories, we have decided in
the present work to focus on minima and true transition states in our studies of the
dynamics. If higher-index saddle points are of dynamic and thermodynamic relevance,

this will be revealed by any deficiencies in our results.

1.3.3 ACTIVATION-RELAXATION AND OTHER TECHNIQUES

Barkema and Mousseau have used their activation-relaxation technique'®® to generate
local minima and configurations close to saddle points on the potential energy surfaces

139,140 and silical®!:142 In this approach, first order saddle

of amorphous silicon (a-Si)
points on the PES—transition states—are located approximately by modifying the
force vector, F', so that the component parallel to the displacement from the nearest
local minimum is reversed. The energy is minimised in the remaining 3N — 1 directions

and the redefined force, G, is followed iteratively.

G=F—(1+a)(F-T, (1.25)

where T is the normalised vector parallel to the current displacement from the local
minimum and « is a control parameter. When G changes sign, it is inferred that
the system has passed through a saddle point, and the configuration at this point is
taken as the approximate transition state. Local minima were obtained using conjugate-
gradient minimisation. Using this technique, the barrier distribution for a—Si was found
to peak at 4.0+ 0.5eV.13%140 Experimental results from conductivity measurements!*?
and differential calorimetry'4* give activation energies for these transport processes of
around 1-2 eV for a-Si. Their results for the Stillinger-Weber silicon potential are
discussed in greater detail in §2.4.2.

Kopsias and Theodorou have used methods similar to those presented here to study

a 198-atom homogeneous Lennard-Jones system.!*® Using eigenvector-following tech-

niques, they generated a database of minima and transition states (a full discussion of
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eigenvector-following is given in §2.1.1). They then used the quasi-harmonic approxi-
mation (QHA) to investigate elementary transitions between pairs of local minima and
to calculate the isothermal compressibility and elastic constants for the system. The

QHA gives the Gibbs free energy of the system as:

1 3N-3 3N-3 B
= - hw; + kT log |1 — -
G V+2 ; w; + kB ,Z:; og[ exp( T

)] — VoZO’UGZ’j, (1.26)
ij
where V' is the potential energy of the inherent structure, the w; are the 3N — 3 vi-
brational eigenvalues for the system, V} is the equilibrium volume of the system in the
stress-free state and o;; and ¢;; are the ij components of the stress and strain ten-
sors respectively. These free energies can be used to compute transition rates between
pairs of minima using elementary transition state theory: the rate from minimum A to
minimum B is just kg4 = kgT/hexp [-AG*/kpT|, where AG* is the difference in
free energy between the transition state and minimum A. Significantly, these authors
found that the activation energies for transitions from different minima appeared to be
independent of the absolute Gibbs energy values of the minima. This result appears
to contradict the evidence of Sastry et al.,”® who inferred that the energy barriers are
greater lower down on the PES. The volume difference between two connected min-
ima was found to be proportional to the Gibbs energy difference. This observation
agrees well with experiments on real amorphous materials, where relaxation is often

accompanied by an increase in density.

1.4 THESIS OVERVIEW

It would not be an exaggeration to say that any discussion of the endeavours of the-
oreticians in this field that is shorter than the Bible is necessarily incomplete. In the
previous pages, I have attempted to outline some of the intriguing phenomenology, and
highlight areas of research that are particularly relevant to the following chapters.
The aim of the research described in the following chapters was to study the PES’s
of some model glass formers, by finding representative samples of minima and the
transition states that connect them. In the next chapter, we describe the methodology
used for finding these stationary points, and the ways in which the data was analysed.

The first chapter of results concentrates on global optimisation and crystalline regions of



Introduction 31

the PES’s of the glass formers that we studied. We then move on to qualitative studies of
the PES’s and the statistics of their properties, focusing on regions of the PES that are
low in energy and correspond to glassy configurations. The final chapter outlines kinetic
Monte Carlo simulations in the temperature range for which the binary Lennard-Jones
system is still a supercooled liquid. We use our stationary point searching algorithms
to obtain diffusion constants, and hence we can directly relate the PES to the dynamics

observed in MD simulation. In particular, we focus on super-Arrhenius behaviour.
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2.1 EXPLORING THE POTENTIAL ENERGY SURFACE

Stationary points on a PES are points where the gradient vector vanishes. A minimum
is a stationary point with no negative Hessian eigenvalues (no imaginary normal mode
frequencies). In the present work we follow Murrell and Laidler and define a true
transition state as a stationary point with precisely one negative Hessian eigenvalue
(one imaginary normal mode frequency).?® For each transition state two barrier heights
are then determined by the energy differences between the transition state and the two
minima that are connected to it by steepest descent paths. As usual, we will refer to
the larger barrier for a given transition state as the uphill barrier, because it must be
overcome to move from the lower to the higher energy minimum. Similarly, the smaller

barrier is referred to as the downhill barrier.

2.1.1 FINDING MINIMA AND TRANSITION STATES BY EIGENVECTOR-FOLLOWING

The basis of all the methods that we use to find stationary points on the 3N + 1
dimensional PES is the well-established technique of eigenvector-following.!46-152 We
start with the Taylor expansion to second order of the potential energy, V', at a general

point in configuration space, X:

V(X+h) =V(X)+gX) " h+ %hTH(X) h, (2.1)

where g(X) is the gradient vector at X, and H(X) is the Hessian, the matrix of second

derivatives without mass-weighting. We can obtain the standard Newton—Raphson step

32
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from the condition dV (X + h)/dh = 0:

hng = —H_lg. (2.2)

However it is not useful in this form, because the inverse of the Hessian is undefined,
since bulk systems have three zero eigenvalues, corresponding to translational degrees
of freedom. This problem can be circumvented by a shifting technique, which has
been found to be more efficient for large systems than other alternatives proposed.!®
Analytic eigenvectors corresponding to overall translation can be obtained easily, and
for each such eigenvector e, we add a large multiple of e;e; to the Hessian element H;;.

It is then straightforward to ignore steps along these eigenvectors.

We can solve the eigenvalue problem for the matrix B:

3N
> HupBgy = €2 Bay, (2.3)
p=1

which enables us to transform to new orthogonal coordinates, R, = EZJL Bg,Xg,

giving a Newton—Raphson step and corresponding energy change of:

3N 2
and AENR = - @, (24)
2¢eg,

Ja (R)

2
€a

hNR,a = -
a=1

where g,(R) = OE(R)/OR,. Thus, terms with positive €2 will lower the energy, while
terms with negative €2 will increase it. To find a minimum, we may have to start at
a point with no negative Hessian eigenvalues, while to find a transition state we may
need exactly one negative eigenvalue.'®1%> We can avoid these problems by using
a Lagrange multiplier to find transition states systematically, which is the basis of
the eigenvector-following approach. We use a separate Lagrange multiplier for each

eigendirection:'5!

3N

1 1
L= ~B(R) =3 |a(R)ho + 522 2~ gualt — ). (2.5

a=1

which gives the optimal step in eigendirection «
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9a(R)
hoy = —— 2.6
o /Ja _ Eaa ( )

and energy change

— ¢ / 2)g.(R )2
AFE = @ . 2.7
e il 2
Obviously, minimisation with respect to eigendirection o requires that p, —€2/2 < 0,
while maximisation requires that p, —€2/2 > 0. We also require that the Newton—
Raphson step is recovered in the vicinity of a stationary point—i.e. pq — 0 as go(W) —

0. In the work presented here, we used:

1
o = e2 % 5131 (14 V1 + 2ga (RS (2.8)

plus for minimisation, minus for maximisation, which gives steps:

o= +290(R)
T le2](1 + 1+ 4ga(R)2/eL)

In a full eigenvector-following stationary point search, we calculate analytic first and

(2.9)

second derivatives at every step. Estimated values of the eigenvalues, €2 (est) can be

obtained from the gradients at the present point, n, and the previous point n — 1:

ga(n) — ga(n — 1) . (210)

g2 (est) =

Comparison of these estimated eigenvalues with the real eigenvalues obtained from

the Hessian matrix gives us some indication of the reliability of the steps in each

eigendirection. The trust ratio is defined by:!?!

S est) — A(n) |
&2(n)

Fo = (2.11)

The maximum allowed step in each direction is either decreased or increased, according

to whether r, is more or less than a specified trust radius.
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One of the main advantages of pure eigenvector-following is that it is possible to
obtain systematically a large number of transition states connected to each minimum,
by following each eigenvector in turn. However, for large systems eigenvector-following
becomes prohibitive, because the diagonalisation of the Hessian becomes a computa-
tional bottleneck, as the computer time required scales as N3. Thus, we have to use a
hybrid method.

An arbitrary vector, y, can be written as a linear combination of the normalised

Hessian eigenvectors, e;:

y =) ae;. (2.12)
A

Hence, multiplication on y by the Hessian matrix n times gives:

n n A2 " A3 "
H"'y = AT [a1e1 + )\—1 ases + )\—1 azez +--- | . (2.13)

In the limit of large n, the dominant term is

Yo = Alaer, (2.14)

where A; is the largest eigenvalue. Renormalisation of y, to unity prevents it from
becoming inconveniently large. To find the smallest eigenvalue, we shift all the eigen-
values down by A;— so that the smallest eigenvalue has the largest magnitude—and
iterate again.

Diagonalisation of the Hessian matrix can now be avoided in transition state searches.
Munro and Wales developed the hybrid eigenvector-following/conjugate gradient (EF/CG)
technique, which uses the above iteration and shifting technique to find the smallest
eigenvalue and its corresponding eigenvalue, and then the eigenvector-following formu-
lation to calculate the size of the uphill step.'®? The Polak-Ribiere conjugate gradient
(CG) technique'®® was used to minimize in the tangent space, by applying the projector
Px =x— (X * €min) €min- Subsequently, the computational speed of this method has
been improved, by using Nocedal’s limited memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS)'57 routine to carry out the tangent space minimisation. Henceforth, we refer

to this hybrid transition state searching method as EF/BFGS.
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The disadvantage of this technique is that we may now follow only the ‘softest’
mode i.e. the eigenvector corresponding to the smallest eigenvalue. If we start a tran-
sition state search from a minimum, we are limited to a maximum of two transition
states connected to it, corresponding to following the softest mode in both senses.
In order to generate more transition states connected to a given starting minimum,
we may either randomly perturb the atomic coordinates of the starting configuration
before beginning the EF/BFGS transition state search, or use Wales’ method based
on hard sphere moves to generate a starting point.'®® This technique uses standard
code for hard sphere molecular dynamics,'® with the hard sphere radius taken as half
the equilibrium pair separation for the potential in question. The system is given a
3N-dimensional initial velocity vector of uniform random numbers, and the trajectory
propagated until the time, 7, of the first hard sphere collision. Ignoring the potential,
the trajectory can be propagated further, to time 7/, where the distance between the
colliding atoms is the equilibrium pair separation once more. For the bulk systems
studied here, it was found that the most efficient starting point for the EF/BFGS
transition state search was found to be the configuration at time 7, rather than 7/,
or (1 + 7')/2 with the separation of the colliding atoms rescaled to the equilibrium

158 Our implementation of the algorithm demands the parameter ¢;s:

pair distance.
for t12 < 1 the starting point is set to the configuration corresponding to t = %197,
otherwise if £15 > 1 then the atoms are moved half way between the entrance and exit
of their collision, with their separation rescaled to unity.

Ideally we would use an exact steepest-descent method to generate the paths to the
minima that are linked by the saddle point. In practice, taking steps of order 0.01 ¢
parallel and antiparallel to the transition vector, followed by BFGS minimisation almost
invariably converges to the same pair of minima, and is much more computationally
efficient.

A small number of full eigenvector-following steps (between 1 and 3) was used
to converge all the stationary points to a root-mean-square (RMS) force of less than
10~% reduced units. This precaution, which involves full diagonalisation of the analytic
Hessian matrix, also assures us that the stationary points in question have the correct
number of negative Hessian eigenvalues, namely zero for a minimum, and one for a true
transition state. For an RMS force less than 107 units the energies per supercell are

converged to better than ten significant figures for all the stationary points.
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2.1.2 NUDGED ELASTIC BAND AND THE CONNECT ALGORITHM

The methods described above can be extended to generate pathways between a pair of
disconnected minima.

Jénsson and collaborators have developed the nudged elastic band method, which
generates approximate minimum energy paths between pairs of minima.'%? In the orig-
inal implementation n,e equally-spaced atomic configurations—‘images’—are created
by interpolation between the two minima. Each image is visualised as a point on an
elastic band joining the minima. A force on each image is then defined in terms of

components perpendicular and parallel to the nudged elastic band (NEB):

F; =Fi| - VV(Ry)|L, (2.15)

where the ‘true force’ perpendicular to the elastic band is given by

VV(R;)|L = VV(R;) — (VV(Ry) - 73) 7. (2.16)

where V(R;) is the potential energy at the position of the i-th image, and 7; is the
normalised local tangent to the elastic band. The ‘spring force’, parallel to the elastic

band, is given by

Fi|| = (IRit1 — Ri| — [R; — Ri1]) 74 (2.17)

In the present work, we use a force constant, k, of |AE| /100(npep + 1)As?, where AE
and As are the energy difference and distance between the minima. The images are
then moved, according to the force given by equation (2.15), using the limited memory
BFGS optimisation scheme, until either a maximum number of steps has been reached,
or the RMS force on the nudged elastic band is less than a predetermined value.

The image with the highest potential energy is then taken as a starting configuration
for an EF/BFGS transition state search. It is often the case that the transition state
that we find is connected to neither or only one starting minimum via steepest-descent
paths. This is especially true if the separation of the end points is greater than the
equilibrium pair separation. We therefore use Wales’ CONNECT algorithm to generate

a connected path of minima and transition states between the two minima.'%? This
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Figure 2.1: Schematic view of the algorithm used for double-ended searches to connect pairs
of local minima via combined NEB and hybrid eigenvector-following calculations. Transition

state j connects minima j and j + 1 in the path. Taken from Ref 161, with permission.
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scheme is illustrated in Figure 2.1. Essentially, the aim of algorithm is to find transition
states connecting pairs of minima in an ordered list, adding new minima if necessary.
To calculate the minimum displacement between minima in a bulk system, we simply
translate the centres of mass to the origin. When two minima and the intervening
transition state are inserted in the list, they are ordered according to the shortest
displacement to a neighbouring minimum. Shortcuts—pairs of minima with an overall
separation of less than 0.001 c—are removed from the list, as are minima that prove
too difficult to connect to their neighbours. We can also use the CONNECT algorithm
as another method of increasing the number of transition states connected to a given
starting minimum. The starting coordinates are perturbed and then minimised to
generate a second minimum. A pathway is then generated linking the pair of minima.
If desired, the CONNECT run can be halted as soon as there is a transition state linked

to the first minimum.

2.1.3 FINDING STATIONARY POINTS ON ENTHALPY SURFACES

The constant volume PES of a system with IV atoms and periodic boundary conditions
is a 3N + 1 dimensional hypersurface. In constant pressure simulations, the dimensions
of the simulation supercell must be allowed to vary independently, and so there are
three more degrees of freedom. Rather than study the potential energy surface, we
now have an enthalpy surface, where the enthalpy, H, is defined by H = E + PV.
In our models, the pressure, P is a parameter we define, and V is the volume of
the simulation supercell. Our pressure-density dependence is not exactly the same

1637165 nor do we expect it to be. Obviously, the minima

as for isobaric MD studies,
and transition states are more compact than vibrationally excited instantaneous MD
configurations. Nevertheless, we expect our results to reveal the underlying structural
rearrangement mechanisms, and the effect of increasing pressure and density.

We divided the degrees of freedom into 3/N-dimensional ‘atomic coordinate space’,
and 3-dimensional ‘box length space’. We then successively optimised the atomic co-
ordinates and the box lengths. We minimised the enthalpy with respect to the box
lengths using eigenvector-following (§2.1.1), with numerical derivatives of the energy.

The enthalpy gradients with respect to the box lengths were often very large, and we

found that the searches converged more quickly if several steps were taken in box length

space between each step in atomic coordinate space, to converge the gradient with
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respect to each box length to less than 1073 eo~!. 1073 eoc~! was also the convergence
criterion for the gradient with respect to the box lengths at a stationary point. Analytic
derivatives of the enthalpy were also programmed (see Appendix), but did not speed up
the calculations significantly. All the other parameters and convergence criteria were
exactly the same as at constant volume.

Our method of optimising the structure taking account of the pressure differs from
that used by Kopsias and Theodorou.'® They found stationary points keeping the box
lengths constant, and then optimised the latter quantities without changing the struc-
ture. It is conceivable that minima and transition states found using such a technique
would not be linked by steepest-descent paths for which the box dimensions are fully
optimised, as the convergence of the two spaces defined above takes place in two distinct
stages. This is why the box lengths are optimised between each step in configuration

space in our calculations.

2.1.4 SAMPLING THE POTENTIAL ENERGY OR ENTHALPY SURFACES

Various approaches have been described for systematically exploring a PES by moving
between local minima.!38:153,166-168  Qtarting from a known minimum we conducted
transition state searches using hybrid eigenvector-following and the scheme based on
hard-sphere moves described in §2.1.1. For each new transition state the correspond-
ing pathway was calculated. If neither of the connected minima corresponded to the
minimum from which the transition state was found, the path was discarded. New
connected minima were added to the database and were subsequently used as starting
points for transition state searches in the same way, in order of increasing energy. The
minima in the set are therefore also connected, i.e. any pair can be interconverted via
a series of transition states from the same database. This condition is important for
dynamical studies, and for the construction of disconnectivity graphs (§2.3).

We use three sampling schemes in the current work: which we denote SS1, SS2, and

SS3.

1. SS1 uses up to forty transition state searches per minimum, accepting downhill
moves to new connected minima. We used this sampling scheme to produce
databases of essentially crystalline minima for the model glasses studied, mainly
to generate crystalline vibrational densities of states (VDOS) for comparison with

our amorphous results.
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2. SS2 provides a broader overview of a wide range of configuration space, carrying
out only eight transition state searches per minimum, and like SS1 accepts moves

to lower lying minima.

3. SS3 carries out 400 transition state searches per minimum, starting from a new
minimum only if all 400 searches are complete. Thus, SS3 probes a much smaller

region of configuration space more thoroughly than either SS1 or SS2.

Comparison of these alternative sampling schemes enables us to ascertain whether the
barrier distributions obtained are sensitive to the sampling technique.

The choice of starting minimum, and the criteria that we employ to select subse-
quent starting minima may well affect the results we obtain. In Chapter 5 we compare
results obtained for different initial configurations and sampling schemes.

Attempts to generate databases using SS1 and SS3 from starting minima with resid-
ual regions of crystalline structure inevitably led to the crystal being located within the
first few hundred minima. This is the expected behaviour for homogeneous Lennard-
Jones systems,'%9 and the disconnectivity graphs illustrated in §3.1 show that the crys-

tal is readily located once a critical nucleus is present.

2.1.5 TRANSITION STATE SEARCH PARAMETERS

The results of a number of transition state searches from a test set of minima did not
vary significantly within a fairly broad range of parameters, and so the choice of param-
eter set was dictated by computational efficiency. In the hybrid EF/BFGS transition
state searches, we allowed up to 100 iterations in the calculation of the smallest Hessian
eigenvalue; up to 100 iterations in the calculation of the largest eigenvalue; 10 BFGS
steps in the subspace minimisation before the smallest eigenvalue had converged and
100 thereafter. The smallest eigenvalue was deemed to have converged when it changed
by less than 0.01% between successive steps. Initial diagonal elements of the inverse

Hessian were set to 0.1 02%¢~!.

2.2 GLOBAL OPTIMISATION

We use the ‘basin-hopping’ approach of Wales and Doye'™ to search for the lowest
energy (global) minimum on the PES of the binary Lennard-Jones (BLJ) system (§2.4.1,
Chapter 3). This method, which is based on the Monte Carlo plus minimisation method
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of Li and Scheraga!""17? has been used with considerable success in studies of atomic

clusters and model polypeptides.!>3 A transformed energy landscape is considered

E(X) = min{ E(X)}, (2.18)

where X is the 3/N-dimensional vector of atomic coordinates, and min indicates that an
energy minimisation is carried out, starting at X. Thus each basin of attraction on the
PES is transformed into a plateau, with transformed energy corresponding to the local
minimum reached by energy minimisation. For minima on the PES, E(X) = E(X).
The transformed surface is then searched, using Monte Carlo sampling at a fixed
temperature. The current coordinates are perturbed to produce a new configuration.
This move is accepted if this perturbation lowers the energy, or if exp [(Eoiq — Enew/ksT)
is greater than a random number drawn from the interval [0, 1]. Better results are ob-

tained if the structure is reset to that of the current local minimum at each step.!%3

2.3 DISCONNECTIVITY GRAPHS

Becker and Karplus invented the ‘disconnectivity tree’ for illustrating the topology
of potential energy surfaces,'™ and the idea has been used extensively by Wales and

153,175 Minima are grouped into disjoint sets, known as superbasins. Su-

coworkers.
perbasins are defined for given energies, E, by the mutually accessible minima at that
energy. Energy increases on the vertical scale, and superbasins are then denoted in the
disconnectivity graph by nodes, from which lines either go down to nodes representing
lower energy superbasins, or terminate at local minima. The horizontal scale is arbi-
trary. Although the disconnectivity tree is extremely useful for illustrating multidimen-
sional potential energy surfaces, for large numbers of minima it often contains too much
information, and producing the diagram is laborious. Another method of illustrating
multi-dimensional PES’s is to show sequences of connected minima with monotonically

153,176,177~ A get of such sequences leading to the same minimum

decreasing energy.
defines a set of minima generally known as a monotonic sequence basin (MSB). The
barriers between minima in an MSB give some indication of how eflicient a ‘structure
seeker’ a system is, although there is little global information about the form of the
PES. Some disconnectivity trees for one-dimensional potential energy surfaces are il-

lustrated in Figure 2.2. In describing these landscapes, we borrow the term ‘funnel’
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Figure 2.2: Pictorial correspondence between the PES and the disconnectivity graph for three
different energy lanscapes. (a) The ‘weeping willow’ results from a gentle funnel with large
barriers. (b) The ‘palm tree’ results from a steeper funnel with lower barriers. (c) The ‘banyan

tree’ results from a rough landscape. (Reproduced with permission from Ref 173)
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from protein-folding literature to describe a set of kinetically convergent pathways that
lead to a single low-lying minimum.'"® In the present work this minimum might be the
crystalline structure of the glass former, or a very low energy amorphous minimum.
Disconnectivity graphs with several thousand minima often become rather cluttered
and their meaning can be thus obscured. Several methods of simplifying the graphs

17

have been developed: plotting only the lowest » minima;'™ representing energetically

179 or including only those minima

and structurally similar minima by a single node;
that lie at the bottom of MSBs.!80 Alternatively, minima that are only connected to
one other minimum can be removed.!®! The method that we use, when simplification

173,182 This method uses canonical rate constants

is necessary, is due to Mortenson.
between pairs of minima, calculated by, for example, Rice-Ramsberger-Kassel-Marcus
(RRKM) theory,'®37185 at a specified temperature, T'. A threshold rate constant is then
selected, and each pair of minima connected by a single transition state is considered
in turn. If the rate constants in both directions exceed the threshold rate, then the
line corresponding to the higher energy minimum is removed: this pair of minima are
said to have been grouped together. Finally, we consider pairs of minima that have not
been grouped together, but are linked by a ‘downhill’ rate greater than the threshold
rate. In this case, the line corresponding to the higher energy group is removed. Thus,
we simplify the disconnectivity graph according to the intuitive notions that minima
separated by low barriers in both directions are in equilibrium, and high energy minima
can be ignored if they relax rapidly to a lower energy structure.

The value of the threshold rate is chosen so that the number of branches of the

graph is significantly reduced, without losing the key components of its structure.

2.4 POTENTIALS

Four systems are considered in the present work, as detailed below. In each case we
adopt the natural reduced unit system, where energy is measured in € and length in
o (eaa and oap for binary Lennard-Jones). The corresponding reduced unit of time
is \/‘TTTQ/E, and unit masses were also employed throughout. In each case the energy
unit corresponds to the pair well depth and 2!/6¢ corresponds to the pair equilibrium
separation (for A-A interactions in the binary Lennard-Jones system). Reduced tem-
peratures are defined by kgT'/e and the unit of frequency is \/e/mia2 . Since supercells

of different sizes are used for different systems the energies of local minima will be re-



Methods 45

ported in € per atom. However, barrier heights, which are not expected to be extensive

quantities, will be reported in € per supercell.

2.4.1 BINARY, UNIT DENSITY AND RELAXED LENNARD-JONES SOLIDS

The Lennard-Jones (LJ) potential'® for two atoms separated by a distance r is given

by:

V(r) = de [(g)m - (g)ﬁ] (2.19)

where € is the depth of the potential energy well, and 2!/6¢ is the pair equilibrium
separation.

Our unit density Lennard-Jones system (ULJ) contained 256 atoms, and has hexag-
onal and cubic close-packed crystalline minima.'8” The relaxed Lennard-Jones (RLJ)
system has a box length optimised for the face-centred-cubic (fcc) solid with a number
density of 0.93 073, indicating that the ULJ crystal corresponds to a large negative
pressure. The cutoff employed for both these systems was 3.170.

We also studied the properties of the binary Lennard-Jones system, with parameters
first used by Kob and Andersen in 1994,%4 although Stillinger and Weber had previously
employed a similar potential in simulations of the metallic glass Nig gPg.2.'®® Kob and
Andersen modified a parameter set used by Ernst et al.!%® because they found that
this binary system, which had previously been used in studies of the glass transition,
crystallised at low temperatures.

The system consists of 80% A atoms, and 20% B atoms, with parameters oaa = 1.0,
oag = 0.8, o = 0.88, eaa = 1.00, eag = 1.5, and egg = 0.5. The units of distance
and energy used are cas and epa. Periodic boundary conditions are used, and the most
popular number density for constant-volume simulations is 1.2 agi, which we use here.
It is worth noting that oap # (oaa + oBB) /2—a property which one might expect
could lead to anomalous behaviour.

In Chapter 3 we present results for global optimisation of 60-, 256- and 320-atom
supercells of the BLJ system, and Chapter 4 contains databases of amorphous minima
and transition states of 256-atom homogeneous and binary Lennard-Jones systems.

We used a quadratic shifting technique, after Stoddard and Ford,'?® to ensure that
the energy and its first derivatives were continuous at the cutoff. The adapted potential,

with a cutoff of r., is given by:
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Vi) = de{[e/n) =]
+ [6 (o/re)'? -3 (o/rc)6] (r/re)? (2.20)
—T(0/re)? + 4 (a/rc)ﬁ} ’

for r < r.. Obviously V(r) = 0 for > r.. The shifting function affects the position and
depth of the potential well, which can no longer be found analytically.* The choice of
cutoff distance can dramatically affect the depth of the potential energy well. We used
a cutoff of 3.17 ¢ for the homogeneous systems, which leads to a potential well 1.43 %
shallower than that of the standard Lennard-Jones potential. In the binary systems, we
used cutoffs of 2.5, (256- and 320-atom systems) and 1.8420,5 (60 atoms), which
have a more significant impact, decreasing the depth of the well by 5.5 % and 28.27 %,
respectively. The shortening of the equilibrium bond length with decreasing cutoff is
less significant: the three cutoffs of 3.17¢, 2.50,3 and 1.842 0,4 gave values 0.004 %,
0.03% and 0.31 % longer, respectively.

94 use a constant to shift the

Most other researchers, notably Kob and Andersen,
function, which makes only the energy continuous at the cutoff. This shift does not
affect the equilibrium pair separation, but makes the potential well shallower by 10.0%,
1.6% and 0.4% for cutoffs of 1.842 0,4, 2.5 0, and 3.17 0,4, respectively. Therefore, the
energies of the low-lying minima we have obtained will often appear to be high when

compared to some other authors’ results. In Chapter 3, I calculate energies for both

the Kob-Andersen (KA) and Stoddard-Ford (SF) cutoffs, for comparison.

2.4.2 THE STILLINGER-WEBER (SW) SILICON POTENTIAL

Amorphous silicon, a—Si, has provoked much research, owing to its technological impor-
tance as a semiconductor. Experimentally, it is impossible to quench a—Si sufficiently

191 Instead, a-Si is formed as a

rapidly from the melt to form the amorphous solid.
thin film, either in its pure form, or doped with hydrogen. Pure ¢-Si is formed using

physical vapour deposition (PVD): crystalline silicon is heated to evaporate at as low a

*Turning points of the energy now satisfy the equality r'*(20°/rl* —1/r8) 41 — 202 = 0, which can
be factorised to give (r*? —1)[(20°® — r8)(r*!? +r*10 4 7*8 4+ r*6) + 255 (r** +r*? + 1)), where 7+ = r/rc.
This result yields the maximum at r = r., but the equation cannot be factorised further to give an

analytical expression for the equilibrium separation.
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temperature as possible, and the film is grown on a substrate kept at low temperature.
Hydrogen-doped a—Si (a-Si:H) is prepared with a variety of methods, of which the
most important are chemical vapour deposition (CVD) and reactive sputtering. CVD
forms a-Si on a substrate kept at 200 —300° C from silane (SiH4) vapour. A number of
possible methods can be used to excite the SiH4 vapour, generating free radicals that
react to form the a—Si:H thin film. In reactive sputtering, a crystalline silicon target is
bombarded with a plasma of argon and hydrogen, with the ¢-Si:H forming on a glass
substrate kept at 200 — 300 °C. This technique has the advantage that the hydrogen
content can be controlled with great accuracy by varying the Ar/Hy mixture.
Theoretically, both the amorphous and crystalline forms of silicon have been sim-
ulated using ab initio electronic structure calculations, and numerous empirical po-
tentials. Ab initio calculations are currently computationally too expensive for our
purposes, and so we must use an empirical potential function. Recent reviews have
shown that none of the available empirical potentials capture all the physics of experi-

192-194

mental or ab initio silicon, but among the best and most commonly used is the

Stillinger-Weber potential.!% The system has been studied extensively, in particular

D164,165,196 ynd ART!38,139,197,198 514 g0 is an appropriate choice for us to

using M
study using our techniques.

The SW silicon potential has two- and three-body contributions:

o
va(rij) = €f2 (f), v3(ri,Tj,7k) = €f3(ri, Tj,Tk). (2.21)
¢ and o are chosen so that the minimum value of fo is f2(2'/6) = —1, and fo and f3

are given by:

ABr P —r 9exp(r—a) !, r<a,
fa(r) = (2.22)
0, 1>a,

f3(rs, vy, 1)) = h(rij, Tk, Oji) + h(rji, Tk, Oiji) + h(Tkis iy Oikj), (2.23)

_ _ 1
h(‘rij,rjk,ejik) = )\exp['y(rij - CL) 1 + ’)’(’I"Z'k — a) 1](COS Oijk + 5)2 (2.24.)
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Stillinger and Weber!?> found that the best fit parameters for the diamond structure
were A = 7.050, B = 0.6022, p =4, ¢ =0, a = 1.80, A = 21.0, v = 1.20, 0 = 2.0951 A
and € = 2.1682¢eV. In the diamond structure all the nearest neighbour bond angles
are tetrahedral, so all the cosine terms in the three-body part are equal to —1/3,
and the sum of the three-body terms vanishes. Hence the effect of the three-body
term is to encourage tetrahedral coordination. The melting point is estimated to be
kpT/e = 0.080, slightly higher than the experimental value, which is, in reduced units,
kgT/e = 0.067. The optimum number density for the crystal is 0.459 o3, leading to
a box length for the 216 atom supercell used here of 7.776643 . The potential has a
built-in cutoff at a = 1.800.

Despite its simplicity, the SW potential has been found to reproduce the structural
properties of silicon rather well. This is not just the case for the diamond structure,
but for all of its experimentally observed condensed phases.

The phase diagram of SW Si at zero pressure was calculated using MD by Broughton
and Li.' They successfully supercooled the liquid, and found a density maximum at
kT /e =~ 0.05. At kpe = 0.04, the diffusivity practically dropped to zero, signalling the
glass transition on the timescale of their MD simulations. The structure of the glass
formed, however was not the same as experimental a-Si, or that of other models.'
An Arrhenius plot of the diffusivity in the liquid showed that the activation energy
was essentially constant at 0.2 ¢, down to its apparent glass transition at kg7'/e = 0.04.
Thus, these simulations suggested that silicon is a strong liquid according to Angell’s
classification scheme.

Luedtke and Landman'%* studied further the inability of the melt to form a-Si di-
rectly. They developed a scheme for preparing well relaxed a—Si using constant pressure
MD simulation. They used a multi-stage cooling process from the equilibrium melt, and
encouraged tetrahedral coordination in the cooling phase by increasing the value of A
by 50%. In a later paper, they managed to show that previous attempts to prepare a—Si
directly from the melt failed because the quench rates employed were too fast.'65 Tt
appears that there is a significant energy barrier to formation of the amorphous phase
directly from the melt in MD simulations because the liquid and amorphous phases
have very different structures. The liquid is ‘metallic’ and more dense than the crystal
because the open network structure collapses. This difference is illustrated well by the
change in the distribution of nearest neighbour coordination numbers: Luedtke and

Landman found that the majority of atoms had five nearest neighbours (47%), while
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the rest were mainly four- or six-fold coordinated (29% and 19%, respectively). The
amorphous solid was mainly four-fold coordinated (89%) with the rest five-fold (11%),
conforming to the model of a continuous random network (CRN). The amorphous struc-
ture they obtained was similar to that found by Wooten, Winer and Weaire (WWW), 199
who successfully modelled the experimental structure of a—Si by successively swapping
the nearest neighbours of pairs of bonded atoms and partially optimising the structure.
Luedtke and Landman also prepared a ‘glass’, by following the same multistage cooling

164 The distribution of coordina-

process, but without increasing the three-body term.
tion numbers was intermediate between the amorphous solid and the liquid: 41%, 52%
and 7% of atoms 4, 5, and 6 coordinated, respectively.

The distinction between the ‘glass’ and ‘amorphous solid’ may seem a little tenuous,
but is useful inasmuch as the former is essentially the kinetically arrested liquid, while
the latter is a quite distinct phase. Surprisingly, the third peak of the crystal RDF is
entirely absent from the amorphous solid, glass and liquid.

The amorphous solid melts when heated, undergoing what appears to be a first-
order transition. In MD sharp changes in the density and total energy per particle are
observed.'6%165 Angell has recently pointed out that this transition is better described
as one between two liquids, on the assumption that the diffusivity of the amorphous
solid is greater than that of the diamond structure at the same temperature.?’® Exper-
iments by Ansell et al.?’! have supported the existence of this transition and Angell’s
suggestion that it is between two liquids.

There are striking similarities between the phenomenologies of silicon and wa-
ter:292-204 in particular, both substances exhibit a sharply defined density maximum
with respect to temperature, and there is considerable indirect evidence that water
too exhibits a polyamorphic transition.??> As discussed more thoroughly in §1.1.6, the
presence of this first order transition and the apparent lack of the boson peak and
two-level systems?%® (§1.1.6) has led Angell to suggest that well-relaxed a-Si may be
an example of a class of glass-formers with very low residual entropy, approaching the
ideal glass state.38207

Barkema, Mousseau and co-workers have studied the potential energy landscape of
amorphous SW silicon in some detail, using a method similar to ours, the activation-
relaxation technique (ART)!38:139197:198 the principles of which T outlined in §1.3.3.
They catalogued over 8000 ART ‘events’, grouping them into three broad classes: ‘per-

fect’, in which the coordination numbers of all atoms involved remained the same,
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‘conserved events’ which corresponded to defect diffusion, and finally defect coordina-
tion/annihilation events.!3%:168 Creation/annihilation events were the most numerous
(5325), followed by conserved (1979) and perfect (802).

85% of the ‘perfect’ events corresponded to the WWW nearest-neighbour exchange,
with barriers around 4 eV, with a spread of 2eV. The barriers to ‘concerted exchange’
(CE), in which a pair of nearest neighbours swap positions, were higher, peaking at
5.8 eV, with a spread from 3.6 eV to 12eV. The CE mechanism was proposed by Pandey
as a possible diffusion mechanism in the crystal.?® Comparison with the nudged elastic
band methods of Jonsson et al, described in §2.1.2, suggested that single ART events
corresponded to pathways containing a number of transition states.'® The energy
barriers obtained using the nudged elastic band method and ART varied by as much
as £2e€V.
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APPENDIX: ANALYTIC DERIVATIVES OF THE ENTHALPY WITH RESPECT TO

THE BOX LENGTH

We follow Parinello and Rahman,??® and allow the three box lengths of the supercell
to vary independently, while keeping the supercell orthorhombic. Derivatives of the
enthalpy with respect to the dimensions of the supercell can be derived using scaled or

unscaled atomic coordinates.

SCALED COORDINATES

We define the scaled position vector of atom % in terms of its unscaled coordinates,

(@i, Yi, 2i), and the box lengths, (Lg, Ly, L,), as follows:

(Ts, Uis Zi) = (i) Lay Yi/ Ly, 2i [ L) (2.25)

The distance between a pair of atoms, r;;, is given by:

A:c + Aym + Az? (2.26)

5

where Az;j = x; — x; — Ly NINT [(x; — z;)/Ls|. The function NINT [u] = n, where n
is an integer and n — 0.5 < u < n 4+ 0.5: i.e. NINT yields the nearest integer to u. The
term containing the NINT function is present to ensure that we follow the minimum

image convention. If Az;; is defined similarly then

= AZLL + ALY + Az L. (2.27)

Y ij -z

In order to obtain the derivatives of the enthalpy with respect to the box lengths,
we have to treat NINT [(z; — z;)/L,] as a constant. Thus 0Or;;/0L, = LwA:E?j/rij.
The enthalpy, H, is given by H = E + PV, where E is the potential energy, P the
pressure and V = L,L,L,, the volume of the simulation supercell. Using the relation

that OF /0L, = (0F/0r;;)(0r;j/0L;), we obtain:

OH OFE OE(rij)
3L, = 3L +PL,L, =L, ; oy ri + PL,L, (2.28)

and the second derivatives are:
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—4 72 2
O*H _ O’E _ i oFE A$ijLw n OF Aijj (2'29)
oL2 = oy, Tij Orij ry; orij rij |’
and
FH _ PL,+)_ O°F _ 1 98 L””Lij’Z’Ag’?j. (2.30)
OL;L, < 37"% Tij OTij rizj

UNSCALED COORDINATES

The derivation is similar if we use unscaled coordinates, (z;,v;,2;). Azij = x; — x; —
Ly NINT [(z; — x;)/Lg), and so 0Az;; /0L,y = — NINT [(z; — ;) /L], and Or;;/0Az;; =

Ail?ij/’l"ij. Hence:

oOH _ _ oF A.Tij NINT [
0L, = Orij Tij

aci—a:j

Z

] + PL,L,, (2.31)

and the second derivatives are:

(NINT [%L;f]] ) 2} ., (2.32)

0’H
a—Lg:Z{

1<j

(32E 1 aE) Az | OE 1

2 O ) e
(97"Z-j Tij Orij | Tij Orij Tij

and

QH 2 1 AL A . .
0 :PLZ+Z{<6_E aE) i Y5 NINT [”’ZLJ] NINT [u]}

OL;L, < 81"12]- Tij OTij T x L,
(2.33)

These two sets of derivatives are not, in general, the same. The difference between the

two different first derivatives is given by:

oOH O0H o oF A:L‘Z'j Ty — Ty o 1 oF A:I?Z'j Ty — T4
(BLz> (8Lm) N Z ij Tij ( Lz ) N 2 ZZ a’/'ij Tij Lz .
sc unsc i<j i j#i

(2.34)

We then use the relations (0Az;;/0z;) = 1 and Or;j/0Az;; = Az;j/ri; to obtain:
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OF OF Az;j
= 2.
(830)5 ; Brij 8rij ( 35)

Separating equation 2.34 into two sums, and substituting in equation 2.35, we obtain:

(aLw>SC - (8L$>unsc 2 Z L, (axl>f " 2 zJ: Ly (81‘])[_: (2.36)

ZVE
= (2.37)

where Z is the vector (z1,0,0,29,0,...). Thus the overall difference between the box

length gradients calculated using scaled and unscaled coordinates is given by the vector:

#VE §VE ZVE
( - - ) (2.38)

¢ Ly L
At a stationary point with respect to the atomic configuration, VE=0 by definition,
and so the gradient of the energy with respect to the box dimensions is exactly equal
for derivatives calculated with both scaled and unscaled coordinates. We used a test set
of ten different starting configurations to search for transition states and subsequently
generate paths, for numerical derivatives and analytic derivatives using both scaled
and unscaled coordinates. We found the same stationary points in each case, but the

stationary point searches converged fastest with the numerical derivatives.



(GLOBAL OPTIMISATION AND
CRYSTALLINE REGIONS OF

CONFIGURATION SPACE

We began our investigation of the potential energy surfaces of our chosen model glass
formers by generating databases of stationary points for crystalline and nearly crys-
talline regions of configuration space. We generated these databases in order to com-
pare their properties with those of disordered minima and transition states, which we
present in the next chapter.

We were particularly interested in the possibility of the existence of a crystal struc-
ture for the binary Lennard-Jones system (§2.4.1). At the time, no crystalline structure
had been reported, despite the popularity of the system as a model glass former. As
the crystal structure had not been found, the degree of supercooling in MD simulations

was unknown. 98 128,131,210-216

3.1 THE UNIT DENSITY LENNARD-JONES AND STILLINGER- WEBER SYSTEMS

The global minima for the unit density homogeneous Lennard-Jones and Stillinger-
Weber systems are well known. The Lennard-Jones system forms both hexagonal- and
cubic-close-packed crystals, and the global minimum is face-centred-cubic (fcc) when
the system is in a cubic supercell of fixed box lengths and angles. The parameters
of the SW Si potential were optimised for the diamond structure, which is the global

minimum.

54
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Figure 3.1: Disconnectivity graph containing the lowest 500 minima for the unit density

Lennard-Jones system ULJ(x). Energies are in € per atom.
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Figure 3.2: Disconnectivity graph containing the lowest 150 minima for the Stillinger-Weber

silicon system SW(x). Energies are in € per atom.
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Starting from these known global minima, we generated databases of 10000 tran-
sition states, using sampling scheme SS1 from §2.1.4 (40 transition state searches per
minimum), and the parameter set outlined in §2.1.5. The databases thus generated were
used to create Figures 3.1 and 3.2. We illustrated three archetypal energy landscapes
in §2.3: the weeping willow, palm, and banyan trees corresponding to gentle and steep
funnels, and a hierarchical landscape, respectively. We expect that the disconnectivity
graph of a system that readily locates the crystal on cooling—such as the homogeneous

Lennard-Jones system'6?

—will have the palm tree structure, while a good glass former
will probably have a ‘weeping willow’ structure. In the immediate vicinity of the crys-
tal, the banyan tree form is rather unlikely, as it would require the potential energy of
low-lying disordered states to be similar to that of the ordered structure.

Figure 3.1 exhibits the expected palm-tree structure of a good crystal-former. The
uphill barriers, out of the funnel, are much larger than their downhill counterparts, and
there appear not to be any side-funnels that might act as kinetic traps. The central
funnel of Figure 3.2 is also palm-tree like, but as the PES is ascended, increasing

numbers of minima appear, and the graph takes a weeping willow form, characteristic

of a more gentle funnel.

3.2 'THE BINARY LENNARD-JONES SYSTEM

It has been suggested anecdotally that the lowest energy structure for the 80:20 binary
Lennard-Jones mixture consists of separate phases of pure A and B atoms. This sug-
gestion is somewhat surprising, as the most energetically favourable term is the A-B
interaction, with eagp = 1.5 eaA compared to egg = 0.8 €an.

As the most stable structure for the homogeneous Lennard-Jones solid is close-
packed, it follows that two hypothetical phase-separated structures must also be close-
packed. Obviously, in the bulk, surface effects between the two pure phases can be
neglected so we calculated the energy of the phase-separated system by considering
two independent subsystems of pure face-centred-cubic A and B atoms. We used the
Stoddard-Ford shifting technique, and a cutoff of 2.50,5. The volumes of the two
simulation supercells were then varied, subject to the constraint that the mean number
density of the entire system was kept constant at 1.2 agi.

The mean energy per atom of the optimised phase-separated system was found to

be —6.025ea. This result is considerably higher than even the liquid-like minima
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obtained by Sastry et al.”® for this system. The optimum density of the A phase is
1.12 O'Xi, giving a pair separation of 1.08 o4 5, while the corresponding parameters for
the B phase are 1.67 0;2 and 1.07eaa = 1.22egp. Obviously the phase separated state
lies very high in energy for this system, and so we used basin-hopping to attempt to

find the true global minimum.

3.2.1 FINDING LOW-LYING MINIMA USING BASIN-HOPPING

Since the phase-separated minimum is obviously not the global minimum for BLJ we
first decided to run a ‘basin-hopping’ global optimisation search.!”™® The transformed
landscape was explored starting from phase separated atoms on fcc lattice sites using
Monte Carlo sampling of the transformed landscape at a temperature of 0.8 eaa. The
random displacement of atomic coordinates for proposed steps was adjusted to give an
acceptance ratio of about 1/2. Figure 3.3 shows the lowest minimum located in a run
of 20000 basin-hopping steps. Another global optimisation run of the same length was
performed, this time starting from the lowest energy minimum obtained by systematic
quenching from a molecular dynamics (MD) trajectory at an energy of —5.8594 epn
per atom, but it did not produce a lower minimum. For a system of this complexity
locating the global minimum reliably would require much longer basin-hopping runs
than we have used here—we can only be confident that relatively low energy minima
have been found. It is therefore not surprising that the two global optimisation runs did
not converge to the same structure. Rather, this result suggests that the very lowest
minima will probably exhibit some phase separation, and will be rarely sampled in an
MD simulation of the liquid.

Our results may be compared with the energy obtained by Angell et al.’s extrapo-

lation28

of Sastry and coworkers’ excitation profile.”® Using the assumption that the
critical temperature of mode-coupling theory, T, and the Kauzmann temperature, Tk
are related by T, /Tk ~ 1.6, Angell et al. obtained an energy of about —7.08 a5 per
atom, which agrees reasonably well with the value of —7.0541eaa per atom for our
lowest energy minimum. The latter structure (Figure 3.3) appears to be a close-packed
arrangement of A atoms, with B atoms arranged interstitially and substitutionally.
There is a degree of phase separation, with the B atoms more concentrated near the

top and bottom of the supercell. Hence the most stable structure for this system seems

to be lamellar, as discussed in the next section, although obviously the thickness of the
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Figure 3.3: Lowest energy minimum found for the binary Lennard-Jones (BLJ) system, showing

significant ordering of the larger A atoms and some degree of phase separation.

lamellae will be strongly affected by the size of the supercell and the number density
of atoms.

The energy of this minimum depends significantly on the length of the cutoff em-
ployed, and whether the energy is shifted by the Stoddard-Ford (SF) quadratic function
or by a constant, as discussed in §2.4.1. We present in Table 3.1 the energies of all
the low-lying minima discussed in this chapter, calculated for cutoffs of 2.50,5 and
1.842 0,4 for the SF scheme, and 2.5 0,4 for the Kob-Andersen (KA) constant shifting
method. The data is presented using this variety of cutoffs to allow direct comparison

with other results.

3.3 CRYSTALLINE MINIMA FOR BINARY LENNARD-JONES

3.3.1 60-ATOM SYSTEM

An apparently crystalline low-lying minimum for this system was found by Hernandez-

Rojas and Wales, 82217

using a stochastic global optimisation method, which combined
the basin-hopping approach,'7% 17! with kinetic Monte Carlo steps between local min-

ima. They found that the potential energy of this ordered minimum is —4.71epn
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Table 3.1: Energies and symmetries of the crystalline minima for the different binary Lennard-
Jones systems studied here. For comparison, we have included the energy of the lowest crys-
talline minimum found in previous work,!58 and we give the energies for cutoffs of both 1.842 o,
and 2.5043. For the latter cutoff, we have calculated the energies for the Kob-Anderson (KA)
shifting method,’* as well as for the Stoddard-Ford (SF) method.!® The energies are in units

of eap per atom.

re =2.50q48 (SF) r1.=25048 (KA) r.=1.8420,5 (SF)

60-atom supercell —7.08 —7.68 —4.71
256-atom supercell —7.20 —7.87 —4.74
320-atom supercell —7.33 —7.99 —4.90
256-atom (amorphous) —7.05 —7.72 —4.59

per atom. The energy of the lowest amorphous minimum for the 256-atom system
described above (§3.2.1), with the energy recalculated for a cutoff of 1.842 0,4 is con-
siderably higher, at —4.59eas. At first glance the 60-atom crystal structure appears
to consist of cubic-close-packed regions of A atoms, which meet coherently at the (010)
and (020) planes. The B atoms rest in trigonal prismatic holes, produced by the coher-
ent boundaries. The 60-atom supercell appears to consist of three 20 atom unit cells,
with unit cell dimensions, of a =b = 3.684 0a4,¢c = 1.228 0as packed parallel to the z
axis.

However, the interatomic distances vary between the three unit cells by 1-4%, and
there appears to be some buckling of the structure. The three unit cells become
identical when the structure and box lengths are optimised at a constant pressure of
0.6087 ean U;i, which gives a number density of 1.2 O'Xi, but different box lengths. The
dimensions of the 20-atom unit cell of the lowest energy structure are a = 3.7708 oaa,
b=3.925505A and ¢ = 1.1246 oo, and with a cutoff of 1.842 0,4 the 60-atom super-
cell has an energy of —4.85 eaa per atom. Hence we conclude that the broken symmetry

of the three unit cells is a consequence of forcing the structure into a cubic supercell.
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Close packed planes
of A atoms

(b)

Figure 3.4: (a) Projection of four unit cells for the 60-atom supercell on the (001) plane. Each

unit cell contains 20 atoms, with a = 3.771044, b = 3.926044 and ¢ = 1.1250aa. (b)

Perspective view of one unit cell, looking down the (100) direction.

3.3.2 256-ATOM SYSTEM

We carried out a ‘basin-hopping’ global optimisation search!™ for a 256-atom system.

It is impossible to create an exact 80:20 mixture with this number of atoms, but nev-
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ertheless this system size has been popular in previous simulation studies.f%% We
created a starting configuration that was essentially face-centred-cubic A, with a unit
cell dimension one quarter of the supercell box length, and one A atom replaced by a
B atom in 51 of the fcc unit cells. Obviously it was impossible to spread the B atoms
completely uniformly, because there were 51 B atoms and 64 fcc unit cells in our simu-
lation box. The geometry was explored, starting from this configuration, using Monte
Carlo sampling of the transformed potential energy surface (PES) at a temperature of
0.8 eAAkgl. The random displacement of atomic coordinates for proposed steps was
adjusted to give an acceptance ratio of about 0.5. Figure 3.5 shows the lowest minimum
located in a run of 20 000 basin-hopping steps.

The lowest minimum has energy —7.20eaa per atom, significantly lower than the
energy of the lowest-lying amorphous minimum of this system, —7.05exa (§3.2.1). It
is highly crystalline, again based upon fcc A atoms, but here one layer of the lattice
has been replaced by B atoms. The remaining B atoms are spread throughout the
supercell, where the B atoms replace A atoms in the fcc lattice. The B atoms in the
layer are each surrounded by an approximate square prism of A atoms, with separations
between 0.90 04 and 0.920a4. This range compares favourably with the equilibrium

pair separation for the AB interaction of 0.898 oaa.

3.3.3 320-ATOM SYSTEM

It is not possible to obtain an ordered minimum with a unit cell any smaller than the
supercell for the 256-atom system, simply because there are 51 B atoms and 205 A
atoms. We therefore created a 320-atom system, which consisted of 10 face-centred-
square (fcs) layers of atoms stacked parallel to the z axis to create an fcc lattice. The
first and sixth fcc layers were B atoms. Using this as a starting configuration, we carried
out another basin-hopping global optimisation run, using the same parameters as in
§3.3.2. The lowest energy structure found was qualitatively the same as the starting
configuration. We then reoptimised this structure allowing the box lengths to vary,
keeping the x and y box lengths equal, and the number density constant at 1.2. We
converged the box lengths to a precision of 10 8 oax.

The box length and subsequent geometry optimisation produced the structure il-
lustrated in Figure 3.6. It has energy of —7.33 epa per atom, significantly lower than

that of the 256-atom system. For comparison with the 60-atom system, we shortened



Global optimisation and crystals

63

Table 3.2: Coordination shells in the 320-atom supercell. Distances are given in units of gaa.

oas = 0.8 and ogg = 0.88, so the equilibrium pair distances for AA, AB and BB interactions

are 1.12250, 0.8980 0 and 0.9878 oaa, respectively. The bracketed numbers are the ratios

of the interatomic distances in the crystal and the corresponding equilibrium pair separation,

21/6 5,5 where a, 3 are A or B.

Ay Ay B
Nearest Atom type B A, Ay
Neighbour | Coordination number | 4 4 8

Coordination geometry

Square pyramid

Square planar

Square prism

Distance 0.9321 (1.038) 1.0907 (0.9716) | 0.9321 (1.038)
2nd Nearest | Atom type Ay Ay B
Neighbour | Coordination number 1 4 4
Coordination geometry Square pyramid | Square Planar
Distance 1.0471 (0.933) 1.1232 (1.001) 1.0907 (1.104)
3" Nearest | Atom type A4 A, A,
Neighbour | Coordination number | 4 4 2
Coordination geometry | Square planar Square pyramid | Linear

Distance 1.0907 (0.9716) | 1.1274 (1.004) | 1.3402 (1.492)
4™ Nearest | Atom type A, B B
Neighbour | Coordination number | 4 1 4
Coordination geometry | Square pyramid Square Planar
Distance 1.1232 (1.001) 1.3402 (1.194) 1.5424 (1.7527)
5" Nearest | Atom type Ay A, A,
Neighbour | Coordination number | 4 4 4

Coordination geometry

Square pyramid

Square planar

Square Prism

Distance

1.5120 (1.347)

1.5424 (1.3741)

1.7279 (1.9242)
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Figure 3.5: Perspective view of the 256-atom crystalline system. The single layer of B atoms

in the fcc lattice and the single B atoms coordinated by eight A atoms are clearly visible.

the cutoff to 1.842 0,4, and reoptimised the geometry. The energy was —4.90 €aa, sig-
nificantly lower than the —4.71eaa of the 60-atom system. The unit cell is illustrated
in Figure 3.6. It contains eight A atoms, and two B atoms, and has a = b = 1.091 o4,
and ¢ = 7.003 0. The space group is I4/mmm. The positions of the atoms, given in
terms of the unit cell dimensions are: A atoms at Wyckoff 4e positions, with coordinates
(0,0,0.327) and (0,0,0.191), and B atoms at Wyckoff 2a positions, with coordinates
(0,0,0).2'® We label the A atoms of the former type A; and the latter Ay. The first to
fifth nearest neighbours are described in detail in Table 3.2, and it is worth noting that

in this structure the A atoms form a square prism around the B atoms, with distances
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Figure 3.6: Illustrations of the lowest energy crystal structure for the 320-atom supercell: (a)
projection of four unit cells on the (010) plane; (b) projection of four unit cells on the (001)
plane; (c) perspective view of one unit cell. This structure has space group I 4/mmm, with
a=b=1.0910aa and ¢ = 7.0030AA.
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0.9921 oA s, which is 4% larger than the equilibrium pair separation for this interaction.
This basic crystal structure has previously been seen for Ir(UC)2 where the Ir atoms are
in the B positions, and the U and C atoms are approximately in the A; and the latter
A, positions, respectively.?'??20  Atomic coordinates for this minimum are available
from the Cambridge Cluster Database.??!

Calvo has attempted to calculate the melting point of this crystal using the mov-
ing interface method, with canonical MD.??? Preliminary results suggest that kT, ~
0.65 eaa, which is consistent with the empirical relation that T, ~ 275, /3, if we consider
that Kob and Andersen’s value of T, 0.435 e /kB, is the glass transition temperature
on the MD simulation timescale. At a temperature of 0.65ea4 /kB, the region of the
landscape that the system explores is considerably lower in energy than the high tem-
perature plateau on Sastry’s excitation profile.”® The temperature dependence of the
diffusion constant is super-Arrhenius, and so rearrangements in the melt that lead to
crystallisation take place on timescales much longer than that of MD.

We used this low energy minimum as the starting point for a series of searches for
transition states and connected local minima to investigate the surrounding PES at
constant volume, using the box lengths of the lowest energy crystal. Obviously the
constant volume constraint is somewhat artificial, but all the stationary points in our
database are sufficiently similar that it is unlikely to affect our results significantly. As
before, we sampled minima according to SS1, described in §2.1.4.

Figure 3.7 was obtained using Mortenson’s simplification method based on canon-
ical rate constants, outlined in §2.3. The temperature used for the calculation of the
canonical rate constants was 0.6 €5 Akgl, and the rate threshold used to group the min-
ima was 1078 (6 AA/ mai A) Y 2, assuming unit mass for both A and B atoms. The graph
shows the lowest 250 minima left in the database after the grouping was carried out.
Visual comparison of the ‘full’ disconnectivity graph of 5011 nodes (not shown here)
confirmed that its essential features were retained when the graph was coarse-grained
using this technique.

Within the energy range considered all the minima exhibit a high degree of crys-
tallinity. The minima with energies around —7.30esa generally contain one permu-
tation of an A and a B atom, and those with around —7.28 €5, contain two such
defects. Figure 3.7 shows that high barriers exist between some of these defective crys-
talline minima, resulting in a ‘willow tree’ pattern described in §2.3, illustrating that

this region of the PES acts as a gentle funnel towards the lowest crystalline minimum.
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Figure 3.7: Disconnectivity graph produced using the grouping algorithm for the 320-atom su-
percell with optimised box lengths. The threshold rate was 10~® \/exam/oaa, the temperature
used to calculate the canonical rate constants was 0.6 eaa /kB, and only the lowest 250 minima
are shown here. The salient features of the ‘full’ tree, which contains 5011 minima, are retained

in this simplified diagram. The energy scale is in exa per atom.



Global optimisation and crystals 68

It is obvious, even from the simplified disconnectivity graph, that the energy density
of minima increases rapidly as the PES is ascended—even in the predominantly crys-
talline portion depicted in Figure 3.7—owing to the large number of possible relative
positions of permuted atoms. This willow tree pattern is qualitatively different from
the strong funnel of the unit density Lennard-Jones system, illustrated in Figure 3.1.
The presence of a large number of low-lying minima provides a first indication of how
the resistance to crystallisation of the binary Lennard-Jones system arises at an atomic

level.

3.4 SUMMARY

We have characterised the regions of configuration space for our glass formers in the
immediate vicinity of their crystalline global minima. In the case of the binary Lennard-
Jones system, we have found new crystals, for 256- and 320-atom systems, and charac-
terised in detail the crystalline minimum of the 60-atom system.

182 Ferndndez

Following our publication of the BLJ results presented in this Chapter,
and Harrowell improved the structure.??? They correctly interpreted our 320-atom
structure as alternating layers of the CsCl structure and pure A atoms. They allowed
the density to vary and found that the the optimal layered structures at a number of
different A:B ratios were those that minimised the number of interfaces between the fcc
A and the CsCl AB structure. Thus the crystal structure with the 10-atom unit cell was
improved further by creating a single layer of the AB CsCl phase, and the energy could
be improved further by increasing the unit cell size and allowing thicker alternating
layers to form. Their findings give us further insight into the excellent glass forming
properties of this system: layer formation from the melt is likely to be kinetically slow
with significant entropic barriers, and therefore will not be observed on the timescale
of feasible MD simulations.

The qualitative differences between the disconnectivity graphs of the homogeneous
Lennard-Jones, SW silicon and binary Lennard-Jones systems illustrate the ease or
difficulty with which these systems crystallise. In particular, the rapid increase in
the number of minima of the BLJ system as the landscape is ascended, even in the
immediate vicinity of the crystal, indicate that there is a very large entropic component
to the free energy barrier to crystallisation, compared to its homogeneous counterpart.

We will further examine the effects of decreasing order in the following chapter, and
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the low-lying BLJ minima obtained here by basin-hopping will serve as starting points

for some more detailed study of the potential energy landscape.



EXPLORING THE POTENTIAL

ENERGY SURFACE

Our next step was to generate databases of minima and transition states for the binary
and homogeneous Lennard-Jones systems and the Stillinger-Weber (SW) silicon poten-
tial. The rearrangement pathways thus generated can help to explain the mechanisms
of relaxation and transport processes, both in the glass and the supercooled liquid.

In order to be confident that our results were truly representative of the dynamics
of the systems studied, we produced databases both at constant volume, and allowing
the box lengths to vary using the methods described in §2.1.3. We also sampled the
binary Lennard-Jones system using two different sampling schemes (SS2 and SS3), and
used starting configurations generated from basin-hopping and MD.

This chapter has two principal sections, detailing results at constant volume and

constant pressure, respectively.

4.1 LABELLING SYSTEM FOR DATABASES OF STATIONARY POINTS

As we outlined in Chapter 2, we used three different sampling schemes to generate
our databases of minima and connecting transition states. We also used four different
potentials, and generated databases under both constant volume and constant pressure
conditions.

In order to clarify the presentation of our results, we use the labelling system ex-

plained below and detailed in Table 4.1. The system operates as follows:

1. The interatomic potential is represented by a two or three letter code: Stillinger-

70
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Table 4.1: Details of the labelling system for the databases of minima and transition states
that we obtained. The modified SW silicon potential has the three-body term increased by 50%
(§2.4.2). The number densities and pressures at which the databases were generated are included
for the results at constant volume and pressure, respectively. The units for number density

(p) are 02, and those for pressure (P) are eo 3.

The ‘Approximate Crystallinity’ column
refers to the most crystalline minimum in the database: and is an approximate figure obtained
by inspection (§4.2.1). The starting configuration is the first minimum used to generate the
database, and is obtained from basin-hopping global optimisation (§2.2), manual construction

or from another database.

Source
Approximate of starting Sampling
Database Potential P P Crystallinity | configuration scheme
BLJ1-3 binary 1.20 0% Basin-hopping SS2
BLJ4-10 Lennard-Jones 0% BLJ1-3 SS3
BLJ11-14 0% MD SS3
LJ(x) 1.0 100% Construction SS1
ULJ1 homogeneous 80% MD SS3
ULJ2 Lennard-Jones 50% MD SS3
ULJ3 0% MD SS3
RLJ1-2 0.93 0% MD SS3
SW(x) Stillinger-Weber | 0.46 0% MD SS1
SW1-3 silicon 0% MD SS3
SW1.5 Modified SW 0% MD SS3
BLJLP(x) binary 0.6 100% Basin-hopping SS1
BLJLP1 Lennard-Jones 0% BLJ11 SS1
BLJLP2 0% BLJ12 SS1
BLJLP3 0% BLJ13 SS1
BLJHP 1.2 0% BLJ11 SS1
SWP1 Modified SW 4x107° 100% SW2 Ss1
SWP2 0% MD SS1




Exploring the Potential Energy Surface 72

Weber silicon (SW), binary Lennard-Jones (BLJ), unit density Lennard-Jones
(ULJ) or homogeneous Lennard-Jones relaxed to the optimum density for the

face-centred-cubic (fcc) crystal (RLJ).

2. If the database was generated at constant pressure, an additional alphabetical
code is added: ‘HP’ for the high pressure BLJ database, ‘P’ for the low pressure

BLJ databases and ‘P’ for all other constant volume databases.

3. A number then follows for amorphous databases, or ‘(x)’ for crystalline databases.

4.2 SELECTION OF STARTING CONFIGURATIONS FOR DATABASE GENERATION

Database BLJ1 was obtained using SS2 (up to eight searches per minimum) by start-

ing from the lowest energy amorphous BLJ minimum described in §3.2.1. Databases

BLJ2 and BLJ3 were generated using SS2 starting from two of the minima obtained by
quenching every \/nm time units from an MD trajectory of length 1000 \/m at
total energy —3.906 ea o per atom. The energies of the starting minima for the two sam-

ples were selected to produce databases of minima that fully span the range of inherent

structure energies studied by Sastry et al.”® Apart from the energy range, the selection

of these starting minima was random.

To check the dependence upon the sampling scheme and the starting minimum we
generated databases BLJ4-10 using SS3 (400 searches per minimum). The starting
minima were selected randomly from databases BLJ1-3: except that their energies
were chosen to span the full range of the latter databases, and that the BLJ4 starting
configuration was the very low energy minimum used as the starting point for BLJ1.

As one final check of the statistics we generated databases BLLJ11-14 using SS3 and
starting minima obtained from a further set of short MD trajectories suggested by the

1.9 The system was initially equilibrated for 5000 steps

cooling schedules of Sastry et a.
at a total energy of —1.875eaa per atom, with a time step of 0.003 \/nm. It
was then cooled by successive runs of 100 steps at progressively lower total energies.
The energy was reduced each time by 0.07188 epan per atom by rescaling the veloc-

ities, corresponding to a cooling rate of 4.219 x 1073 eanPm =1 2g 0!

per atom.
This cooling rate corresponds to the fastest schedule used by Sastry et al. Cool-
ing was continued until the total energy was essentially equal to the potential en-

ergy of the (unquenched) configuration. Databases BLJ11-14 correspond to configu-
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Molecular dynamics run
starting from crystal

’—> Intermediate database started
using SS1 (forty searches per
Select a minimum)

starting configuration

higher in energy

T— Has it collapsed to the crystal?

Yes

No

Generate a new database using SS3
(four hundred searches per minimum)

Figure 4.1: Method used to select starting configurations for the databases of stationary points

for the homogeneous Lennard-Jones and SW Silicon systems.

rations obtained by starting from minima with total kinetic and potential energies of
—6.8344 ean, —5.3969€aa, —4.6781 ean and —2.1625 eaa per atom, respectively.

To generate starting minima for the Stillinger-Weber and the unit density (ULJ)
and relaxed (RLJ) Lennard-Jones systems, we used the method illustrated in Figure
4.1. First, we conducted standard MD runs of increasing total energy starting from the
appropriate crystal. Quenches were performed at regular intervals to determine when
the (superheated) system first escaped from the crystal. The quench minima following
escape were each used as the starting points for exploration of the PES using the SS1
sampling scheme (§2.1.4). We found that initial minima containing even small regions
of crystallinity collapsed to the crystal after a few hundred minima (or less) had been

sampled. However, eventually a starting minimum was always located where the crystal
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Table 4.2: Details of the databases studied. E; is the energy of the initial minimum, Fq, and
Ehign are the energies of the lowest and highest lying minima, Npyin is the number of minima
in the database, and Ny is the number of transition states. All the energies are in € per atom

(§2.4). (Emin) and (E4s) are the mean energies of the minima and transition states, respectively.

Database E, Elow Ehign Nmin (Emin) (Ets)
binary Lennard-Jones, sampling scheme SS2

BLJ1 —7.0541 —7.0541 —6.8546 9275 —6.9784 —6.9695

BLJ2 —6.9377 —6.9811 —6.8280 9485 —6.9197 —6.9115

BLJ3 —6.8560 —6.9846 —6.8185 9571 —6.9176 —6.9097
binary Lennard-Jones, sampling scheme SS3

BLJ4 —7.0541 —7.0541 —6.9285 7867 —7.0070 —6.9930

BLJ5 —7.0336 —7.0444 —6.9206 8126 —6.9949 —6.9802

BLJ6 —7.0137 —7.0514 —6.8958 8161 —6.9889 —6.9766

BLJ7 —6.9948 —7.0242 —6.8906 8455 —6.9737 —6.9605

BLJS8 —7.0016 —7.0220 —6.8916 8434 —6.9694 —6.9564

BLJ9 —6.9531 —6.9716 —6.8519 8435 —6.9277 —6.9155

BLJ10 —6.9350 —6.9585 —6.8218 8810 —6.9131 —6.9013
binary Lennard-Jones, sampling scheme SS3

BLJ11 —6.9723 —6.9846 —6.8699 8419 —6.9356 —6.9235

BLJ12 —6.9439 —6.9734 —6.8434 8708 —6.9245 —6.9124

BLJ13 —6.9218 —6.9598 —6.8252 8674 —6.9029 —6.8900

BLJ14 —6.8936 —6.9427 —6.8177 9109 —6.8866 —6.8745

unit density Lennard-Jones, sampling scheme SS3

ULJ1 —7.3444 —7.3456 —7.2186 4460 —7.3141 —7.3038

ULJ2 —7.2513 —7.3456 —7.1579 7541 —7.2595 —7.2349

ULJ3 —7.0147 —7.3957 —6.9774 9212 —7.0580 —7.0319
relaxed Lennard-Jones, sampling scheme SS3

RLJ1 —6.9711 —7.4908 —6.8775 8355 —7.0614 —7.0005

RLJ2 —6.9072 —7.7067 —6.8751 8249 —7.0512 —7.0392

Stillinger-Weber Si, sampling scheme SS3

SW1 —1.8949 —1.8966 —1.8838 6939 —1.8921 —1.8920

SW2 —1.8796 —1.8857 —1.8779 5834 —1.8807 —1.8803

SW3 —1.8631 —1.8750 —1.8623 5883 —1.8660 —1.8654

adjusted Stillinger-Weber Si potential, sampling scheme SS3
SW1.5 —1.8496 —1.8892 —1.8251 8716 —1.8485 —1.8452
largely crystalline ULJ and SW samples, sampling scheme SS1
SW(x) —1.9937 —2.0000 —1.9601 7664 —1.9784 -1.9777

LJ(x) —7.5392 —7.5392 —7.2473 3367 —7.3641 —7.3619
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was not found in the SS1 procedure, even after sampling several thousand minima. The
starting minima used in the generation of the final databases were chosen from these
intermediate databases that did not collapse to the crystal. The intermediate databases
were then discarded.

Databases SW1-3 were generated using SS3 (§2.1.4) starting from minima at the
bottom, middle and top of the intermediate SS1 database, respectively, in terms of
their energy. Database SW1.5 was generated using SS3 starting from the same mini-
mum as for SW1, but reoptimised with the new potential, in which the three-body term
is increased by 50% (S2.4.2). Increasing the three-body term has the effect of increas-
ing the energetic favourability of tetrahedral coordination.'®* Databases ULJ1-3 were
generated using SS3 starting from minima at the bottom, middle and top of the inter-
mediate SS1 databases, as for SW1-3. Databases RLJ1 and RLJ2 were generated using
SS3 starting from minima at the bottom and top of the intermediate SS1 database.

Although the intermediate SS1 database for ULJ did not collapse to the crystal, it
nevertheless managed to reach minima containing significant crystalline character. The
starting configurations for the ULJ1 and ULJ2 databases appear from inspection to be
about 80% and 50% crystalline, respectively, although their values of the crystallinity
order parameter, QQg" are similar, but their barrier distributions are not very different
from ULJ3. All the other starting minima and the corresponding databases, including
ULJ3, have no atoms in crystalline environments. Table 4.2 contains some statistics

for each of the databases.

4.2.1 CRYSTALLINITY

The Stillinger-Weber and homogeneous Lennard-Jones systems have crystalline global
minima: the diamond and hcp structures respectively. Qg is a particularly useful order
parameter to measure the degree of close-packing, as it has a value of exactly zero for
the liquid, and has a similar value for all common crystalline structures, namely 0.57452
for fce, 0.48476 for hep, and 0.51069 for body-centred-cubic (bce). Thus, values close

to zero represent a highly disordered structure, while values in the range 0.4 — 0.5 are

*Qs¢ is an order parameter introduced by Steinhardt et al.,>?* which can be used as a measure of
crystallinity. It is based on on the sum of sixth order spherical harmonics for all the N, bonds in the
supercell, using the minimum image convention. The value of Q¢ is a little sensitive to the choice
of cut-off, which determines which atoms are bonded: the value we used was 1.24 times the nearest

neighbour distance for the fcc structure, as used in previous work.??®
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indicative of crystalline order.

The average values of Qs for our ULJ samples are 0.45 for ULJ1, 0.46 for ULJ2
and 0.17 for ULJ3. All the values for the BLJ samples are less than 0.1, and those
for RLJ1 and RLJ2 are 0.24 and 0.21, respectively. Qg is not applicable as a measure
of crystallinity with tetrahedral coordination, and so it cannot be applied to the SW

system.

4.3 PROPERTIES OF THE PES AT CONSTANT VOLUME

4.3.1 BARRIER DISTRIBUTIONS

Every transition state is associated with an uphill (larger) and a downhill (smaller)

226 where these are the same. We

barrier (§2.1), except for degenerate rearrangements
present the barrier height distributions using a Gaussian for each data point:
1 L e (0=b:)? /257

foy==>"

n i 272
This convolution produces a smooth function when the Gaussian width, s, is chosen
appropriately. An approximate representation of the probability distribution, f(b), for
the barrier height, b, is thereby obtained from the n observed barrier heights, b;, in the
database.

We will focus on the downhill (§2.1) barrier distributions for brevity. For any
pathway the uphill barrier is equal to the downhill barrier plus the energy difference
between the higher and the lower lying minima. The uphill barrier distribution is
therefore largely determined by the distribution of energy differences between minima.
We also expect relaxation towards equilibrium to be more dependent upon the downhill
barrier distribution.

Uphill and downhill barrier distributions for the different databases are illustrated
in Figures 4.2-4.7. Table 4.3 summarises the maxima, in the uphill and downhill barrier
distributions. For the most extensively investigated BLJ system it is apparent from
Figures 4.2-4.4 that there is no dramatic variation in the downhill barrier distributions
we have obtained for different searching methods or choices of starting configuration.

Figure 4.3 shows that a smaller number of searches from each minimum tends to
bias the distribution towards lower energy barriers. Databases BLJ1-3 were generated
using SS2 with eight searches from each minimum: databases BLJ4-10 span the same

energy range. The maxima in the downhill barrier distributions, in Table 4.3, are similar
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Table 4.3: Mean values of the integrated path lengths, (S}, in o (§2.4); separations of connected
minima, (D), in o; and cooperativity indices, <N >, for all the databases studied. These
quantities are defined in §4.3.2. E,ax(up) and Enax(down) are the energies of the largest

maxima in the distributions of uphill and downhill barriers, respectively, in € per supercell.

Database (S) (D) <J\~f > Epax(up) Eax(down)
binary Lennard-Jones, sampling scheme SS2
BLJ1 4.13 1.47 5.58 0.09923 0.05077
BLJ2 4.48 1.59 8.18 0.14628 0.05078
BLJ3 4.46 1.60 8.40 0.14655 0.04564
binary Lennard-Jones, sampling scheme SS3
BLJ4 5.99 1.88 4.71 5.31484 0.03397
BLIJ5 5.79 1.84 4.51 5.17010 0.03877
BLJ6 6.14 1.91 6.68 0.55880 0.05481
BLIJ7 6.50 1.96 6.80 0.68001 0.03279
BLJS8 5.77 1.82 5.17 4.66479 0.04504
BLJ9 6.72 2.01 7.86 0.28832 0.03022
BLJ10 6.96 2.13 9.88 0.73759 0.04985
binary Lennard-Jones, sampling scheme SS3
BLJ11 7.11 2.12 8.06 10.61102 0.05453
BLJ12 7.08 2.11 10.09 0.99954 0.05040
BLJ13 7.24 2.18 10.84 1.08445 0.04902
BLJ14 6.80 2.14 11.19 0.78742 0.04485
unit density Lennard-Jones, sampling scheme SS3
ULJ1 3.91 1.57 2.74 0.17093 0.06135
ULJ2 5.92 2.02 3.50 1.56803 0.04799
ULJ3 12.30 3.54 36.53 1.50377 0.05206
relaxed Lennard-Jones, sampling scheme SS3
RLJ1 13.25 3.57 22.96 6.94788 0.04900
RLJ2 9.11 3.05 45.85 2.50320 0.04395
Stillinger-Weber Si, sampling scheme SS3
SW1 2.43 0.95 8.18 0.02010 0.00412
SW2 2.26 0.90 16.68 0.00639 0.00317
SW3 2.54 0.94 17.25 0.00634 0.00243

adjusted Stillinger-Weber Si potential, sampling scheme SS3
SW1.5 3.74 1.35 5.17 0.01366 0.00795




Figure 4.2: Uphill and downhill barrier dis-
tributions for binary Lennard-Jones (BLJ)
databases BLJ1-3 generated using the first
sampling scheme SS2 described in §2.1.4
(maximum of eight transition state searches
per minimum). The Gaussian width s =
0.05eaa and the barriers are in e o per su-

percell.

Figure 4.3: Uphill and downhill barrier dis-
tributions for binary Lennard-Jones (BLJ)
databases BLJ5-10 generated using the sec-
ond sampling scheme SS3 described in
§2.1.4 (400 transition state searches per
Database BLJ1 is included

for comparison. The Gaussian width s =

minimum).

0.05eaa and the barriers are in eaa per su-

percell.
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for all the data sets, varying between about 0.03 — 0.05¢, with no apparent pattern.

The uphill barrier distributions of samples BLJ1-10 appear to vary with little obvious

pattern, except that those for the lowest energy data sets have maxima at energy 5e,

an order of magnitude higher than all the others, except for BLJ8. As before, we report

barrier heights as energy differences per supercell, since the relevant barriers should not

scale extensively with system size.

It is surprising that the barrier distributions appear to be similar for all the BLJ

samples, as Sastry et al.,”®

inferred for the same system that the barriers increase in

magnitude as the system explores lower energy regions of the PES. This observation



Exploring the Potential Energy Surface 79

may be partly produced by the change in the uphill barrier distribution: the system
becomes trapped in low lying minima, and must surmount large uphill energy barriers
to escape. However, it probably the case that the ‘barriers’ observed by Sastry et al.
correspond to the total activation energy for multi-step processes, rather than to single
rearrangements. Our results are supported by the work of Kopsias and Theodorou, who

found that the free energy barrier heights for a 198 atom homogeneous Lennard-Jones

system'%® were independent of the free energies of the minima involved.
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Figure 4.4: Uphill and downhill bar- Figure 4.5: Uphill and downhill bar-
rier distributions for the binary Lennard- rier distributions for the Stillinger-Weber
Jones (BLJ) databases BLJ11-14 gener- databases SW1-3 and for the modified
ated using sampling scheme SS3 (§2.1.4) Stillinger-Weber potential SW1.5 (2.4.2).
(400 transition state searches per mini- The Gaussian width s = 0.005 € and the
mum) and starting minima derived from barriers are in € per supercell.

an MD cooling run. The Gaussian width

s = 0.05eaa and the barriers are in

eapn per supercell.

Both Figure 4.5 and Table 4.3 show that the energy of the largest maximum in
the downhill barrier distribution for databases SW1-3 decreases slightly as the energy

of the minima increases. However, this maximum occurs for rather low energies of
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order 0.004 € per supercell, which corresponds to only around 0.01eV. There is a slight
increase in the energy of the downhill maxima with decreasing energy of the minima
in the samples, but for the lowest energy sample, SW1, the peak in the uphill barrier
distribution is at an energy an order of magnitude higher. All the maxima are at
very low energies, a result that contrasts strongly with the maxima at around 2eV

140 although they also found a significant maximum

found by Barkema and Mousseau,
at low energy. They assigned this low energy maximum to the presence of ‘unstable’
minima in the sample, although the evidence presented here suggests that these very
low barriers are rather ubiquitous. It is possible that the approximations involved in
finding transition states by the original activation-relaxation technique (ART) produce
a bias towards high energy barriers. The present results are converged to much higher
precision, albeit for smaller supercells, and may lead to a bias towards rearrangements
with low energy barriers. Malek and Mousseau??” have subsequently employed a hybrid
eigenvector-following technique that should produce essentially equivalent results to
ours if the PES is sampled in the same way. Recent discussions with one of these
authors suggest that their results are essentially consistent with ours: the apparent
differences arise from their tendency to focus on uphill barriers, and ours to focus on
downhill barriers.??®

The low energy peaks we have found in the barrier distributions do not appear
to manifest themselves in previous experimental and theoretical studies,3% 140,143,144
and we will comment further on this observation in §4.3.3. When the three-body
term is increased by 50%, in sample SW1.5, the downhill barrier distribution retains
the same form, although the principal peak is broadened and maximum is shifted to
higher energy. The uphill barrier distribution is radically affected, becoming virtually
constant, up to an energy of about 2.5e.

Table 4.3 shows that databases SW1 and BLJ11 have anomalously high peaks in
their uphill barrier distributions. In Table 4.2 the lowest energy minimum in sample
SW1 is only 0.0017 € lower than the starting minimum, while for BLJ11 the difference
is only 0.012 €. These results suggest that these minima may lie in regions where there
are few pathways with low energy barriers that allow relaxation to minima of lower
energy. This situation would arise if the minima are at the bottom of deep funnels!'®?
or the ‘megabasins’ proposed by Stillinger.!? In Stillinger’s picture such features are

expected to exist for the binary Lennard-Jones system, which is reasonably ‘fragile’,

but not for silicon, which is ‘strong’. The maxima in the uphill barrier distributions at
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Figure 4.6: Uphill (top panel) and downbhill Figure 4.7: Uphill and downhill barrier dis-

(bottom panel) barrier distributions for the tributions for the relaxed Lennard-Jones

unit density Lennard-Jones databases. The
Gaussian width used to construct the dis-

tribution was s = 0.05¢ and the barriers

(RLJ) databases. The Gaussian width used
to construct the distribution was s = 0.05¢

and the barriers are in € per supercell.

are in € per supercell.

anomalously high energies, suggest that the regions of configuration space in question
are effective kinetic traps.

In fact, the way that databases BLLJ11 and SW1 were generated probably explains
the above observations. Database BLJ11 was started from the final configuration gen-
erated by an MD cooling run, as the temperature of the system approached zero.
The starting configuration for SW1 is the lowest in energy from the intermediate SS1
database (see the Appendix), but has no atoms in a crystalline environment. Hence it
would not be surprising if both starting configurations lie at the bottom of a funnel or
a monotonic sequence basin.%3:176,177

Also of interest is that database RLJ2 contains a minimum of lower energy than all
those in RLJ1, despite being started at higher energy. Closer examination of the rear-
rangements in database RLJ2 shows that there are several highly asymmetric processes,

with uphill barriers of order 100 ¢, and downhill barriers of order 1e. These processes
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link high energy amorphous configurations to minima that are predominantly crys-
talline, with values of the appropriate order parameter, (Qg, increasing from around 0.1
to 0.4. This reveals the presence of fast crystallisation in some regions of the PES.

The general trend of all the uphill barrier distributions, especially for RLJ1 and
RLJ2, is that the barrier distributions corresponding to stationary points higher up the
PES tend to be peaked at lower energy. This, combined with the relative invariance
of the downhill barrier distributions, suggest that these systems have regions of their
PES that act as effective kinetic traps.

Two previous studies?!1:22 have reported correlated motion of atoms in successive
rearrangements for BLJ systems, but we have not investigated this phenomenon in the

present work.

4.3.2 PATH LENGTHS, DISTANCES AND COOPERATIVITY INDICES

The PES can be further analysed using the integrated path length, S, and the distance
in configuration space, D, between two connected minima. The integrated path length,

S, is estimated as a sum over steps, m, from the approximate steepest descent paths:
S Y [X(m+1) - X(m), (4.1)

where D is simply the modulus of the 3N-dimensional vector separating the two minima
in configuration space.
A measure of the localisation of rearrangement ¢ is given by the cooperativity index,

J\~f,~,1817230 defined as N/~;, where «; is the moment ratio of the displacement:

_ N3 ra() — a0
(2 Irals) - ra(t)?)

r, denotes the position vector of atom «, and s and ¢ are the initial and final config-

Vi (4.2)

urations in rearrangement pathway ¢. 1 < N<N: N=1 corresponds to a totally
localised event, in which only one atom moves, while all atoms move an equal distance
in the other extreme.

There seems to be little variation of S, D, and N between the binary Lennard-Jones

databases, except that the less extensively searches databases (BLJ1-3) have slightly
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lower average path lengths, but in the unit density homogeneous system (ULJ) there
is a striking increase in all three with increasing energy of the minima in the database,
i.e. from ULJ1 to ULJ3, probably owing to the increasing disorder of the samples. This
result suggests that rearrangements with large path lengths, distances and cooperativity
indices will become more accessible as the sample becomes more disordered. We also
note that databases ULJ1 and ULJ2 contain minima with significant crystallinity, so
it is perhaps surprising that their properties are not more different. The only other
significant trend is that increasing the three-body term in Stillinger Weber silicon by
50 % appears to increase the distances and path lengths between minima, and decreases
the cooperativity of the rearrangements.

Using a 1000-atom supercell Barkema and Mousseau'4?

characterised rearrange-
ments in amorphous silicon as highly cooperative, with typically about 50 atoms mov-
ing more than 0.1 A. This number is larger but of a similar order to N for representative
rearrangements found in the present work for the same system using a smaller super-

cell.

4.3.3 NONDIFFUSIVE AND DIFFUSIVE REARRANGEMENTS

The peaks in the overall barrier distributions that we have obtained tend to be at
surprisingly low energy. This is particularly true for Stillinger-Weber silicon, where
Barkema and Mousseau have previously provided a systematic classification of the
rearrangements that they characterised for a-Si,'*? 142 and they found that the barrier
distribution tended to peak at around 4 eV. Experimental evidence suggests that there
is a lower bound for the barrier to relaxation in a-Si of 0.23 eV.143

There is a slight ‘double-hump’ form to the barrier distributions for the unit and
relaxed homogeneous Lennard-Jones systems (ULJ and RLJ, Figures 4.7 and 4.6), with
a principal maximum at an energy of about 0.1 ¢ per supercell and a subsidiary maxi-
mum or point of inflection around an energy of 1.4 € per supercell. This is particularly
pronounced for the ULJ2 database. Examining animations of the rearrangement path-
ways revealed that the two maxima correspond to different processes. We describe
the mechanisms corresponding to the principal maximum as ‘nondiffusive’: although
atoms move, there is essentially no change in the nearest-neighbour coordination. These
mechanisms are similar to the ‘cage-rattling’ processes observed in a system of hard

spheres by Doliwa and Heuer,?! who suggested that they correspond to the ‘fast’
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process observed in the region of T, the critical temperature of mode-coupling-theory.
These authors suggested that a processes correspond to mechanisms in which parti-
cles leave their cages. Despite the similarities between cage-rattling processes and the
rearrangements we have found here they are not identical because cage-rattling pro-
cesses correspond to vibration about a single potential minimum. The nondiffusive
rearrangements found in the present work correspond to distinct minima separated by
energy barriers. As the size of the effective cage increases, the rearrangements become
more like the vacancy migrations previously characterised for fcc solids.?32233 Mecha-
nisms corresponding to readjustments of ‘tight’ cages—with radii similar to the mean
nearest-neighbour distance—are unlikely to contribute significantly to diffusion or other
transport processes, as there is no real change in the coordination of the atoms. We will
therefore refer to them as ‘nondiffusive’. We also suggest an alternative definition for
megabasins (or ‘metabasins’):234:23% these are sets of minima that are only internally
connected by nondiffusive rearrangements. This corresponds with the observation that
diffusion is a random walk between megabasins, provided that the inter-basin barriers
are much greater than those corresponding to intra-basin transitions.

The second maximum does indeed correspond to the movement of atoms between
adjacent coordination shells, and these mechanisms are clearly ‘diffusive’. Intuitively
this result makes sense, as the activation energy is of the order of € per supercell,
the pair well depth of the Lennard-Jones model. An example of a rearrangement
similar to vacancy creation in crystalline solids is illustrated in Figure 4.8. Free volume
in minimum 1 is changed into a vacancy in minimum 2. These rearrangements will
contribute to diffusion much more than the nondiffusive processes, as the nearest-
neighbour contacts change, although they entail higher activation energies.

The tails of the barrier distributions of the homogeneous Lennard-Jones systems
ULJ and RLJ contain more exotic rearrangements, such as the one illustrated in Fig-
ure 4.9, in which a pair of atoms exchange positions in a reasonably crystalline local

environment. This degenerate rearrangement?25 (

between permutational isomers) has a
barrier of 18.7 € (per supercell), and a cooperativity index (§4.3.2) of 2.00. A significant
degree of bond stretching in the transition state is visible, reflecting the high barrier.
In other parts of the supercell, not shown in this figure, there must exit a corresponding
degree of compression, causing the high barrier.

The nondiffusive rearrangements can be quite successfully separated from the dif-

fusive processes by counting the number of atoms whose positions at the end points of
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Transition state

Minimum 1 Minimum 2

Figure 4.8: Rearrangement illustrating a change in coordination of the highlighted atom and
vacancy creation in unit density Lennard-Jonesium (ULJ). The downhill barrier is 1.55 € and
the uphill barrier is 6.07 € per supercell. The distance between the two minima is D = 1.01¢

and the cooperativity index is N =1.13. These quantities are defined in §4.3.2.

the rearrangement differ by a threshold value. We define nondiffusive rearrangements
as those in which no atoms move by more than the threshold distance, and all other
rearrangements are then classed as diffusive. A suitable threshold distance corresponds
to about half the equilibrium pair separation, depending on the potential. Obviously
there are many rearrangements whose classification is sensitive to the precise value of
the threshold distance. These are intermediate between nondiffusive rearrangements
and vacancy migrations. Nevertheless, separate barrier distributions with distinct peaks
can be obtained using the above definition.

The uphill and downhill barrier distributions for diffusive and nondiffusive processes
for database SW3 using a threshold distance of 0.8 o are shown in Figure 4.10. Although
the distributions overlap, they peak at significantly different energies, suggesting that
the ‘threshold distance’ criterion is meaningful. Furthermore, the diffusive downhill

barrier distribution peaks at around 0.5 ¢, corresponding to about 1eV, agreeing fairly
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Transition state

e

Minimum 1 Minimum 2

Figure 4.9: Degenerate rearrangement?2¢ illustrating the exchange of two atoms (shaded black
and white) in unit density Lennard-Jonesium (ULJ). The configurations involved in this rear-
rangement are reasonably crystalline. The barriers are both 18.70 ¢ per supercell, the distance
between the two minima is D = 1.54 ¢ and the cooperativity index is N =2.0. These quantities
are defined in §4.3.2.

well with experiment. This result suggests that we would class the mechanisms found
by Barkema and Mousseau as diffusive, because they lead to a change in coordination,
and that the ‘nondiffusive’ processes have little direct effect on relaxation. We suggest
that the PES for a—Si contains many relatively deep funnels, in which the intra-funnel
processes are nondiffusive, and fast, while the inter-funnel processes are diffusive, and
slow. Structural relaxation takes place via inter-funnel motion, with inter-funnel bar-

143 and theoretically by Barkema

riers corresponding to those observed experimentally
and Mousseau. %142 The Arrhenius temperature dependence of relaxation processes in
strong liquids such as a-Si suggests that the barrier distribution for diffusive processes
is similar throughout the PES, which is not inconsistent with our results. However, the
present multi-funnel picture contrasts with the ‘uniformly rough’ view of strong glass
formers.'°

The tetrahedrally coordinated open network structure of a—Si also enables nondif-

fusive processes to be described as relative motion of tetrahedra, whereas in diffusive
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Figure 4.10: Uphill and downhill barrier distributions for Stillinger-Weber Silicon database
SW3, with diffusive (Diff.) and non-diffusive (ND) rearrangements separated using a threshold

distance of 0.8 0. The Gaussian width s = 0.005 € and the barriers are in € per supercell.

processes, the coordination of tetrahedra changes. These processes seem analogous to
the high and low frequency modes observed by Elliott and Taraskin.**

This distinction between the nondiffusive and diffusive rearrangements can also be
made for the BLJ systems, although it is not manifested so clearly. The threshold

distance criterion is also applicable.

4.3.4 VIBRATIONAL DENSITIES OF STATES, THE ‘BOSON PEAK’, AND TWO-LEVEL

SYSTEMS

The geometric mean frequency of the normal modes, Hgivl—s (I/Z')l/ 3N=3 s of interest, as

it directly affects the rate of crossing of potential energy barriers:'837185.236 the higher
the geometric mean is, the faster potential barriers are crossed in the limit where the
well-to-well dynamics are Markovian.

Furthermore, the vibrational contribution to the entropy at a minimum in the

classical limit, Sy, is given by:

Syis = k(3N — 3) [1 — log (é—?)] , (4.3)

The vibrational contribution to the entropy has recently been related to Angell’s classifi-

cation of glass-forming liquids as ‘strong’ and ‘fragile’.6% 122 The vibrational frequencies
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Figure 4.11: Geometric mean normal mode frequencies, plotted against the energies of the

minima to which they correspond.

may also contribute to the excess entropy of the glass over the liquid.

The dependence of the frequencies on the potential energy of the local minima is
illustrated in Figure 4.11, for all four systems studied. Recent studies of a model for
glassy materials by Wales and Doye have suggested that high vibrational frequencies
enable the system to relax faster, thus exploring deeper regions of the PES where
non-Arrhenius and non-exponential behaviour takes place.'?? Thus, high vibrational
frequencies may be related to fragility.

In Figure 4.11, the BLJ system shows a marked increase in the geometric mean of the
normal mode frequencies, while the Stillinger-Weber system shows the opposite trend.
The behaviour of the homogeneous Lennard-Jones system is intermediate: a small
increase in mean vibrational frequency is visible at higher energies. The frequencies in
the relaxed system are around 20% higher than those of the unit density system, in
agreement with Wales’ model for the scaling of the vibrational frequencies with density
described in the Appendix to this Chapter and Ref 237.

The above results are consistent with the observed fragility of the BLJ system, and

the relative strength of the SW system. However, some caution should be taken in
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Table 4.4: Geometric mean normal mode frequencies, and energies for the 60-,256- and 320-
atom lowest lying crystalline minima, at density 1.2, compared with the minimum and maximum
values in sample BLJ1. Only energies and frequencies for the Stoddard-Ford truncation with

cutoff 2.5 0,5 are given. The energies are in units of eap per atom, and the frequencies are in

units of (eAA/maAA2)1/2.
Ein v
60-atom supercell —7.08 2.37
256-atom supercell —7.20 2.47
320-atom supercell —7.33 2.34
Sample of 9275 amorphous 256-atom minima, —17.05,—6.85 241, 2.53

(minimum and maximum values)

this interpretation, as it is expected that these results may be strongly dependent on
pressure. Constant pressure results, detailed in §4.4 will provide verification.

Comparison of the geometric mean vibrational frequencies of the crystalline min-
ima, for the BLJ system from the previous chapter with the maximum and minimum
values from database BLJ1 are presented in Table 4.4. The phonon wavelengths are
bounded by the box lengths of the supercells: hence the normal mode frequencies have
a minimum value depending on the supercell size. Naively, one might expect that v
would decrease with increasing supercell size. The values of 7 are presented in Table
4.4 for the lowest energy crystalline minima of the 60-, 256- and 320-atom systems. The
geometric mean for the partially crystalline 256-atom minimum is in the middle of the
range of values of ¥ for the amorphous minima. The 60- and 320-atom systems have
similar, but slightly lower mean vibrational frequencies than the amorphous minima.
Thus, the results presented here suggest that the vibrational entropies of the crystalline
and amorphous minima are not significantly different in the BLJ system.

Within the harmonic approximation, the eigenvalues of the mass-weighted Hessian
yield the normal mode frequencies, and the components of the corresponding eigenvec-
tors are proportional to the atomic displacements. We will focus on the eigenvalues
and eigenvectors of the lowest frequency modes, as these may be involved in the boson
peak.51:52

The vibrational densities of states (VDOS) divided by the square of the frequency,
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Figure 4.12: Normalised vibrational densities of states (VDOS) divided by frequency squared
(9(w)/w?, in units of (ma?/€)*/?) as a function of w (in units of \/e¢/mac?) for databases SW3

and ULJ3 (dotted lines) compared with those for crystalline databases of minima (solid lines).

g(w)/w?, are presented in Figure 4.12 for databases of both nearly crystalline and amor-
phous ULJ and SW samples (databases ULJ(x), SW(x), ULJ3 and SW3, respectively).
The crystalline databases were generated using SS1. The Debye approximation treats
the vibrations as sinusoidal waves in an elastic continuum, predicting that g(w) ~ w?
up to a cutoff frequency, vp. For SW silicon, the reduced unit of frequency corre-
sponds to 13.0 THz, and for the Lennard-Jones systems it corresponds to 0.47 THz
(using parameters appropriate for argon).

A popular measure of the localisation of vibrational mode j is the participation
ratio, p;, which is essentially N ~1 times the inverse of the moment ratio of the atomic
displacements as expressed in equation (4.2).43746:238 The atomic displacements for the
normal modes are obtained from the eigenvectors of the Hessian matrix. p; varies from
one for a completely delocalised mode, in which all atoms move the same distance, to
1/N for a mode in which only one atom moves. p; = 2/3 for a sinusoidal standing wave.
Several authors have found modes that are combinations of delocalised and localised
components.**46 These contributions may have a low value of pj, despite their partially
delocalised nature, if the atomic displacements of the localised components are large.

Finite size effects are immediately obvious for the crystals: distinct peaks are visible,
and there appears to be a cutoff frequency at the low frequency end of band. These
phenomena are due to the finite box length restricting the possible phonon wavelengths.

The vibrational densities of states (VDOS) and variation of participation ratios for
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Figure 4.13: Plot of participation ratio, p, against angular frequency (in units of \/e¢/mo?) for
databases SW3 (top panel) and ULJ3 (bottom panel). p is defined in §4.3.4
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the amorphous databases agree well with previous work.*6:23% The effect of disorder
on the modes is visible as an increase in g(w)/w? in the low frequency region. The
participation ratios for the low frequency modes suggest significant localisation. We
examined plots of the Cartesian components of the normal mode displacement vectors,
u%,y,z, against the projection of their positions, as used in Refs 44 and 46, but the
system had too few atoms for a distinct sinusoidal component to be visible. However,
localised random components are present.

If two-level systems (TLS) and the boson peak are produced by the same soft, an-
harmonic modes, one would expect it to be possible to verify this connection using
eigenvector-following.'46-152 A good candidate for a TLS was found in database SW2,
although such features are apparently experimentally absent in annealed a-Si,3¢ so we
started eigenvector-following transition state searches from one of its minima. Some
adjustment of the parameters in the transition state search was required, as the po-
tential energy surface is very flat: small step lengths (0.0050) and pushoffs (0.001 )
were needed to prevent the search from overshooting. Minimisation was carried out
using the Page and Mclver steepest-descent method, with analytic first and second

derivatives,?? to ensure that the correct minima were found.

Table 4.5: Five processes with separations small enough to be two-level systems (TLS), in
sample SW2. The table shows the energy of the transition state, the downhill barrier, the
difference in energy AFE, in € and K, the path length, S, and distance, D between the pairs of

minima.

Energy/atom  Downhill Barrier/10~%¢  AE/107% AE/K S D
—1.8785 139.245 1.824 0.045  0.150  0.107
—1.8806 204.286 5.4884 0.138  0.148  0.124
—1.8800 5.333 7.9904 0.201  0.067  0.057
—1.8797 18.713 20.9291 0.527  0.083  0.063
—1.8833 0.202 43.0708 1.083  0.074  0.054

Although we failed to reconverge an eigenvector-following transition state search
back to the saddle point of the original candidate for a TLS, a number of new pathways
were found, all with low barriers. These pathways are shown in Table 4.5. Of particular

interest is the pathway with an uphill barrier corresponding to 5.28 K (per supercell)
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and a downhill barrier of 5.14 K per supercell, as it has an asymmetry of 0.14K per
supercell. Such results provide some evidence to support Angell’s hypothesis that the

low frequency modes and two-level systems are related.

4.4 (CONSTANT PRESSURE

We simulated the Stillinger-Weber system at standard pressure, which corresponds to
4x10 %eo 3. The pressure was set to 0.6 earoan 2 for the binary Lennard-Jones
system, because we had found for the 60-atom crystal that this gave a number density
close to 1.2044 3, the most popular density for simulation of this system. A further
database was collected at a pressure of 1.2exp0a4 "2, to investigate the effect of

increasing pressure on the properties of the PES.

4.4.1 CONSTANT PRESSURE RESULTS

General properties of the databases of stationary points obtained at constant pressure
are summarised in Tables 4.6, 4.7 and 4.8. The corresponding data for constant volume
stationary point searches has already been presented in Tables 4.2 and 4.3. The lowest
minima in databases BLJLP(x) and BLJLP1 are only 0.02 x4 and 0.03 ep s lower than
the starting minima, respectively, implying that the starting minima are close to the
bottom of a funnel. This result is not altogether surprising, as the BLJLP(x) database
was initiated from a crystalline minimum obtained by global optimisation in Chapter
3, and the starting minimum for BLJLP1 was found to be close to the bottom of a
megabasin at constant volume as well (§4.3.1). The lowest energy minimum in database
BLJLP(x) is very similar to the starting minimum, and retained the layer of B atoms
coordinated by eight A atoms. The other BLJ databases generated at a pressure of
0.6 eaaoas 2 have achieved a significant degree of relaxation to lower potential energy.
The lowest energy minimum in BLJHP is only 5 x 1072 exo lower than the starting
minimum.

The lowest energy minimum in the SWP1 database has energy —2.000¢, and is a
perfect crystal with the diamond structure. Thus, at constant pressure, the crystal
was rapidly located using the present sampling scheme. Figure 4.14 is a simplified
disconnectivity graph for this database. Once again, we use Mortenson’s technique
described in detail in §2.3, to group minima according to the canonical rate constants

between them. Groups of minima that are joined by transitions with rates above a
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Figure 4.14: Disconnectivity graph for database SWP1. The graph was simplified using Morten-
son’s method described in §2.3, with a threshold rate for grouping minima of 102 (¢/mo?)/2,
and a temperature of 0.07 €. The vertical axis shows the energies of the stationary points, in
units of e/atom. The funnelling properties of the landscape towards the crystal are clearly

visible.
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Table 4.6: Details of the databases studied. h; is the enthalpy of the initial minimum, Aoy
and hnign are the enthalpies of the lowest and highest lying minima, Nmpi, is the number of
minima, in the database, and Ny is the number of transition states. All the enthalpies are in €
per atom for supercells of 256 and 216 atoms for the BLJ and SW systems, respectively. (hmin)
and (hys) are the mean energies of the minima and transition states, respectively. The pressure
for databases BLJLP(x) and BLJLP1-3 is 0.6 eapcaa —°, for BLJHP it is 1.2 eaa0oaa ~2 and for
the SW databases it is 4 x 1075 ec—3.
Database h1 Rlow Phigh Nmin  {Pmin) (hmin) (his)
BLJLP(x) —6.7474 —6.7678 —6.5597 8754 1.24 —6.6974 —6.6894
BLJLP1 —6.4827 —6.5104 —6.4076 8994 1.22 —6.4608 —6.4576
BLJLP2 —6.4523 —6.5006 —6.3973 9159 1.22 —6.4620 —6.4586

BLJLP3 —6.3946 —6.4848 —6.3777 9285 1.21 —6.4324  —6.4290

BLJHP —-5.9931 —5.9984 —5.8903 8994 1.22 —5.9531  —5.9487
SWP1 —1.8517 —2.0000 —1.8516 9018 0.45 —-1.9121 —-1.9113
SWP2 —1.8453 —-1.8591 —1.8265 8227 0.44 —1.8464 —1.8457

Table 4.7: Potential energies per atom of the initial, lowest and highest lying minima for the
databases of Table 4.6. The potential energy per supercell is given by E = H — PV, where P is
the pressure, V the volume of the supercell and H the enthalpy. The mean potential energies

of the minima and transition states are also given.

Database el €low €high {€min) (ets)
BLJLP(x) —17.2281 —7.2483 —17.0496 —7.1804 =7.1727
BLJLP1 —6.9743 —7.0010 —6.9041 —6.9540 —6.9508
BLJLP2 —6.9451 —6.9922 —6.8938 —6.9552 —6.9519
BLJLP3 —6.8917 —6.9767 —6.8750 —6.9275 —6.9242
BLJHP —6.9686 —6.9737 —6.8798 —6.9342 —6.9301
SWP1 —1.8517 —2.0000 —1.8516 —1.9121 —1.9113
SWP2 —1.8454 —1.8591 —1.8265 —1.8464 —1.8457

threshold are considered to be in equilibrium, and are represented by a single node in
the disconnectivity graph. In Figure 4.14 we used a temperature of 0.07 ¢, the melting
temperature of the crystal, and a threshold rate of 10~2 (¢/mo?)'/2. This procedure
reduced the number of branches in the tree from 9018 to 4119, without losing any of
the characteristics of the full tree. The key feature of this graph is the obvious funnel

that leads to the perfect crystal. There are a few side funnels visible, which also have
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Table 4.8: Pathway statistics for all the databases studied at constant pressure. We give the
mean values of the integrated path lengths, (S), in o; separations of connected minima, (D), in
o; cooperativity indices, <Kf >; the mean density of the transition states in the database, {p) in
o~3; and the volume difference between each pair of minima linked by a single transition state,

(|Av]) in 073, These quantities are defined in §4.3.2.

Database (S) (D) (W) (ps) (| Av])
BLJLP(x) 2.37 1.10 1.92 1.24 0.23
BLJLP1 2.87 1.23 5.82 1.22 0.15
BLJLP2 2.85 1.19 5.08 1.22 0.15
BLJLP3 2.89 1.24 5.66 1.21 0.14
BLJHP 3.38 1.28 5.11 1.22 0.16
SWP1 1.69 0.84 4.01 0.45 0.71
SWP2 1.48 0.77 4.07 0.44 0.65

considerable crystalline character. It is very likely that there are lower energy pathways
that we have not found linking these to the main funnel, increasing its funnelling ability
even more. It is tempting to compare this disconnectivity graph to one generated from
the constant volume database SW(x), in §3.1. However, the database from which that
tree was generated used the crystal as the seed minimum, while SWP1 started from an
amorphous minimum, and therefore spans a much larger energy range. Thus, while Fig
4.14 appears to be more funnel-like than its constant volume counterpart, the energy
ranges of the two databases (in Tables 4.6 and 4.2 for SWP1 and SW(x), respectively)
are sufficiently different to make direct comparison difficult.

The average densities of the minima in the BLJ system show no surprising varia-
tions, except that the partially crystalline database BLJLP(x) has a 2% higher density.
The mean density of the minima in SWP1 is 0.45, as would be expected for the crystal,
while the corresponding result for SWP2 is surprisingly low, possibly signifying the on-
set of crystallinity in that database too. There is no significant difference in the mean

number densities of transition states compared to minima within each database.

4.4.2 BARRIER DISTRIBUTIONS

Comparison of the barrier distributions is informative. The bottom panel in Figure

4.15 shows that the downhill barrier distributions of the amorphous BLJ databases,
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ples. The energy barrier distributions for
two databases collected at constant volume,
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Figure 4.16: Uphill (top panel) and down-
hill (bottom panel) enthalpy barrier distri-
butions for the two Stillinger-Weber silicon
databases. Included for comparison are the
corresponding potential energy barrier dis-
tributions for the database collected at con-
stant volume SW1.5. The Gaussian width,
s = 0.005€¢ and the barriers are in € per

supercell.
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BLJLP1-3, peak at similar energies to BLJ1 and BLJ14, but with much larger am-

plitude. Thus, there appear to be many more low barrier rearrangements at constant

pressure than at constant volume. The difference between the two sets of conditions is

more pronounced in the top panel, where the BLJPV distributions peak at much lower

energy than database BLJ14, and with greater amplitude. The results from §4.3.1,

where we compared barrier distributions obtained using different sampling schemes,

imply that this result might have physical significance.

It is perhaps surprising that the uphill and downhill barrier distributions for database
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Table 4.9: Positions of the largest maxima in the downhill and uphill enthalpy barrier distri-
butions, Hiyax(up) and Hpyax(down) , respectively. The potential energy components of these

barriers, Fmax(up) and Emax(down) , are also given. All energies are in € per supercell.

Database Hpax(up) Hpax(down) Emax(up) Emax(down)

BLJLP(x) 0.7619 0.0618 0.8210 0.0565
BLJLP1 0.5102 0.0465 0.4807 0.0548
BLJLP2 0.6063 0.0502 0.6112 0.0525
BLJLP3 0.2229 0.0502 0.2123 0.0552
BLJHP 0.2090 0.0353 0.1764 0.0484
SWPV1 0.0390 0.0037 0.0390 0.0037
SWPV2 0.0109 0.0039 0.0109 0.0039

BLJHP both peak at lower energy than for BLJLP1 (Figure 4.18). We will explain this
result in the next section (§4.4.3).

Figure 4.17 compares enthalpy and potential energy barrier distributions. In these
distributions, which contain all the barriers in the sample, the PV term appears to
make only a fairly small difference to the barrier height. Comparison with the constant
volume results from §4.3.1 implies that allowing the box lengths to vary stabilises the
transition state, thus reducing the barrier height.

The downhill barrier distributions of samples SWP1 and SWP2 appear to differ
from sample SW1.5 only in as much as the amplitude of the principal maximum is
slightly larger, implying a bias to lower enthalpy barrier rearrangements. The uphill
distributions are strikingly different. SWP1 and SWP2 are sharply peaked at low
energy in a similar fashion to those of SW1-3 in §4.3.1.

Excluding the surprisingly low energy maxima, of the barrier distributions for BLJHP,
it seems that allowing the box lengths to vary flattens the landscape: the downhill bar-
riers remain relatively unchanged, while the uphill barriers decrease. In the megabasin
picture of strong and fragile liquids,'? this result corresponds to both systems becoming

stronger at lower densities. This conclusion is consistent with results obtained using

MD.%
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Figure 4.17: Uphill (top panel), and downhill (bottom panel) distributions of enthalpy barriers
(continuous lines) and potential energy barriers (dashed lines) for the binary Lennard-Jones
samples. The insets show the low energy regions of the distributions, with 0.0 < AFE < 2.0 for
the uphill distribution, and 0.0 < AE < 0.5 for the downhill distribution. This figure clearly
shows that for a given database, the enthalpy and potential energy barrier distributions are

very similar. The Gaussian width, s = 0.05ea and the barriers are in exs per supercell.

4.4.3 NONDIFFUSIVE AND DIFFUSIVE REARRANGEMENTS AT CONSTANT PRESSURE

In §4.3.3 we identified two types of rearrangement mechanism: nondiffusive, which we
believe do not contribute directly to diffusion; and diffusive, which do. We developed
a criterion to differentiate between them, by defining nondiffusive rearrangements in
which no single atom moves further than a threshold distance.

We investigated the effect of pressure on the two classes of rearrangement by sep-
arating the pathways in databases BLJLP1 and BLJHP, and applying the distance
criterion with a threshold value of 0.8 eas. The results are presented in Table 4.10 and
Figure 4.19. The maxima in the enthalpy barrier distributions are interesting: there

is no significant difference between samples BLJLP1 and BLJHP for the nondiffusive
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Figure 4.18: Uphill (top panel) and down-
hill (bottom panel) enthalpy barrier dis-
tributions for database BLJLP1 (dashed
lines) and BLJHP (full lines). The Gaus-
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Figure 4.19: Enthalpy and potential energy
barrier distributions for diffusive rearrange-
ments in the binary Lennard-Jones system,
at pressure of 1.2 eaaoaa ~° (full lines), and
0.6earoan—2 (dotted lines). As usual, the
uphill distributions are in the top panel,
and the downhill distributions in the bot-
tom panel. The potential energy barrier
distributions are shifted to lower energy rel-
ative to the enthalpy distributions. The

barriers have units of eaa and the Gaus-

sian width, s = 0.25€4.-

processes, but the diffusive rearrangements are shifted to higher enthalpy by the in-
crease in pressure. The number of diffusive rearrangements in BLJHP is approximately
twice that in BLJLP1: 1147 and 630, respectively. We have no reason to believe that
the pressure affects any bias of our searching technique towards either nondiffusive or

diffusive rearrangements. Hence our results suggest that increasing the pressure in-
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Table 4.10: Peaks in the barrier distributions for separated diffusive and non-diffusive rear-
rangements in samples BLJLP1 and BLJHP, which were obtained at pressures of 0.6 and

1.2eaa0a4 2, respectively.

Database Process type  Hmax(up)  Hmax(down)  Enax(up)  Emax(down)

BLJLP1 diffusive 5.35 1.54 4.77 0.95
BLJHP diffusive 5.91 2.51 5.69 3.69
BLJLP1 nondiffusive 0.54 0.15 0.25 -0.13
BLJHP nondiffusive 0.54 0.16 1.28 0.71

creases the number of diffusive rearrangements relative to nondiffusive rearrangements
and increases the barrier heights, especially for the downhill barriers.

The increased separation between the barrier heights of nondiffusive and diffusive
rearrangements explains the surprisingly low maximum in the overall BLJHP barrier
distribution. In the databases collected at lower pressure, BLJLP(x) and BLJLP1-
3, the low energy tail of the diffusive rearrangements and the high energy tail of the
nondiffusive rearrangements overlap, creating an overall maximum of slightly higher
energy. In BLJHP, the two classes of rearrangement are more separated in energy, and
so this overlap is not present.

Mukherjee et al.'%% found in MD simulations that, as expected, increased pressure
decreases the diffusion constant, and increases the viscosity. The barrier distribu-
tions we have presented here are consistent with that observation. The increase in the
barrier heights corresponding to diffusive rearrangements and the constancy of those
corresponding to nondiffusive processes support our suggestion in §4.3.3 that only the
diffusive processes contribute significantly to transport processes.

It is difficult to draw conclusions about the dependence of fragility on pressure
from comparing BLJLP1 and BLJHP. Jagla?*! suggested that ‘single particle motion’—
i.e. our diffusive processes—are characteristic of strong liquids, while ‘cooperative’
processes are characteristic of fragile liquids. The term ‘cooperative’ appears to have
been used in many different ways glasses literature: Jagla uses it to describe processes
in which the motion of a number of rearranging atoms in a cluster is cooperative
and collective. This type of process may correspond to a sequence of nondiffusive

rearrangements, in which none of the atoms in a rearranging cluster move a large



Exploring the Potential Energy Surface 102

difference in a single step. Thus, it appears that increasing pressure will make our BLJ
system more fragile as observed by Sastry,®® as the diffusive processes will be frozen
out at higher temperature. However, the downhill barrier heights increase more than
the uphill barrier heights, implying that the landscape becomes less rugged, which is
characteristic of a strong liquid.

Our results can also be discussed in terms of free volume. While that theory was
derived for hard spheres,® it is obvious that increased density at the transition state
will force the rearranging atoms closer together, into the repulsive part of the Lennard-

Jones potential, increasing barrier heights and hence slowing down dynamics.

4.4.4 PATHWAY STATISTICS

In Table 4.8, we presented the pathway statistics for the databases. As before, in §4.3.2,
S denotes the integrated pathlength between a pair of minima joined by a transition
state, D their separation and N is the cooperativity index. These statistics are pre-
sented in Table 4.8. There seems to be little variation of S, D, and N within databases
BLJLP1-3. The difference between BLJLP1-3, and BLJ11, BLJ12 and BLJ13 is strik-
ing. The databases obtained at constant volume have much greater values of all three
quantities. By Jagla’s hypothesis, this result would also suggest that the databases
BLJLP1-3 have stronger characteristics than their constant volume counterparts, as
the cooperativity of the rearrangements has decreased significantly. This trend also
holds for the SW silicon databases. The ratio of (S) to (D) for BLJHP is considerably
higher than for BLJLP1, implying that the greater pressure increases the curvature in
configuration space of the transition paths.

(S), (D), and <J\~7> are even lower for database BLJLP(x) than for BLJLP1-3.
<Jv > is slightly less than 2 - from inspection it appears that a very large number of the
rearrangements in this database are permutations of one A and one B atom.

The variations in the volume difference between pairs of minima linked by a transi-
tion state is small: the only point of interest is that it appears to be significantly greater
for the SW system than for BLJ. Other authors!64: 165 have observed large pressure and
volume dependencies in SW silicon. Given this result, and the increase in the funnelling
properties of the PES by allowing the box lengths to vary (§4.4.1), the high value of

(|Awl|) is not surprising.
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4.4.5 VIBRATIONAL PROPERTIES AND TWO-LEVEL-SYSTEMS (TLS)
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Figure 4.20: Geometric mean normal mode frequencies plotted against potential energy for all
the minima in the binary Lennard-Jones databases. Included for comparison are the constant
volume databases BLJ11-14. The change from an upward trend with increasing potential energy
in the constant volume case to the opposite trend at constant pressure is clearly visible. For
clarity, we have omitted the results from BLJHP, which show a similar trend to the other

databases collected at constant pressure, but are shifted upwards slightly in frequency.

Figure 4.20 presents the geometric mean vibrational normal mode frequency at each
minimum, obtained by diagonalising the matrix of second derivatives of the energy. The
geometric mean of the 3N — 3 normal modes, 7, is given by H?ivfs (yi)l/(?’N*?’). We
confirmed the surprising result in that the geometric mean frequency increases with

increasing energy of the corresponding minimum for the BLJ system, at constant vol-

-6.80
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Figure 4.21: Geometric mean normal mode frequencies at each minimum, 7, plotted against
potential energy for all the minima in the SW silicon constant pressure databases (SWP1 and

SWP2), with the constant volume database SW1.5 for comparison.

ume. Sastry had previously obtained the same result,% and attributed the increasing
fragility of the system as the number density increases to this anomalous behaviour.
Here we compare the results for BLJLP(x) and BLJLP1-3 with BLJ11-14 from §4.3.4.
The constant volume trend is reversed at constant pressure, as expected. The crys-
talline database, BLJLP(x), has considerably higher geometric mean frequencies, but
appears to follow the same average trend as the amorphous databases, BLJLP1-3. Low
frequency modes, which may contribute to the boson peak, affect the geometric mean
frequency. The correlation between increasing disorder, increasing energy and increas-

ing amplitude of the boson peak has been reported by Angell.3¥ Our results appear to

-1.82
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be consistent with this correlation.

For clarity, the results from BLJHP have been omitted from Figure 4.20. They
show a similar spread and energy dependence to the results from BLJLP1, with a shift
upwards in frequency of 0.04 reduced units.

The vibrational properties of the SW databases exhibit the expected behaviour,
with only a downwards shift of about 0.02 reduced units from constant volume to
constant pressure. We found only one candidate for a two-level system (TLS) in the

SW databases.

4.5 SUMMARY

The classification of the rearrangements as diffusive or nondiffusive reveals a significant
difference between the ‘strong’ system (SW silicon), and the ‘fragile’ systems (Lennard-
Jones). In the LJ systems the diffusive rearrangements generally have barriers about
one order of magnitude greater than the nondiffusive, while in the SW system the
barriers corresponding to the two types of rearrangement differ by about three orders
of magnitude. This observation, if it can be generalised, leads us to suggest a multi-
funnel character for the energy landscapes of both strong and fragile glass formers, in
contrast to the ‘uniformly rough’ picture.'® However, if we coarse grain the picture by
averaging over the fast processes that do not contribute to diffusion then the ‘uniformly
rough’ view may be recovered. If this picture is correct then the nondiffusive processes
in strong glass formers will be fast, and the « processes may not be seen in dielectric
relaxation experiments because they are frozen out. Hence, the effective barriers to
transport dynamics such as diffusion would be those for the inter-funnel a processes,
which correspond to a number of elementary rearrangements, in accord with Stillinger’s
suggestion.'® Experiment suggests that these effective barriers do not vary significantly
throughout the PES, in agreement with our results, as relaxation processes tend to have
Arrhenius temperature dependence in ‘strong’ liquids.

In fact, none of our barrier height distributions show much variation with the energy
of the local minima involved, a result that highlights the importance of the actual
connectivity of the PES for dynamics. In the model fragile liquids considered in the
present work, the distinction between diffusive and nondiffusive processes is much less
pronounced than in the strong systems. The energy landscape may therefore have

shallower funnels, and it could be this feature that leads to non-Arrhenius behaviour
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and stretched exponential relaxation.

The minima that we have found exhibit the increased low frequency VDOS expected
for disordered systems, and we have characterised several two-level systems in the SW
databases. The eigenvector-following approach should be able to clarify the relationship
of soft vibrational modes to low-lying transition states.

The constant pressure results show that the presence of low barriers is not an
artefact of simulation with constant supercell dimensions. The marked decrease of both
nondiffusive and diffusive uphill barriers as the pressure is allowed to vary are indicative
of a ‘flattening’ of the PES, implying that the system becomes less fragile according
to Stillinger’s picture of of the PES.'? The validity of the threshold distance criterion
is reinforced by the insensitivity of the barriers for nondiffusive rearrangements to the
pressure, and the large increase in the barriers to diffusive processes as the pressure is
raised.

The principal conclusion of the work in this chapter is that the anomalous dynamics
of glasses and supercooled liquids cannot be explained by the distribution of barriers
to elementary rearrangement pathways alone. The focus of the next chapter will be to
identify whether this complex phenomenology is a consequence of the connectivity of
minima, or some other properties that cannot be included in the simple picture of the

PES as a collection of minimum—saddle—minimum elementary pathways.
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APPENDIX: SCALING OF VIBRATIONAL FREQUENCIES WITH DENSITY

In view of the likely importance of the variation in the vibrational frequencies of the
system with density Wales has developed a simple theory to predict this property.?37
Consider a single atom that interacts with the walls of a spherical container, radius R,
according to a potential V. For an infinitesimal element of the surface distance d from
the atom the contribution to the potential energy is
V(d)R? sin dOd¢p
47 R?

; (4.4)

where 6 and ¢ are spherical polar coordinates. The distance from the surface element,
d, and the displacement of the atom from the origin, r, are related by d? = r? + R% —
2rRcos . Hence the integral over the sphere can be performed analytically when V
corresponds to a Lennard-Jones or a Morse potential. The Lennard-Jones result is

eo® 5 5 200 206
Vi) = 10w {(r —R)*  (r+R)* + (r+R)10  (r — R)10 } ' (45)

The limit as 7 — 0 has the usual Lennard-Jones form. This central configuration is

always a stationary point with a triply degenerate Hessian eigenvalue of
A = 8e05(220° — 5R%)/R?, (4.6)

so that A changes from positive to negative as R increases through R = 1/22/50. An
analytical expression for the frequency is also available if V has the Morse form,?*? but
we will not use it here. The above model predicts that the leading contribution to the

density dependence of the frequency should scale as p7/3.



QUANTITATIVE STUDIES OF THE
PES

The work described in the previous chapters is essentially qualitative. The next logical
step is to attempt to calculate dynamical properties of model glass formers, using our
methods of searching the PES. The results thus obtained can be compared to those
found from either conventional simulation techniques or experiment.

The aim of this chapter is not necessarily to provide an alternative to conventional
MD or MC. Searching for minima and transition states is still a computationally expen-
sive exercise, and so MD remains the method of choice in the moderately supercooled
region, in which super-Arrhenius behaviour is observed in fragile liquids. Instead, cal-
culation of dynamical properties will enable us to understand whether the connectivity
of the minima, and the magnitudes of the potential energy barriers between them can
reproduce the super-Arrhenius behaviour observed in MD simulation.

At a fundamental level, the rich phenomenology of glass formers—both in the glassy
and supercooled state—must originate from the PES.! At low temperatures, it must
be the case that the dynamics are dictated by the connectivity of the minima and
the barriers between them. The upper temperature limit of the range in which this

interpretation is applicable is still to be determined conclusively.

5.1 KINETIC MONTE CARLO SIMULATION OF DIFFUSION

The standard method of obtaining dynamical information from databases of stationary

points is the solution of the master equation (for a recent review see Ref 153), which

108
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considers the time evolution of P(t), where P;(t) is the probability of the system occu-
pying the potential well corresponding to minimum ¢ at time . The “master” equation

is the coupled set of linear differential equations:

dlzt(t) = %; [kij Pj(t) — kjiP5(t)] (5.1)

where, in conventional chemical notation, k;; is the first order rate constant from well j
to well 7. Conventionally, these equations are then solved by forming a transition matrix
W, where wi; = kij—0;j an@l" mi» 50 the w;; correspond to the total rate constant out
of minimum 7. W is not symmetric but can be symmetrised using the detailed balance
condition, that wijP;q = w;; Pf?. Provided that W cannot be decomposed into block
form, it has a single zero eigenvalue, with the corresponding eigenvalue the equilibrium
probability vector.243 Equation (5.1) can be integrated analytically or numerically, thus
providing P(¢), given P(0).

The above method of integrating the master equation is not directly applicable
to either of the systems studied here, or to the properties that we wish to calculate.

The alternative is solving the master equation using the kinetic Monte Carlo (KMC)

technique.

5.1.1 PRINCIPLES OF KMC

In standard Monte Carlo (MC) using importance sampling, new configurations are gen-
erated by randomly perturbing the current configuration, and a move is accepted with
probability MIN(1, exp [— (Enew — Foid)/(ksT)]), where E,,¢, and Eyq are the potential
energies of the new and old configurations, and MIN is the smaller of its two arguments.
MC is successful for numerical calculation of static properties of the system, but as the
method takes no account of barrier heights a ‘real’ timescale cannot be associated with
it, and therefore dynamic properties cannot be calculated. Kinetic Monte Carlo (KMC)
uses a different criterion for its importance sampling, thus associating a timescale with
each step, allowing dynamic properties to be obtained too.

Fichthorn and Weinberg?** were the first to put KMC on a firm theoretical foot-
ing. Using the theory of Poisson processes, they showed that both static and dynamic
properties could be calculated using MC, provided that:

1. There exists a set of transition probabilities, which form a so-called ‘dynamical
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hierarchy’.?** For this condition to be satisfied, the transition probabilities must
be weighted according to an appropriate rate theory, and obviously wj; < 1. As
above, wj; represents the transition probability from configuration ¢ to j. Thus,
the wj; of the Metropolis criterion do not satisfy a dynamic hierarchy, because

the transition probabilities to all states of lower energy are unity and equal.
2. Time increments are calculated appropriately.

3. The events are independent: underlying Markovian dynamics are assumed. This
means that it is assumed that the w;; are independent of the history in reaching

minimum 4.

For systems in which the transition probabilities may often be small, the most
efficient method of propagating the trajectory is the n-fold method of Bortz, Kalos and
Lebowitz.2*> This scheme ‘accepts’ a move at every trial, by defining the transition

probabilities as follows:

where kj; is the rate constant from minimum 4 to minimum j, and there are n transitions
from which to choose. We then follow the algorithm represented in Figure 5.1 to
propagate the trajectory. It is worth noting that although the rate constants, k;;
satisfy the detailed balance criterion, the w;; do not: w]-iPZ.eq #+ wi]-P;q. The w;; and
wy; refer to different waiting times, and when this is taken into account, the detailed
balance relation for the k;; is retrieved.

The residence time in the basin corresponding to a given minimum will therefore be
the expectation value of the interval between entering the minimum and a transition
occurring. In KMC simulation, we consider a much simplified version of the master
equation (5.1), since at 7 = 0 our occupation probability vector P;(0) = d;;, when we

make a transition to minimum ¢. Thus,

) N o). (5.3
J#i

where 7 is the residence time in minimum 4, and P(7 = 0) = 1. The solution for this

differential equation, is trivial
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Form a list of the rate constants, k;; ~<———

Calculate the transition probabilities, wj;, according to

wji = kji Om 4 kmi)_l

Generate a uniform random number, £, such that 0 < & < 1.

Select the event r, so that Z;_l wj; <€ < Z;zl wji

Execute move

Update time

Figure 5.1: Schematic representation of the Bortz, Kalos and Lebowitz n-fold Monte Carlo

algorithm.245
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P(1) = exp (—7‘ Z kji) . (5.4)

Thus the expectation value of the residence time is given by:

(r) = /0 T Pmir = (Ski) (5.5)

Obviously, in order for (1) to be exact we must obtain the rates for all the transition
states connect to minimum ¢. Of course, even if we have the patience and computer time
to search exhaustively, the accuracy of (7) is limited by the rate law we use to obtain
k;ij, and the assumption that the rate constants correspond to independent Poisson
processes. In practice, a representative sample of transition states is deemed sufficient.
If a distribution of residence times is required, then we can invert equation (5.4), to

yield

_InP(r)
dokji

Thus, to calculate 7, we draw a number in the range [0,1] to represent P(7). For

(5.6)

T =

most purposes, such as calculation of diffusion constants, there is no difference between

calculating the residence time in this way and simply using the expectation value, (7).

5.1.2 THE HARMONIC SUPERPOSITION APPROXIMATION AND RATE CONSTANTS

In order to simulate a system using KMC, we need a method of obtaining rate con-
stants for transitions between minima in the database. We start from the harmonic
superposition approximation.246-250

We begin by writing the potential energy as a truncated Taylor expansion around

the minimum, using normal mode coordinates,

1 - 212
‘7:

where E; is the potential energy of minimum ¢, (); is a displacement along the jth nor-
mal mode of the minimum, with angular frequencies w;, and & is the number of vibra-

tional degrees of freedom: 3N —3 for a bulk system. By definition, the normal modes are
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the eigenvectors of the mass-weighted Hessian, HMW, where H%W = Hyg/+/(mamg),
and m,, is the mass of the atom corresponding to coordinate «. The kinetic energy in
mass-weighted coordinates is then Fx = % 2;21 Q?, and so the total energy is that of

a collection of k independent simple harmonic oscillators with angular frequency w;:

1 [ po 2
Bt = E; + 2 2:1 Qj +w;iQj |- (5.8)
]:

Qj is simply the momentum of oscillator j as we are using mass-weighted coordinates,
and so equation (5.8) is the equation for a hyperellipsoid in phase space with semi-axes
aj = /2 (Eiot — E;) and bj = \/2 (Ejot — E;)/w;. The volume of this hyperellipsoid is
given by

K
7'{"{'

T(k+1) Jl:[lajbj’ (59)

where I' is the Gamma function, defined thus:

o0
I'(k)= / s" Lexp*ds. (5.10)
s=0

For integer x, I' (k) = (k — 1)!. The phase space volume, G; (Ey,) associated with each

minimum, ¢, at energy FEj,; can be defined thus:

(2m)" (Etor — Ey)"

G; (E = Y 9(Ey — E;), 5.11
z( tot) P H?:1 w;j ( tot z) ( )
(Btor — Ei)"
"0 (Fr — E;), A2
k! H';:1 Vj (Biot 0 (5:12)
where v; = w;/27 is the frequency of normal mode j and € is the Heaviside step

function. The semi-classical approximation then gives a sum of states for minimum 4,

F; (Eyyt), by dividing through by h*:

_ (Etot - Ei)n

= T .
K! j:th]

0 (Etor — Ej) . (5.13)

Differentiating by E}, then gives the density of states, Q; (Fyt) associated with mini-

mum ¢ at FEiy:
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F; (E
Qi (Biot) = %ﬁm), (5.14)
O
(Epor — Ei)*!
T (k) [15=1 hv;

The total partition function for the system is just the sum of the partition functions

0 (Eror — E) - (5.15)

for each minimum, ). €; (Es;), and so the microcanonical equilibrium occupation

probability of minimum i is thus,

zmmzf%%a. (5.16)

We can also use equation (5.15) and the thermodynamic definition of the microcanonical

temperature,
1 0IlnQ 1 o0
:(11) :_< ) , (5.17)
kBTp aEtOt NV Q 8Et0t NV
to derive the instantaneous microcanonical temperature associated with minimum %,
Tt
Eior — E;
k)BT g = 7( i:t_ 1 Z) 9 (Etot — Ez) . (518)

Obviously kK —1 = 3N — 4 for the bulk systems studied here.
We use Rice-Ramsberger-Kassel-Marcus (RRKM) theory!837185 to obtain the mi-

crocanonical rate constants for inter-minimum transitions. RRKM theory gives

. F1 (Ejo)

i 7 5.19
Y & (Egot) (5.19)

k: is the total rate constant out of minimum 4, through transition state {, and Ft (Etot)
is the semi-classical sum of states for transition state t with the single mode with
the negative eigenvalue—the reactive mode—removed. We then obtain Ft (Eiot) by

integrating the density of states for the saddle point:

Eiot
Fi(By) = / f Qf (E') dE/, (5.20)
E
— GT (Etot) (521)

hE
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where E' is the potential energy of the transition state t, and GT (Ej,;) is the associated
phase space volume, summed over the 3N — 4 non-reactive modes. We then substitute
equations (5.12) and (5.13) into equation (5.19) to yield the final RRKM expression for

the microcanonical rate constants:

(5.22)

where, for convenience we write the products of the normal mode frequencies in terms
of the geometric mean frequencies, 7 and 7!, of the minimum and the transition state
with the reactive mode removed, respectively. We used microcanonical rate constants
for the KMC simulations presented in this chapter, so that our KMC results would
be directly comparable with the equivalent MD runs. Although there are several algo-
rithms for isothermal MD simulations we decided to perform all our simulations using
the microcanonical ensemble for simplicity. We have made two major assumptions in
the derivation of these rate constants and equilibrium occupation probabilities. Firstly,
we assume that the phase space hyperellipsoids associated with each minimum do not
overlap, and can therefore be summed independently. The second major assumption
is that the harmonic expression for the potential energy about a minimum, equation
(5.7), is a realistic depiction of the PES. This assumption might prove problematic,
since some near-universal properties of glass-formers, such as the low-temperature spe-
cific heat anomalies that have been attributed to the boson peak and two-level systems
(§1.1.6), suggest that anharmonicity may be important. Notwithstanding this, Broderix
et al. deduced that the harmonic approximation was reasonable below a temperature
of 1kgT/ean'®' from MD simulations. The evidence for this suggestion was that the
energy per atom of the minima sampled, e,,;,, was approximated surprisingly well by
e — 3kgT'/2, where e is the total potential energy per atom, in agreement with the
harmonic approximation and classical equipartition theory.

For completeness, we include the derivation of the equivalent canonical rate con-
stants. These were used in Mortenson’s method!” for simplifying disconnectivity trees,
outlined in §2.3, and employed in the construction of the graph in §3.3.3.

In the canonical ensemble, we obtain the partition function of the catchment basin
associated with minimum 7 from the Laplace transform of the microcanonical density

of states, given by equation (5.15),



Quantitative studies of the PES 116

Zi(T) = /E O'OQ(E’)exp(—E’/kBT)dE’, (5.23)
_ exp(—fE))
= G (5.24)

where 8 = 1/kpT, and the other quantities are defined as before. The canonical rate
constants are then obtained by Boltzmann weighting their microcanonical counterparts,

and substituting equation (5.22):

by [ty B exp (B /keT)
kN(T) = [E T k! (E') 7, () dE (5.25)
t
_ %?gég (5.26)
_ (Di')i’il exp [—,8 (ET _ Ez)] , (5.27)

(")
where k;r (T') is the canonical rate constant out of minimum 7 via transition state 1 at

temperature 7. The equilibrium occupation probabilities for the canonical ensemble,

P7I(T) are given, within the harmonic superposition approximation, by

e _ Zi (T)
FENT) = s~ oy (5.28)

It can easily be shown that for both the canonical and microcanonical expressions

outlined here, that the detailed balance requirement is satisfied.

5.1.3 IMPLEMENTATION OF KMC ‘ON-THE-FLY’

KMC is generally used to simulate spatially ordered systems. The majority of studies
in the literature model diffusion, adsorption or aggregation on surfaces, a selection of
which are included in Refs 251-254. The order inherent in such systems means that
the barriers to the processes of interest can be obtained or guessed before the KMC
trajectory is generated. The listing of the transition probabilities at each step in Figure
5.1 therefore only requires calculation of which transitions are possible from the current
configuration—i.e. in surface diffusion, which jumps are possible given the occupancy
of the adsorption sites.

However, in the current situation, in which we wish to study diffusion in a super-

cooled liquid or a glass, we have to calculate the transition states at each minimum that
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we visit: ‘on-the-fly’. Two recent examples of such a technique, which has not been

255 and Hernandez-Rojas

attempted frequently, are those of Henkelman and Jénsson
and Wales,?!” studying growth of the Al (100) surface, and the 80:20 binary Lennard-
Jones mixture, respectively. Snurr et al. previously used a similar technique to study
diffusion of benzene in silicalite.?%%

The study of the BLJ system?'”—which is, of course, the most relevant to the
current work—used a 60-atom supercell, with twenty transition state searches at each
minimum. Random configurations were used to initiate each run, and 10* KMC steps
were taken. The mean energies of minima, structure factors and the number of minima
visited in a given number of steps were analysed, but no dynamic properties were
obtained. The results were found to be broadly consistent with MD: of particular
interest was the observation that the number of minima visited in the the last 5000
steps of the trajectory decreased sharply at around kT ~ 0.45epa, very close to the
critical temperature of mode coupling theory.

A 60-atom system is perhaps a little small, and so there may be some unwanted
finite-size effects. However, it is probably close to the largest system that can be studied
by KMC at the current time. It is reasonable to expect that a representative sample
of transition states will number at least O(N) for each minimum. This relationship
was derived by Doye and Wales by dividing a system of m/N atoms into m N atom

subsystems.!37 If the PES of each subsystem has nmy;, (IN) minima, then as long as the

sub-systems are independent, then:

Nmin (MN) = Npen (N)™ . (5.29)

The solution to this equation is the ny;, = exp (aNV). If the rearrangements associated
with a transition state can then be located to a single subsystem, the entire m/N-atom
system will be at a transition state one of the m subsystems is at a transition state,

and all the others are at minima. Therefore,

s (N) = mnmin (N)™ ' ngs (N). (5.30)

The solution of this equation is n (N) = N exp (aN). Thus ng/nmin is expected to
be linear. For clusters with more than around six atoms, this linear relationship was

found to hold reasonably well.!37
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In the last chapter, we found that our techniques are very efficient at locating
rearrangements with low barriers: but diffusion appears to take place via high barrier
processes. If we do not obtain enough transition states at each minimum visited in
the KMC trajectory, nondiffusive rearrangements with low barriers will be selected too

often.

5.1.4 IMPROVING EFFICIENCY AND SIMPLIFYING KMC

It is possible to group minima, where minima within a group are treated as being in
equilibrium with each other.!22:173,256,257 At first glance, this is appealing in the current
situation, as we identified in the previous chapter a very large number of processes
with barrier heights much less than kg7’. Thus, our KMC run need only consider
jumps between groups of minima—rather than oscillation between a few minima via
nondiffusive processes.

It can be easily shown,'”® that the master equation yields an effective rate constant

between a pair of groups of minima, denoted A and B:

gt _ 2uiea 2jen BiyPi(t)
AB o) :

(5.31)

where Pp(t) is the total occupation probability for group B, 3 ;. g Pj(t). The approx-
imation made is that if intra-group motion is much quicker than inter-group motion,
then P;(t)/Pg(t) ~ P;* /P

The problem with this approach is that in the current situation we have no real
way of selecting an appropriate threshold rate constant to determine which minima
are in equilibrium, and which are not. In the previous chapter, we obtained continu-
ous distributions of barriers, in which the barriers to both diffusive and nondiffusive
rearrangements overlapped. In the Appendix to this chapter, we derive the different
timesteps for the grouping method, and the expectation value of the residence time in
the group without using this method. In the simplest case, for a group of two minima,
the difference is negligible only if the intra-group and inter-group rate constants are
orders of magnitude different. In any case, the rate determining step is finding the
transition states connected to each minimum, whether we use the grouping algorithm
or not. In order for the grouping to work, we still need to search each minimum, and

so this grouping algorithm will not speed up the calculation significantly.
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An alternative way to make KMC more efficient is to simply neglect low barrier
processes. This might seem a strange thing to do, as low barrier processes will be
those that are selected most often. However, as we showed in the last chapter, it
seems unlikely that these processes will contribute directly to diffusion. The rationale
for this technique rests on the assumption that if a pair of minima are linked by a
low barrier, then the sets of transition states to which each minimum is connected
are likely to be very similar. Thus the low barrier process can be neglected. For the
pair of minima considered in the Appendix, it is sufficient that the inter-group rate
constants are equal, ky+ = kgo for the timesteps with and without grouping to be
both equal to k4. On this basis, ignoring the waiting time seems viable, as it could
potentially reduce the number of transition state searches necessary. However, the key
assumption that minima linked by low barriers are linked by similar transition states
is not necessarily valid in a disordered system. We suggested in the last chapter that
nondiffusive rearrangements may redistribute free volume: this may well have some
effect on the available rearrangements. Therefore, at least in the first instance, we

must include the nondiffusive rearrangements.

5.1.5 IMPROVEMENTS IN PES SEARCHING ALGORITHMS

KMC calculations are more demanding of our PES searching algorithms than the sim-
ple collection of minima and transition states discussed in the preceding chapter. The
results will only accurately reflect the true properties of the system if the searching
algorithm finds enough transition states connected to each minimum, which are repre-
sentative of the complete distribution. It is vital that we find transition states connected
to minima on our KMC trajectory as efficiently as possible, while those not connected
to it are entirely irrelevant. This situation differs from the characterisation of the PES
in standard master equation dynamics'®3(§5.1), where instead we want to build up a
database of minima that are sufficiently interconnected to form a representative sample
of the global PES. It was important that we optimised the parameters and searching
methods used for our KMC run, to ensure high quality results, using the minimum of
computer time. We therefore used a test set of ten randomly selected minima from MD
trajectories to evaluate the relative performance of different searching parameters and
techniques. To test parameters other than the number of searches per minimum, we

used 50 searches, and then evaluated each parameter set using the criteria of computer
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time, number of connected transition states found, and the waiting time. Obviously,
it is desirable for the waiting time, (1) = (3 k;;) !, to be as small as possible, as the
value we obtain from our incomplete set of minima can only be an upper bound on the
true value, given the assumptions we have made in its derivation.

In the previous chapter, we carried out between 40 and 400 hybrid EF/BFGS tran-
sition state searches from each minimum. One of the principle disadvantages of using
hybrid methods over pure eigenvector-following is that a large number of transition
state searches from the same minimum tend to converge to a small number of transi-
tion states, wasting a considerable amount of computer time. In §2.1.4 and Ref 158
we outlined in detail a technique based on hard-sphere moves for producing starting
configurations for hybrid transition state searches. The system is given a random 3N-
dimensional velocity vector, and a standard hard-sphere MD trajectory is propagated
until the first collision between a pair of atoms. A starting point for the hybrid transi-
tion state search is then selected from a point on this trajectory. For the 10-minimum
test set, we found that there was no significant variation in the number of transition
states found per minimum, or the waiting time. We therefore used the default value of
tig = 1.

An additional way of finding transition states is to use the nudged elastic band al-
gorithm (§2.1.2), which starts a pair of unconnected minima and interpolates between
them. nyep equally spaced atomic configurations are created between the pair of min-
ima. These are then visualised as points on an elastic band, and the force each image
is defined by the potential surface and the spring constant of the elastic band. The im-
ages are then moved according to this force, for a set number of LBFGS steps (psteps),
or until the RMS force on the band reaches a set threshold. In practice, the number
of images, ny,ep, and the number of LBFGS steps are the most important parameters,
since it is computationally cheaper to take only a few optimisation steps for the NEB,
and then use the highest-energy image as a starting point for a standard one-ended
transition state search. The greater the value of n,ep, the closer the highest energy
image should be to a saddle point, but the greater the computational expense of the
minimisation of the RMS force on the NEB. We are only interested in transition states
connected to our current minimum, and so the CONNECT algorithm is set to finish
when a connected transition state is found, rather than when a complete path is found.
As well as the parameters for the NEB routine, we can set the maximum number of

transition states that the CONNECT algorithm (§2.1.2) will find before giving up if
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none of them are connected to the current minimum. We experimented with values of
Nipeb Of 3 & 7, ngeps of 40 & 80, and values of ni;** = 5, 10, 20 & 30.

The most important parameter appears to be nj;** allowed in the CONNECT
algorithm. The average numbers of transition states found were 16.4,17.75 and 19.1
for n3®* =5, 10 and 20, respectively. Above 20 steps, the law of diminishing returns
applies, and there is no significant advantage in using n;3** = 30. The next most
important parameter is the number of images: n,., = 7 was consistently better than
Npepy = 3. The difference in the number of transition states found was only ~ 1% for

max
Nis

=5, but increased to ~ 15% for n{3** = 20. For all parameter sets, there was no
significant difference between using ngseps = 40 and npeps = 80.

Another issue is how we select the starting minima for the double-ended transition
state search. Obvious options are (1) using minima we have already found that are not
connected to the current minimum, (2) generating new minima by perturbing the entire
system and minimising, (3) perturbing a small number of atoms and minimising, or (4)
swapping a pair of atoms and if necessary, minimising* We decided not to use option
(1), as this has the potential to bias any pathways found towards minima already in the
database. For options (2) and (3), the magnitude of the perturbation is crucial: if it is
too small, the system will fail to leave the basin of attraction of the current minimum,
and if it is too large the minima that we are trying to connect will be separated by too
great a distance. It is also to be expected that the most efficient perturbation size will
vary across the PES. Therefore, we varied the magnitude of the perturbation of the
coordinates by increasing the magnitude by 5% each time the system failed to leave
the current basin of attraction, and decreasing it by the same amount each time the
perturbation was successful. Option (4) found, at most, an average of twelve transition
states per minimum, with the optimum NEB parameter set. With the same NEB
parameter set, options (2) and (3) had similar success rates, both finding an average
of 16-17 transition states per minimum, with very similar waiting times. We therefore
used option (2) to generate new minima in the actual KMC runs.

We used both the nudged elastic band algorithm and the hard-sphere method for the
KMC runs: performing 16 NEB searches and a further 84 hard sphere searches at each
minimum. The methods have slightly different biases, and so the most representative

set of transition states is found with a combination of both strategies.

*Minimisation is only required if we swap the positions of atoms of different types.
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We carried out MD and KMC runs for the 60-atom binary Lennard-Jones sys-
tem at number densities of 1.1, 1.2 and 1.304 3. We adjusted the energies at which
the runs were performed so that the diffusion constants measured were in the range
—11 < InD < —3, where D is expressed in units of aAAeAAl/mel/Q. This range
extends from the moderately supercooled region to close to the minimum diffusion
constant that can be measured accurately on the timescale of computer simulations.
We used the MD runs both for comparison with the KMC results, and as a means of
efficiently generating representative starting configurations for the KMC runs. The
MD simulation consisted of three independent microcanonical cooling runs, which
each included up to 27 consecutive runs, where the total energy was held constant
for 10° equilibration steps, followed by 10° steps in which we gathered the diffusion
data. The final configuration was the starting configuration for the following run,
with the total energy decreased by 10eaa (0.17ean per atom). A velocity verlet algo-
rithm was used with a time step of 0.005 (maaa?/ean)t/?,15?

3.0 x 1075 (eAA3/m0AA2)1/2/atom.

giving a cooling rate of

The final configurations from the runs at the appropriate energy were used as the
starting configurations for the KMC runs. Fewer KMC runs were carried out, since they
were considerably more computationally expensive, at energies varying by 0.33 ean.

Table 5.1 summarised the energies at which the results were harvested.

Starting energy | Finishing energy | Highest energy | Lowest energy
(MD) (MD) (KMC) (KMCQ)
p=11 0.00 —4.83 —1.50 —3.50
p=1.2 1.17 -3.17 -1.17 -3.17
p=13 3.00 —3.00 0.00 -1.17

Table 5.1: Starting and finishing energies for the MD cooling runs and starting and finishing
energies for the KMC runs, all expressed in €44 per atom. The energies in the MD cooling
runs were changed in decrements of 0.17 €4 4, and the KMC runs were carried out at intervals
of 0.33€44.

The diffusion constant, D, was obtained using Einstein’s relation:
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where R(t) is the total displacement of the system at time ¢ from its position at ¢t = 0,
and N the number of atoms. Alternatively, D = (d(R(t)?)/dt)/6N, and so can be
obtained from a plot of R(t)? against ¢.

For both MD and KMC, the diffusion constant at each temperature is obtained
from calculating the gradient of a plot of R(¢)? vs t, using linear regression. For the
KMC results, the data points for the first 2000 steps are discarded: points obtained
in this section of the trajectory are likely to contain large fluctuations away from the
mean, especially at low temperatures.

Obviously, the displacement R(t) obtained from KMC will be the distance from
the starting minimum to the current minimum: while that obtained from MD will
also contain a vibrational contribution. In the long time limit, this difference becomes

negligible.

5.2 RESULTS

The principal quantities of interest in comparing KMC and MD trajectories are the
diffusion constants, which we can use to assess fragility, and distribution of the energies
of the minima sampled during the trajectory, which we can use to verify that the two

simulation methods are sampling the same regions of phase space.

5.2.1 DIFFUSION CONSTANTS

Figures 5.2-5.4 are Arrhenius plots—In D vs eaa /kpT—comparing diffusion constants
obtained from KMC and MD. Table 5.2 contains the relative performance of several
standard fitting functions to the MD data for p = 1.1 and 1.2045 3.

Several trends emerge as the density increases in the MD data. First of all, the lin-
earity of the relationship between In D and 7! increases with p. The ‘strength param-
eter’, D /Ty, is in the range 8 —9 for p = 1.10a4 2 and 18—28 for p = 1.204 3. Thus
with decreasing density, it appears that this system becomes less fragile with increas-
ing density. These results appear to contradict Sastry’s findings for a 256-atom sys-

tem,% which suggested that the fragility increased with increasing density. Closer
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Figure 5.2: Arrhenius plots of diffusion constants obtained from KMC (red crosses) and MD
(blue diamonds), at density 1.1. Included is the linear regression for the KMC diffusion con-

stants, showing that these appear to have Arrhenius behaviour.

examination reveals that our parameters from VTF fits are broadly similar at num-
ber density 1.104473: Sastry obtained kgTy/ean = 0.156 and A ~ 1.2€ep4; we find
kpTo/ean = 0.172 and A = 1.41epa. It appears that the smaller system system suffers
from significant finite size effects, especially at higher densities. However, as long as we
take these into account when considering our results, they should not prevent us from
drawing some preliminary conclusions about the nature of strong and fragile liquid
potential energy landscapes.

The KMC data is linear at all densities, with a similar activation energy, F, to the
limiting activation energy of the MD data at the high-temperature end of the range
studied here. The discrepancy increases with decreasing density: the diffusion constant
from KMC is smaller by factors of ~ 20 for p = 1.1oa5 3, ~ 10 for p = 1.2024 % and
~ 3 for p=1.30aa 3 at the top end of the temperature range studied here.

The data obtained from KMC can also be fitted to the asymptotic MCT relationship
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Figure 5.3: Arrhenius plots of diffusion constants obtained from KMC (red crosses) and MD

3

(blue diamonds) at number density 1.2eaa0a47°. Included is the linear regression for the

KMC diffusion constants: showing that these appear to have Arrhenius behaviour.

D ~ (T — T,)”. From simulations employing more atoms and larger supercells,?96:%8

it is accepted that T, ~ 0.435 for p = 1.2044 3, the number density at which most
research is performed. It is perhaps surprising that in the 60-atom system studied
here, a measurable diffusion constant is obtainable below kg7 /ean ~ 0.4, which has

previously been found to be the mode-coupling critical temperature.’* %

In part this
must be due to the Stoddard-Ford quadratic function and the cutoff of 1.842 0,5, which
decreases the well depth by 28% (§2.4.1).

We can quantify the degree to which the behaviour of the system is different from
that observed in larger scale MD simulations.* 96:98:163 In Table 5.2 we present the
results from least-squares fitting using three different functions of In D to 1/T for p =
1.1oaAo "2 and p = 1.2044 3. The obvious functions to use are the asymptotic MCT
relationship, D ~ (T — T;)", and the VTF and Arrhenius relationships. The MD data

point at the lowest temperature, kg7 = 0.3Teaa, has the greatest uncertainty and so
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Figure 5.4: Arrhenius plots of diffusion constants obtained from KMC (red crosses) and MD
(blue diamonds), at density 1.3. Both the KMC and MD results have been fitted using linear
regression, as it appears that at this density the Arrhenius law is the most appropriate empirical

fitting function.

we have included fits both with and without that point.

All the fitting parameters in presented in Table 5.2 suggest that the system studied
here is different from one that uses a large supercell.% 9698163 At 5 — 125,73, the
mode-coupling critical temperature is lowered to between 0.32 and 0.37 eaa /kg. This
decrease is not altogether surprising, as it is of a similar order to the decrease in well
depth compared to the standard Lennard-Jones potential. The value of v is consistent
with that obtained previously.®> Of the three fitting functions, the VTF equation has
the smallest estimated variance, and is therefore the best fit. Tj is considerably lower
than observed previously,” whether the lowest temperature result is included or not.
It is also worth noting that the estimated variance, Vg, is of a similar order for all

3

three fitting functions, for number densities of 1.1 and 1.2eapr0447°.

For the densities that exhibit super-Arrhenius behaviour, the coincidence of the
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Parameter Number density 1.2 02134 Number density 1.1 02134
Fits without | Fit including
kpT/ean =0.37 | kgT/ean = 0.37
kpTe/ean 0.378 +£0.012 0.327 £0.010 0.325 £ 0.003
0% 2.159 £0.124 2.520 £ 0.137 1.757 £+ 0.062
Vest 0.045 0.072 0.032
Alean 2.428 +0.022 2.738 £0.177 1.408 £ 0.088
T 0.133 £ 0.021 0.097 £0.016 0.172 £ 0.010
Vest 0.018 0.021 0.020
E,/ean 3.810 £ 0.080 3.710 £ 0.091 2.903 £ 0.120
Vest 0.041 0.047 0.124

Table 5.2: Fits to the diffusion data obtained from MD, including and not including the point
below kpT/eaa = 0.435, which is conventionally taken as the critical mode-coupling temper-
ature 7,..94796 The first fit is to the asymptotic MCT behaviour: D ~ (T — T.)?, the second
to the VTF equation: D ~ exp[A/kp(To — T)], and the third to a simple Arrhenius law,
D ~ exp(—E,/kpT). Included for each fit is Ve the estimated variances of the fits.

mode-coupling critical temperature 7, and the point at which the two diffusion con-
stants appear to merge is remarkable. For p = 1.1044 the value of T, obtained from
the least-squares fit is 0.35€eaa/kp, and the two fit lines cross at T' = 0.350 ean /kB-
For p = 1.204, these values are both around 0.38 ean /kB.

Thus, it appears that the KMC and MD results agree at the critical temperature
of MCT. This is not entirely unexpected, as it is an accepted principle of MCT that as
T, is approached, so-called ‘hopping’ processes become important, as the macroscopic,
hydrodynamic diffusion modes become ‘frozen out’. These ‘hopping’, or ‘activated’
processes are likely to be very well described by minimum-saddle-minimum transition
state theory picture.

The activation energy in the KMC runs at density 1.2054 >

, obtained from the
Arrhenius plot (Figure 5.3) is —3.14eaa. If diffusion were a single-step process, we
would expect to see barriers of this magnitude in the distribution function of accepted
barriers, Figure 5.5. Unlike the previous barrier distributions in Chapter 4, this distri-

bution includes both uphill and downhill barriers, but only those accepted during the
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Figure 5.5: Barrier distributions of selected barriers for the KMC runs at density 1.2 044 2.

The colours are as follows: —1.17 - black, broad low energy peak; —1.50 - blue; —1.83 - green;
—2.17 - red; —2.50 - cyan; —2.83 - magenta; —3.17 - black, sharp peak at low energy.

KMC run. Nevertheless, the results are essentially the same as the downhill distribu-
tions obtained in Chapter 4, with the distributions spreading out slightly as the energy
increases, as higher barrier moves are accepted more often. However, the negligible
density at Fpgrrier ~ Eq ~ 3.14€eaa suggests that, as previously surmised, diffusion

takes place by a multi-stage process, involving several transition states.

5.2.2 DISTRIBUTIONS OF ENERGIES OF MINIMA SAMPLED

We quenched the MD configurations every 103 steps, to generate a database of min-
ima sampled by the cooling runs, for comparison with the distributions obtained in
the KMC runs. These distributions, generated using the usual Gaussian method to
produce smooth functions, are presented in Figures 5.6-5.8. In each Figure, the top
panel represents the distribution functions obtained from MD, the bottom those from

KMC. For clarity, only the results obtained from MD In each case, the shapes of the
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Figure 5.6: Energy distributions of minima visited by MD (top panel), and KMC (bottom
panel), at number density 1.1044 2. The smooth distribution functions were generated using
the Gaussian smoothing technique described in §4.3.1, The Gaussian width s = 0.01eas. The
energies at which the microcanonical MD and KMC runs were carried out were —3.50 (black,
low energy), —3.17 (magenta), —2.83 (red), —2.50 (light blue), —2.17 (green), —1.83 (dark
blue), and —1.50 (black, high energy), all in eaa per atom.
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Figure 5.7: Energy distributions of minima visited by MD (top panel), and KMC (bottom
panel), at number density 1.2042 2. The Gaussian width s = 0.01 eaa. The energies at which
the microcanonical MD and KMC runs were carried out were —3.17 (black, low energy), —2.83
(magenta), —2.50 (red), —2.17 (light blue), —1.83 (green), —1.50 (dark blue), and —1.17 (black,
high energy), all in eaa per atom. The very low energy peak for the run at —2.50 eaa per atom

corresponds to a set of predominantly crystalline minima samples during one of the runs.
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Figure 5.8: Energy distributions of minima visited by MD (top panel), and KMC (bottom
panel), at number density 1.3042 2. The Gaussian width s = 0.01 eaa. The energies at which
the microcanonical MD and KMC runs were carried out were 0.00 (black), —0.33 (dark blue),
—0.67 (green), —1.00 (light blue), —1.33 (red), and —1.67 (magenta), all in eaa per atom.
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€tot [ EAA (emin) /ean (MD) (eémin) /ean (KMC)
-1.17 -4.37 -4.43
-1.50 -4.39 -4.44
-1.83 -4.40 -4.45
-2.17 -4.42 -4.47
-2.50 -4.47 -4.48
-2.83 -4.49 -4.49
-3.17 -4.52 -4.51

Table 5.3: Mean energies of minima sampled, {en;,), obtained from MD and KMC at number

3

density, p = 1.2044 °, at total energy ego;.

distributions vary significantly. However, at low energies, the range of energies at which
the distributions are non-zero are very similar. The distributions are most similar for
the highest number density, and least similar for the lowest. This is consistent with the
trend in the discrepancies in diffusion constant in the previous section.

There are two distributions, with obvious anomalous excess low-energy probability

density: the one obtained from MD at p = 1.2044 3

and energy —2.50 epa per atom;
and that from KMC at p = 1.30aa ° and energy —1.33eaa per atom (both in red).
The source of the anomalies is the same: in both cases, the trajectories found a region
of the PES with significant crystalline character, and became ‘stuck’. This also explains
the low diffusion constants in other cases. The ability of the BLJ 60-atom system to
find substantially crystalline minima has been observed before.!8%217

Table 5.3 tells the same story as Figure 5.7. The agreement in the mean energies
is extremely good for the lowest three energies, but becomes progressively worse as
the energy increases. It may be a concern that at higher energies, the microcanonical
temperature is effectively significantly higher for KMC compared to the corresponding
MD runs. We can obtain the harmonic microcanonical temperature from the density
of states associated with a single minimum from the superposition approximation, as
shown in §5.1.2. Even for the highest temperature we get kgT),/ean = 1.12, compared
to the temperature in the corresponding MD run of kg7 /eapn = 1.07. Thus, the

discrepancy in the temperature is not significant, and we are justified in using the
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temperatures from MD in the previous Arrhenius plots for both the KMC and MD
data. However, we cannot assume that the under-sampling of high energy regions of

the PES will not affect our results.

5.3 DISCUSSION AND ANALYSIS

The discrepancies between KMC and MD in both the diffusion constants and energies
of the minima sampled are somewhat disappointing. However, the results are still
interesting, as the failure of the KMC to replicate MD may indicate the cause of the
super-Arrhenius behaviour of the system.

First of all, we have to question the principal assumption of our implementation
of the KMC algorithm in the present work. We have assumed that (1) populations of
basins on the PES and transitions between them are well described using the harmonic
superposition approximation (§5.1.2), (2) that dynamics between basins are Markovian
and (3) that we have sampled phase space adequately. We can be reassured of the

validity of the harmonic approximation by the results of Broderix et al.'3!

Compar-
ison of the waiting times in minima from our KMC runs and MD runs—which we
quenched at every step—are in Table 5.4, indicating that the waiting times obtained
by the harmonic approximation in the KMC simulations cannot be the sole cause of
the discrepancies. The KMC waiting times are obviously related to the sampling of
the PES as well as harmonic approximation, and the size of the discrepancies due to

these two sources. However, for number density 1.30a4 2

, where the discrepancy is
temperature-independent, the ratio of waiting times is only weakly temperature depen-
dent, and on average is 3.06 £ 1.18, which is very close to the discrepancy observed
in the diffusion constant. Thus, in this case, where both MD and KMC results have
Arrhenius temperature dependence, it turns out that the error in the pre-factor can be
accounted for entirely by the error in the waiting time. This result probably has contri-
butions from both sampling error and the harmonic approximation, but these appear
to independent of energy. The other two number densities have a further contribution
to the observed discrepancy.

Next, we consider the Markovian assumption. If the enhanced MD diffusion con-
stant is the due to the failure of the Markovian assumption at high temperature, then

there must be positive correlation between successive transitions between minima.

This question has been considered in depth by Keyes and Chowdhary (KC): who
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p/o 4 Min [(£M) /(toy)] Max [(£;°) /(tu)]
1.1 2.67 9.95
1.2 0.95 5.62
1.3 1.75 4.67

Table 5.4: Minimum and maximum values of the ratio of the arithmetic mean waiting time
in MD and KMC for each of the number densities. As the total energy is raised, the ratio
increases approximately linearly, reflecting the increased discrepancy between the KMC: but

the harmonic approximation alone cannot explain our observations.

considered diffusion in a 32-atom Lennard-Jones system,'?? and Doliwa and Heuer (DH)
who studied a 65-atom BLJ system.?3%235 Both groups found that any correlation
present was entirely negative: KC found that removing the effect of correlation greatly
enhanced the diffusion constant. DH coarse-grained the landscape into ‘metabasins’—
megabasins in our terminology— and found that there was weak back-correlation up
to five inter-megabasin transitions.

We can measure the directional nature of successive transitions between basins, by
examining the cosine between the transition vectors leading to the ith and jth basins in
a sequence, which can be obtained easily from the scalar product of the inter-minimum

vectors:

_ (Ri—Ri ) (R —Riy)
IR —R(y| |Rj — Rgp)]

cos (0;5) (5.33)

where R; represents the coordinates of the sth minimum. In Figure 5.9 we show the
average value of this correlation function for the temperature (kg7'/eapn = 1) and

3 at which we would expect the most positive correlation between

density (1.10aA~
successive inter-minimum transitions. Even the residue after subtracting pure back-
correlations, i.e. those with cos (6;;) = —1, shows no significant positive correlation.
Thus, on the basis of previous work,'2%234:235 and the directional correlation function
we can conclude that the enhanced diffusion constant of MD over KMC is not due to
non-Markovian behaviour.

Therefore, it appears that we have undersampled configuration space as comparison

of the distribution of minima sampled by the two simulation methods suggests. The
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Figure 5.9: Mean values of the cosine of the angle between successive transition vectors between
minima, for the MD run at energy —1.50 x4 and number density 1.1 044 3. This is the MD run
that has the greatest enhancement of the diffusion constant over KMC. The three lines represent
(1) all inter-minimum transitions (black), (2) pure back correlations—i.e. cos§;; = =1 and (3)
the difference between them. There is no positive correlation between sucessive transitions,
showing that a non-Markovian explanation for the super-Arrhenius behaviour of the MD runs

is not viable.

KMC approach has measured the rate of diffusion between minima at the bottom of
the energy range sampled by MD. However, what is particularly interesting is that
the activation energy as measured by KMC (E(E(MC) is much smaller than the limiting
activation energy measured by MD as T — T, (E)P (T;)). If the super-Arrhenius

3 3 were due to large

behaviour observed at number densities 1.20p47° and 1.1opa4~
potential energy barriers separating megabasins in the low part of the PES, we would
expect this limiting low temperature activation energy to be the same for both KMC

and MD. In fact, EXMC is much closer to A - the numerator within the exponential
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term in the VTF equation, which also corresponds to the approximate activation energy
when 7" > Tj. This result throws up the rather surprising possibility that the potential
barrier to diffusion at the bottom of the relevant energy is the same as at the top. As the
KMC sampling of higher minima is so poor, we can assume that there is no significant
change in prefactor for the KMC runs: the change in rate with changing temperature
is entirely energetic, with no entropic contribution. This conclusion that the barriers
do not change as the surface is descended contrasts sharply with the assumptions of
the Adam-Gibbs (§1.2.1) approach, where the energetic barriers to diffusion grow with
decreasing configurational entropy: again, if the Adam-Gibbs equation were directly
applicable to this system, we would expect E(IfMC to be close to EMP (T,). Therefore,
the super-Arrhenius behaviour observed in MD must be entropic, and contained in the
prefactor.

In Chapter 5, we noted that the normal mode frequencies were dependent on poten-
tial energy. However, this will be included in both KMC and MD, and so cannot be the
cause of the discrepancies in the prefactor. Connectivity between megabasins remains
as the most likely culprit for the failure of KMC to replicate MD. If we assume that
this is the case, then it appears that higher-lying minima are, on average, connected
to more minima by kinetically accessible barriers than lower-lying minima. Thus, sam-
pling of higher energy minima is crucial to the calculation of the diffusion constant:
unsurprisingly, the KMC algorithm has failed to cope with the Gaussian density of
minima with energy.

The notion that the temperature dependence of the diffusion constant is controlled
by entropy is far from original. However, the way we interpret this correlation between
the dynamics of the system and the entropy is closer to the interpretation of Keyes’
INM-REM analysis (§1.3.1).113114118 Tn this theory, it is assumed that the diffusion
constant is proportional to the time-averaged fraction of unstable normal modes cor-
responding to double well potentials, In (fg,). This is then assumed that both fg, (F)
is proportional to the number states of energy lower than E. In the macroscopic limit,
therefore, In(f4,) ~ S¢, where S, is the configurational entropy. Thus, the relation-
ship D ~ exp(S.) must hold, which is reminiscent of Dzugutov’s universal scaling
law.67:71:76 While the INM-REM arguments appear somewhat simplistic, they do fit
simulation data surprisingly well.!?

We combine here the INM-REM, Dzugutov and Stillinger-Weber approaches in

explaining our results. It appears that in this system the potential energy barriers
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are essentially constant in the region of the PES explored by the supercooled liquid.
We do not believe that there are no regions with larger barriers that form kinetic
traps, rather that these are not sampled significantly when the system is a metastable
supercooled liquid: their contribution to the partition function is only significant at
time scales longer than is accessible to computer simulation. Our results suggest that
the super-Arrhenius behaviour we have observed is due to decreased connectivity in
the lower energy regions of the PES. The relevant energy barriers to diffusion will tend
to be the lowest: i.e. the minimum barrier to diffusion. It is reasonable to expect that
the number of such minimum-barrier pathways from one megabasin to another will be
proportional to the number of megabasins in the system with equal, or lower, potential
energy. This connectivity contribution is therefore entropic, and is expected scale as

exp (5), and so we achieve the relationship,

D ~exp(S. — E,/ksT) . (5.34)

Thus in the high-temperature limit, where kgT" > F,, the entropic term will domi-
nate, and we recover the relationships similar to that of Dzugutov and Keyes et al.
However, as the temperature decreases, we see departure from this law as the energetic
term becomes significant too! Our approach differs from the INM approach, in that
like Stillinger and Weber, we visualise dynamics on the PES as consisting of transitions
between minima via true transition states: we do not invoke higher order saddle points.
The accessible connectivity of megabasins on the PES, via true transition states, in-
creases as the PES is ascended. We introduce the term accessible connectivity, meaning
the number of pathways to other megabasins with potential energy barriers close to
the smallest possible for diffusion.

We admit that equation (5.34) will not be appropriate near the Kauzmann point.
However, we would expect that the energy barrier to diffusion below the glass transition—
i.e. diffusion during ageing—might exhibit a lower activation free energy than is ob-
served immediately before reaching T} in the cooling schedule. This behaviour would
be expected, as below T, the system would no longer be rapidly losing entropy on the

experimental timescale. Such a discontinuity is observed in, for instance, tri-naphthyl

tDzugutov’s relationship uses excess entropy rather than configurational entropy. It has been argued
that they are proportional to each other,?%® and in any case for the purposes of this general discussion,

we can treat the two approaches as being qualitatively similar.



Quantitative studies of the PES 138

benzene (TNB).2%? In the Adam-Gibbs picture, super-Arrhenius behaviour is due to an
inverse relationship between potential energy barriers and the configurational entropy,
and so it would be most unexpected to see a decrease in activation free energy below
the glass transition temperature.

Our picture of the connectivity is consistent with the relationship between D and
faw- The probability of sampling a configuration close enough to a transition state for an
diffusive imaginary mode will obviously be proportional to the accessible connectivity,
multiplied by the Boltzmann factor of the minimum barrier pathway. Thus, D will be
linearly related to the time average of fg,. The low activation energy pathways below
T, are also rather reminiscent of Johari-Goldstein slow 8 processes. The pre-factor to
these processes would correspond to the number of pathways ‘frozen in’ at Tj: again,
the o processes have a much larger free activation energy approaching T, owing to the
rapidly decreasing entropy.

In Chapter 4 we observed that potential energy barriers of diffusive rearrangements
become larger with increasing density. Thus, while the barriers may be the same in
both high- and low-lying regions of the PES at constant volume, we expect that at
constant pressure, as in experiment, that the barriers may be grow with decreasing

temperature as the glass-former becomes more dense.

5.4 SUMMARY

We have used the failure of KMC to replicate MD to glean some novel information
about the PES of this 60-atom binary Lennard-Jones system. Approaching T, there
are still diffusive pathways accessible to the system with activation free energy close to
the high temperature limiting value.

Therefore, in this atomic glass, the Adam-Gibbs picture of increasing potential
energy barriers as the surface is descended does not apply. Instead we conclude, by
a process of elimination and considering other models, that the connectivity between

megabasins is proportional to the configurational entropy.
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APPENDIX: GROUPING OF MINIMA

k21
ki 1 - 2 kto
k12
Figure 5.10:

Consider a pair of minima connected by fast rates ks; and k19, where we use the
conventional chemical notation, in which k;; represents the rate from minimum j to
minimum 4. ky; represents the rate—or sum of rates—from minimum 4 to minima
outside the group.

In conventional KMC, we consider the waiting time in each minimum. Here we

consider the waiting time, 7, in the group of minima 1 and 2:

P, P, .
= kv + k
! P+B T PR
(5.35)
P+P

P k'Tl + PQkTQ’

where P; and P, are the occupation probabilities of minima 1 and 2, respectively.
According to the detailed balance requirement, P; ko1 = P»k12, and so we can eliminate

P, and P; to give:

;_ k1o + ko
kyikiz + kyokor

(5.36)

In the special case where k4 = ko = ky and kio = ko1, 7 = (lﬁ)*l.

We can now calculate the expectatation value of the waiting time, 7, in conventional
KMC, in which we do not coarse grain by grouping minima 1 and 2 together. The
transition probability from minimum j to minima i, wy; = ki;/(kij + kyj). Thus,

assuming we start from minimum 1,
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- 1 1 1
T = Wpg g T W21wWy2 +

ko1 + k41 kio + ko kot + kpy
v (_ N 1 N 1 ) (5.37)
=
2t k1o + kro o ko1 + by

ko + k12 + ka1
kyokai + ktikio + krkyo

In the special case where the respective rate constants are equal, 7 = (kT)*l, as
above. It is easy to see that this expression will be close to that of Equation 5.35
provided that intra-group rates are much quicker than inter-group rates.

To generalise this expression for a group of n minima, we consider a transition
probability matrix W, w;; = kji/(3_;1 ki + k4i). As we are using an n - fold kinetic
Monte Carlo scheme, w;; = 0, and Z?Zl w;; + wy; = 1. Given a vector of the expected
population of each minimum in the group after m steps, p;(m), we obtain p;(m +1) =
> pj(m)wj;. The expectation value of the time increment for this step is then the
scalar product of P(m) and a vector of the waiting times for each of the minima in
the group, T, where T; = (3], kii + kTi)fl. Thus, given an initial population vector

P(0), the expectation value of the time spent in the group of minima is given by:

w =TT (i wi> P(0). (5.38)

1=0

Intuition suggests that Y >, W will converge to a finite value provided that neither the
group of minima or any subset of it form a closed set. To prove this mathematically,
we first diagonalize W, so that W = UAU !, where A is a diagonal matrix of the
eigenvectors of W, and U a matrix of its corresponding eigenvalues. W” = UA”U !,
and so it follows that the geometric progression in Equation (5.38) will converge if the
spectral radius, p(W) > 1, where p(W) = max {|A\| : A 2 (W)} and o(W) is the set
of all eigenvalues of W.

p(W) is a lower bound for all possible matrix norms of W.?60 If we consider the

maximum row sum matrix norm, ||[W||,, defined by:
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n

IWle = max [y (5.39)

j=1

W]l <1, as the elements of row 7 represent the transition probabilities from mini-
mum ¢ to the other members of the group, and so cannot total more than 1. It therefore
follows that p(W) < 1.

The matrix W is necessarily nonnegative: W;; > 0V 4, j. It is a universal property
of nonnegative matrices that there exists a vector x, with z; > 0 and x # 0, which
satisfies the equation Wx = p(W)x. Therefore, p(W) is a real, positive eigenvalue of
(W)_QGO

Finally, we consider the determinant of the matrix (W — I), which will be zero if

p(W) =1:

-1 wo w3

w2 —1 w32
=0 (5.40)
wiz wez —1

The determinant will be non-zero provided that no rows or columns are linearly depen-
dent. We can check by using elementary row and column operations in the following

way:

1. Add all the columns to the right of the first column to it, giving the following

matrix, with the same determinant

n

dYjmawit — 1 wa ws
n

dijmpwiz—1 =1 ws

n
Yjmpwjz—1 wy -1

2. If there are no nonzero entries in the first column, the determinant is zero, and
there is an eigenvalue, A = 1. Otherwise, if there are r zero entries, permute the

rows so that the nonzero entries in the first column are in the top r rows. Then
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permute the columns, so that the diagonal entries in the 2nd to the nth rows

remain —1.

3. Repeat 1-2 for all the other columns in turn, adding the columns to the right and

then rearranging.

The matrix will now be in block triangular form:

where A;; are square sub-matrices. The determinant of the complete matrix is just the
product of the determinants of the block diagonal matrices, which can only be zero if
any of the columns are zero, or linearly dependent, which can only be the case if there

is a subset of minima from which there is zero probability of escape.



CONCLUSIONS AND OUTLOOK

So what have we achieved? We set out to try and understand the underlying PES for
various model glasses, focusing particularly on the popular binary Lennard-Jones (BLJ)
mixture. Previous studies of the energy landscape have tended to focus on minima,
obtained by regular quenching of MD trajectories. Barrier distribution statistics can
only be inferred from such techniques, and lack of ergodicity at low temperatures makes
exploration of very low lying regions of the PES impossible.

Global optimisation, by basin-hopping, enabled us to find new crystal structures
for the BLJ system. It had previously been assumed that its excellent glass-forming
ability was due to the absence of a stable crystal structure. Instead, we showed that the
glass-forming ability was more likely to be due to the entropic barrier to crystallisation
from the melt, owing to the vanishing probability of nucleation of the layered structure.
This natural conclusion was verified further by the rapidly growing number of minima
in the BLJ system as the landscape was ascended, which we illustrated in a simplified
disconnectivity graph. The Stillinger-Weber silicon potential, and homogeneous sys-
tems were found to possess funnel-type potential energy surfaces in the region of the
crystal.

Generation of rearrangement pathways in low-lying regions of the PES in the second
chapter was consistent with experimental findings on real glassy systems, in that we
found evidence of enhanced low-frequency vibrational normal modes, and processes
with extremely low barriers, which were potential candidates for two-level systems.
The omnipresence of low barriers, which are kinetically accessible well below the glass
transition, led us to develop a threshold criterion to separate nondiffusive and diffusive

rearrangements. We were then able to define a ‘megabasin’ as a set of rearrangements
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that are only connected by pathways that are nondiffusive. Generation of stationary
points at constant pressure showed that the nondiffusive rearrangements were density-
independent, while barriers to diffusion increased with density.

Finally, we implemented kinetic Monte Carlo to try and understand dynamics in
the supercooled BLJ liquid. The surprising result, that we learned due to the failure
of the KMC to replicate MD, was that approaching T, is appears that potential energy
barriers to rearrangement are the same as at much higher temperature. Instead, the
super-Arrhenius slowing down appears to be due to decreasing connectivity between
megabasins in low-lying regions of the PES. The agreement as 7T, is approached, of
both the distributions of the energies of minima sampled and the diffusion constants,

suggest future KMC simulations below T, simulating ageing processes may be fruitful.

6.1 OUTLOOK

Studying the landscape by generating stationary points is a relatively new way to
tackle the problems in supercooled liquids and glasses. Computational expense is still
a problem, particularly for KMC. Much time is wasted retracing one’s steps, finding
transition states that have already been found. Development of new methods that
could increase this efficiency would make KMC a much more practical proposition. As
we saw in the previous chapter, KMC falls down at temperatures relatively modest
compared to T, as it cannot find enough diffusive transition states connected to higher
energy minima and so cannot sample the surface properly. Engineering an improved
transition state searching algorithm might alleviate this problem.

Kinetic Monte Carlo is certainly applicable below T,, and may yield some interesting
results. We have not touched upon ageing in the present work: this is an obvious future
application of the methodology, as not only does the efficiency of KMC start to compete
with MD but as the system is relaxing down the surface, KMC is not challenged by
high entropy in the same way as in the present work.

Our picture of the relationship between configurational entropy and connectivity
needs further investigation. One possible method is Wales’ discrete path sampling al-

gorithm.'6!

This approach involves the averaging over an ensemble of paths between
two regions of configuration space via transition states and intermediate minima. This
need not suffer from the same problems as KMC, as long as the PES is sampled repre-

sentatively, and so it may be possible to verify our findings for the 60-atom BLJ system
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for larger systems. It can also deal with processes that are too slow even for KMC, and
so may allow simulation of glass formers at and around T,. However, the method still
requires some development to deal with transport properties and entropically-driven
phase transformations such as the melting of a crystal.

In general, a universal feature of theories of glassy and supercooled liquid dynamics
is their alleged universality. Analysis of the PES from first principles, as presented here,
may hold the key to understanding why many of these theories achieve some success.

We hope that the present work is a small step in this direction.



REFERENCES

[1]
[2]
[3]
[4]
[5]
[6]

[7]
(8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

M. Goldstein, J. Chem. Phys. 51, 3728 (1969).

G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).

H. Vogel, Z. Phys. 22, 645 (1921).

G. Tammann and W. Z. Hesse, Anorg. Allgem. Chem. p. 245 (1926).
C. Angell, J. Non-Cryst. Solids 102, 205 (1988).

M. Paluch, S. J. Rzoska, P. Habdas and J. Ziolo, J. Phys. Condensed Matter. 8,
10885 (1996).

M. Paluch, J. Ziolo and S. J. Rzoska, Phys. Rev. E 56, 5764 (1997).

R. Béhmer and C. A. Angell, in Disorder Effects on Relaxzational Processes, edited
by R. Richert and A. Blumen, Berlin (1994), Springer.

C. A. Angell, Science 267, 1924 (1995).

F. H. Stillinger, Science 267, 1935 (1995).

W. Kauzmann, Chem. Rev. 43, 219 (1948).

C. A. Angell, J. Non-Cryst. Solids 131-133 (1991).

G. Williams and D. C. Watts, J. Chem. Soc., Faraday Trans. 66, 80 (1970).
R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847).

R. G. Palmer, D. L. Stein, E. Abrahams and P. W. Anderson, Phys. Rev. Lett.
53, 958 (1984).

O. Edholm and C. Blomberg, Chem. Phys. 252, 221 (2000).

146



REFERENCES 147

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]

G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970).
G. P. Johari and M. Goldstein, J. Chem. Phys. 55, 4245 (1971).

B. I. Bleaney and B. Bleaney, Electricity and Magnetism, Oxford University Press,
Oxford (1976).

N. G. McCrum, B. E. Read and G. Williams, Anelastic and dielectric effects in
polymeric solids, Wiley, New York (1967).

G. P. Mikhailov, in Physics of Non-Crystalline Solids, edited by J. A. Prins, pp.
270-282, Amsterdam (1965), North Holland.

G. P. Johari, J. Chem. Phys. 58, 1766 (1973).

F. R. Blackburn, C. Y. Wang and M. D. Ediger, J. Phys. Chem. 100, 18249
(1996).

F. Fujara, B. Geil, H. Sillescu and G. Fleischer, Z. Phys. B. 88, 195 (1992).
M. T. Cicerone and E. M. D., J. Chem. Phys. 104, 7210 (1996).

M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).

D. Ehlich and H. Sillescu, Macromolecules 23, 1600 (1990).

E. Rossler and J. Eiermann, J. Chem. Phys. 104, 5237 (1994).

H. Sillescu, J. Chem. Phys. 104, 4877 (1996).

M. D. Ediger, J. Non-Cryst. Solids 235-237, 10 (1998).

K. L. Ngai, J. Phys. Chem. B. 103, 10684 (1999).

P. W. Anderson, B. I. Halperin and C. M. Varma, Philos. Mag. 25, 1 (1972).
W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).

C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

W. A. Phillips (ed.), Amorphous solids: low temperature properties, Springer-
Verlag, New York (1981).



REFERENCES 148

[36] X. Liu, B. E. White, R. O. Pohl, E. Iwanizcko, K. M. Jones, A. H. Mahan, B. N.
Nelson, S. Crandall and S. Veprek, Phys. Rev. Lett. 78, 4418 (1997).

[37] G. Daldoss, O. Pilla, G. Viliani, C. Brangian and G. Ruocco, Phys. Rev. B 60,
3200 (1999).

[38] C. A. Angell, J. Phys. Condensed Matter. 12, 6463 (2000).
[39] N. I. Agladze and A. J. Sievers, Phys. Rev. Lett. 80, 4209 (1998).

[40] U. Buchenau, N. Prager, N. Niicker, A. J. Dianoux, N. Ahmad and W. A. Phillips,
Phys. Rev. B 34, 5665 (1986).

[41] A.P. Sokolov, E. Rossler, A. Kisliuk and D. Quitmann, Phys. Rev. Lett. 71, 2062
(1993).

[42] S. Elliott, Physics of amorphous materials, Longman (1983).

[43] S. Taraskin and S. Elliott, Europhys. Lett. 39, 37 (1997).

[44] S. N. Taraskin and S. R. Elliot, Phys. Rev. B 59, 8752 (1999).

[45] H. R. Schober and C. Oligschleger, Phys. Rev. B 53, 11469 (1996).

[46] V. Mazzacurati, G. Ruocco and M. Sampoli, Europhys. Lett. 34, 681 (1996).
[47] T. Uchino and T. Yoko, J. Chem. Phys. 108, 8130 (1998).

[48] G. Guillot and Y. Guissani, Phys. Rev. Lett. 78, 2401 (1997).

[49] A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).

[50] S. P. Das, Phys. Rev. E 59, 3870 (1999).

[61] U. Buchenau, Y. M. Galperin, V. L. Gurevich and H. Schober, Phys. Rev. B 43,
5039 (1991).

[52] U. Buchenau, Y. M. Galperin, V. L. Gurevich, D. A. Parshin, M. A. Ramos and
H. R. Schober, Phys. Rev. Lett. 46, 2798 (1992).

[63] M. Paluch, J. Gapinski, A. Patkowski and E. W. Fischer, J. Chem. Phys. 114,
8048 (2001).

[54] M. Paluch, K. L. Ngai and S. Hensel-Bielowka, J. Chem. Phys. 114, 10872 (2001).



REFERENCES 149

[55]
[56]
[57]
[58]

[59]

[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]

[73]

[74]

[75]

M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).

K. U. Schug, H. E. King Jr. and R. Béhmer, J. Chem. Phys. 109, 1472 (1998).
J. Koplinger, G. Kasper and S. Hunklinger, J. Chem. Phys. 113, 4701 (2000).
D. Huang, D. M. Colucci and G. B. McKenna, J. Chem. Phys. 116, 3925 (2002).

R. L. Cook, H. E. King, C. A. Herbst and D. R. Herschbach, J. Chem. Phys.
100, 5178 (1994).

J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28, 373 (1958).
G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

P. J. Flory, Proc. R. Soc. A 234, 60 (1956).

F. H. Stillinger, J. Chem. Phys. 88, 7818 (1988).

M. L. Wiliams, J. Phys. Chem. 59, 95 (1955).

M. L. Williams, R. F. Landel and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).
C. A. Angell, J. Res. Natl. Inst. Stand. Technol. 102, 171 (1997).
M. Dzugutov, J. Phys.: Condens. Matter 11, A253 (1999).

G. P. Johari, J. Chem. Phys. 112, 7518 (2000).

S. Sastry, Nature 409, 164 (2001).

I. Hodge, J. Res. Natl. Inst. Stand. Technol. 102, 195 (1997).

M. Dzugutov, Nature 381, 137 (1996).

S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases,

Cambridge University Press, Cambridge (1939).

J.-P. Hansen and I. R. McDonald (eds.), Theory of simple liquids, Academic
Press, San Diego (1986).

H. J. Raveche, J. Chem. Phys. 35, 2242 (1971).

J. J. Hoyt, M. Asta and B. Sadigh, Phys. Rev. Lett. 85, 594 (2000).



REFERENCES 150

[76] M. Dzugutov, preprint cond-mat/0103117 (2002).
[77] D. Kivelson, G. Tarjus, X. Zhao and S. A. Kivelson, Phys. Rev. E 53, 751 (1994).

[78] G. Tarjus, D. Kivelson and S. Kivelson, Supercooled liquids - ACS syposium
series 676, 67 (1997).

[79] D. Kivelson and G. Tarjus, J. Chem. Phys. 109, 5481 (1998).

[80] S. A. Kivelson, X. Zhao, D. Kivelson, T. M. Fischer and C. M. Knobler, J. Chem.
Phys. 101, 2391 (1994).

[81] G. Tarjus, D. Kivelson and P. Viot, J. Phys. Condensed Matter. 12, 5497 (2000).
[82] F. C. Frank, Proc. R. Soc. A 215, 43 (1952).

[83] W. Gotze, in Liquids, Freezing and the Glass Transition, Les Houches, Session
LI, 1989, edited by J.-P. Hansen, D. Levesque and J. Zinn-Justin, pp. 287-499,
North-Holland, Amsterdam (1991).

[84] W. Gotze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).

[85] W. Kob, ACS Symp. Ser. 676, 28 (1997).

[86] E. Leutheusser, Phys. Rev. A 29, 2765 (1984).

[87] U. Bengtzelius, W. Gotze and A. Sj6lander, J. Phys. C17, 5915 (1984).
[88] W. Gotze and L. Sjogren, J. Phys. C21, 3407 (1988).

[89] W. Gotze and L. Sjogren, Z. Phys. B. 65, 415 (1987).

[90] W. Gotze, J. Phys.: Condens. Matter 11, A1 (1999).

[91] W. van Megen and S. M. Underwood, Phys. Rev. Lett. 70, 2766 (1993).
[92] W. van Megen and S. M. Underwood, Phys. Rev. E 48, 248 (1993).
[93] W. van Megen and S. M. Underwood, Phys. Rev. E 49, 4206 (1994).
[94] W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).

[95] W. Kob and H. Andersen, Phys. Rev. E 51, 4626 (1995).

[96)] W. Kob and H. Andersen, Phys. Rev. E 52, 4134 (1995).



REFERENCES 151

[97] M. Nauroth and W. Kob, Phys. Rev. E 55, 657 (1997).
[98] S. Sastry, P. G. Debenedetti and F. H. Stillinger, Nature 393, 554 (1998).
[99] J. N. Murrell and K. J. Laidler, Trans. Faraday Soc. 64, 371 (1968).
[100] F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982).
[101] F. H. Stillinger and T. A. Weber, Phys. Rev. A 28, 2408 (1983).
[102] F. H. Stillinger, Phys. Rev. E 59, 48 (1999).
[103] P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
[104] A. Heuer and S. Biichner, J. Phys. Condensed Matter. 12, 6535 (2000).
[105] B. Derrida, Phys. Rev. Lett. 45, 79 (1980).
[106] P. G. Wolynes, J. Res. Natl. Inst. Stand. Technol. 102, 187 (1997).
[107] J. D. Ferry, J. Am. Chem. Soc. 72, 3746 (1950).
[108] G. Seeley and T. Keyes, J. Chem. Phys. 912, 5581 (1989).
[109] T. Keyes, J. Chem. Phys. 103, 9810 (1995).
[110] B. Madan and T. Keyes, J. Chem. Phys. 98, 3342 (1993).
[111] T. Keyes, J. Chem. Phys. 106, 46 (1997).
[112] T. Keyes, J. Chem. Phys. 101, 5081 (1994).
[113] T. Keyes, J. Chowdhary and J. Kim, Phys. Rev. E 66, 051110 (2002).
[114] T. Keyes, Phys. Rev. E 62, 7905 (2000).
[115] R. Zwanzig, J. Chem. Phys. 79, 4507 (1983).
[116] J. Chowdhary and T. Keyes, Physica A 314, 575 (2002).
[117] J. Chowdhary and T. Keyes, Phys. Rev. E 65, 026125 (2002).
[118] U. Ziircher and T. Keyes, Phys. Rev. E 60, 2065 (1999).

[119] E. La Nave, A. Scala, F. Starr, F. Sciortino and H. Stanley, Phys. Rev. Lett. 84,
4605 (2000).



REFERENCES 152

[120]
[121]
[122]
[123]
[124]
[125]

[126]

[127]

[128]

[129]
[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

E. La Nave, H. E. Stanley and F. Sciortino, Phys. Rev. Lett. 88, 035501 (2002).
D. Kohen and F. H. Stillinger, Phys. Rev. E 61, 1176 (2000).

D. J. Wales and J. P. K. Doye, Phys. Rev. B 63, 214204 (2001).

F. H. Stillinger and P. G. Debenedetti, J. Chem. Phys. 116, 3353 (2002).

D. J. Wales, Science 293, 2067 (2001).

F. H. Stillinger and T. A. Weber, J. Chem. Phys. 80, 2742 (1984).

F. H. Stillinger, P. G. Debenedetti and S. Sastry, J. Phys. Chem. B. 103, 4052
(1999).

F. H. Stillinger and P. G. Debenedetti, J. Phys. Chem. B. 103, 4052 (1999).

C. A. Angell, B. E. Chards and V. Velikov, J. Phys. Condensed Matter. 11, A75
(1999).

T. Keyes and J. Chowdhary, Phys. Rev. E 64, 032201 (2001).
L. Angelani, G. Parisi, G. Ruocco and G. Viliani, Phys. Rev. E 61, 1681 (2000).

K. Broderix, K. K. Bhattacharya, A. Cavagna, A. Zippelius and I. Giardina,
Phys. Rev. Lett. 85, 5360 (2000).

L. Angelani, R. Di Leonardo, G. Parisi and G. Ruocco, Phys. Rev. Lett. 87,
055502 (2001).

A. Scala, L. Angelani, R. Di Leonard, G. Ruocco and F. Sciortino, Philos. Mag.
B 82, 151 (2002).

R. Di Leonardo, L. Angelani, G. Parisi, G. Ruocco, A. Scala and F. Sciortino,
Philos. Mag. B 82, 163 (2002).

A. Cavagna, Europhys. Lett. 53, 490 (2001).

D. J. Wales, Energy Landscapes, Cambridge University Press, Cambridge (2003),

In press.
J. P. K. Doye and D. J. Wales, J. Chem. Phys. 116, 3777 (2002).

G. T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996).



REFERENCES 153

[139]
[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]
[148]
[149]
[150]
[151]
[152]

[153]

[154]
[155]

[156]

[157]

G. T. Barkema and N. Mousseau, Phys. Rev. Lett. 81, 1865 (1998).
G. T. Barkema and N. Mousseau, Phys. Rev. B 62, 4985 (2000).

G. T. Barkema, N. Mousseau and S. W. de Leeuw, J. Chem. Phys. 112, 960
(2000).

G. T. Barkema and N. Mousseau, Computational Physics Communications 122,

206 (1999).
J. H. Shin and H. A. Atwater, Phys. Rev. B 48, 5964 (1993).

S. Roorda, W. C. Sinke, J. M. Poate, D. C. Jacobson, S. Dierker, B. S. Dennis,
D. J. Eaglesham, F. Spaepen and P. Fuoss, Phys. Rev. B 44, 3702 (1991).

N. P. Kopsias and D. N. Theodorou, J. Chem. Phys. 109, 8573 (1998).

G. M. Crippen and H. A. Scheraga, Archives of Biochemistry and Biophysics
144, 462 (1971).

J. Panci¥, Collect. Czech. Chem. Commun. 40, 1112 (1974).

R. L. Hilderbrandt, Computers and Chemistry 1, 179 (1977).
C. J. Cerjan and W. H. Miller, J. Chem. Phys. 75, 2800 (1981).
D. J. Wales, Phys. Rev. A 49, 2195 (1994).

D. J. Wales and T. R. Walsh, J. Chem. Phys. 105, 6957 (1996).
L. J. Munro and D. J. Wales, Phys. Rev. B 59, 3969 (1999).

D. J. Wales, J. P. K. Doye, M. A. Miller, P. N. Mortenson and T. R. Walsh, Adv.
Chem. Phys. 115, 1 (2000).

D. J. Wales, J. Chem. Soc., Faraday Trans. 88, 653 (1992).
D. J. Wales, J. Chem. Soc., Faraday Trans. 89, 1305 (1993).

W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical
Recipes, Cambridge University Press, Cambridge (1986).

D. Liu and J. Nocedal, Mathematical Programming B 45, 503 (1989).



REFERENCES 154

[158]

[159]

[160]

[161]
[162]
[163]
[164]
[165]
[166]
[167)
[168]

[169]

[170]
[171]
[172]

[173]

[174]
[175]
[176]

[177]

T. F. Middleton and D. J. Wales, Phys. Rev. B 64, 024205 (2001).

M. Allen and D. J. Tildesley, The Computer Simulation of Liquids, Clarendon
Press, Oxford (1987).

H. Jénsson, G. Mills and K. W. Jacobsen, in Classical and Quantum Dynamics
in Condensed Phase Simulations, edited by B. J. Berne, G. Cicotti and D. F.
Coker, Singapore (1998), World Scientific.

D. J. Wales, Mol. Phys. 100, 3285 (2002).

D. J. Wales, Mol. Phys. p. In press (2002).

A. Mukherjee, S. Bhattacharyya and B. Bagchi, J. Chem. Phys. 116, 4577 (2002).
W. D. Luedtke and U. Landman, Phys. Rev. B 37, 4656 (1988).

W. D. Luedtke and U. Landman, Phys. Rev. B 40, 1164 (1989).

C. J. Tsai and K. D. Jordan, J. Phys. Chem. 97, 11227 (1993).

J. P. K. Doye and D. J. Wales, Z. Phys. D 40, 194 (1997).

N. Mousseau and G. T. Barkema, Phys. Rev. E 57, 2419 (1998).

H. E. A. Huitema, J. P. van der Eerden, J. J. M. Janssen and H. Human, Phys.
Rev. B 62, 14690 (2000).

D. J. Wales and J. P. K. Doye, J. Phys. Chem. A. 101, 5111 (1997).
Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. USA 84, 6611 (1987).
Z. Liand H. A. Scheraga, J. Mol. Struct. (Theochem) 179, 333 (1988).

P. N. Mortenson, Energy landscape of model polypeptides, Ph.D. thesis, Cam-
bridge University (May 2001).

O. M. Becker and M. Karplus, J. Chem. Phys. 106, 1495 (1997).
D. J. Wales, M. A. Miller and T. R. Walsh, Nature 394, 758 (1998).
R. S. Berry and R. Breitengraser-Kunz, Phys. Rev. Lett. 74, 3951 (1995).

R. E. Kunz and R. S. Berry, J. Chem. Phys. 103, 1904 (1995).



REFERENCES 155

[178] P. E. Leopold, M. Montal and J. N. Onuchic, Proc. Natl. Acad. Sci. USA 89,
8721 (1992).

[179] Y. Levy and O. M. Becker, Phys. Rev. Lett. 81, 1126 (1998).
[180] J. P. K. Doye, M. A. Miller and D. J. Wales, J. Chem. Phys. 110, 6896 (1999).
[181] M. A. Miller, J. P. K. Doye and D. J. Wales, J. Chem. Phys. 110, 328 (1999).

[182] T. F. Middleton, J. Hernandez-Rojas, P. N. Mortenson and D. J. Wales, Phys.
Rev. B 64, 184201 (2001).

[183] O. K. Rice and H. C. Ramsperger, J. Am. Chem. Soc. 49, 1617 (1927).
[184] L. S. Kassel, J. Phys. Chem. 32, 225 (1928).

[185] A. Marcus and O. K. Rice, J. Phys. Colloid. Chem. 55, 894 (1951).
[186] J. E. Jones and A. E. Ingham, Proc. R. Soc. A 107, 636 (1925).

187] The ‘unit’ density system studied in our previous report!®®
y 8y

0.99611.

in fact has density

[188] T. A. Weber and Stillinger, Phys. Rev. B 31, 1954 (1985).
[189] R. M. Ernst, S. R. Nagel and G. S. Grest, Phys. Rev. B 43, 8070 (1991).
[190] S. D. Stoddard and J. Ford, Phys. Rev. A 8, 1504 (1973).

[191] K. Tanaka, H. Okamoto, E. Maruyama, T. Shimada and M. Sato (Trans.), Amor-
phous Silicon, Wiley, New York (1999).

[192] E. R. Cowley, Phys. Rev. Lett. 60, 2379 (1988).

[193] S. J. Cook, Phys. Rev. B 47, 7686 (1993).

[194] H. Balamane, T. Halicioglu and W. A. Tiller, Phys. Rev. B 46, 2250 (1992).
[195] F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

[196] J. Q. Broughton, Phys. Rev. B 35, 9120 (1987).

[197] N. Mousseau and G. T. Barkema, Phys. Rev. B 61, 1898 (2000).

[198] Y. Song, R. Malek and N. Mousseau, Phys. Rev. B 62, 15680 (2000).



REFERENCES 156

[199] F. Wooten, K. Winer and D. Weaire, Phys. Rev. Lett. 54, 1392 (1985).
[200] C. A. Angell and S. S. Borick, J. Phys. Condensed Matter. 11, 8163 (1999).

[201] S. Ansell, S. Krishnan, J. J. Felten and D. L. Price, J. Phys. Condensed Matter.
10, L73 (1998).

[202] C. A. Angell, A. Borick and M. Grabow, J. Non-Cryst. Solids 205-207, 463
(1996).

[203] C. A. Angell, D. Bressel, M. Hemmati, E. J. Sare and J. C. Tucker, Phys. Chem.
Chem. Phys. 2, 1559 (2000).

[204] C. A. Angell and C. T. Moynihan, Met. Mat. Trans. B 31B, 587 (2000).
[205] O. Mishima and E. Stanley, Nature pp. 329-335 (1998).

[206] X. Liu, B. E. White Jr., R. Pohl, E. Iwanizcko, K. M. Jones, A. H. Mahan, B. N.
Nelson, R. S. Crandall and S. Veprek, Phys. Rev. Lett. 78, 4418 (1997).

[207] C. A. Angell, C. T. Moynihan and M. Hemmati, J. Non-Cryst. Solids 274, 319
(2000).

[208] K. C. Pandey, Phys. Rev. Lett. 57, 2287 (1986).
[209] M. Parinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
[210] F. Sciortino, W. Kob and P. Tartaglia, Phys. Rev. Lett. 83, 3214 (1999).

[211] T. B. Schroder, S. Sastry, J. C. Dyre and S. C. Glotzer, J. Chem. Phys. 112,
9834 (2000).

[212] C. Donati, F. Sciortino and P. Tartaglia, Phys. Rev. Lett. 85, 1464 (2000).
[213] S. Sastry, Phys. Rev. Lett. 85, 590 (2000).

[214] S. Sastry, J. Phys.-Cond. Matt. 12, 6515 (2000).

[215] F. Sciortino, W. Kob and P. Tartaglia, J. Phys.-Cond. Matt. 12, 6525 (2000).

[216] L. Angelani, R. Di Leonardo, G. Ruocco, A. Scala and F. Sciortino, Phys. Rev.
Lett. 85, 5356 (2000).

[217] J. Hernandez-Rojas and D. J. Wales, Preprint cond-mat/0112128 (2001).



REFERENCES 157

[218]

[219]

[220]

[221]

[222]
[223]
[224]
[225]
[226]
[227]
[228]

[229]

[230]
[231]
[232]
[233]
[234]
[235]

[236]

T. Hahn (ed.), International tables for Crystallography, vol. A, Space Group Sym-
metry, International Union of Crystallography, Dordrecht, Holland (1983).

A. Bowman, G. Arnold and N. Krikorian, Acta Crystallographica B 27, 1067
(1971).

D. Fletcher, R. McMeeking and D. Parkin, J. Chem. Inf. Comput. Sci 36, 746
(1996).

D. J. Wales, J. P. K. Doye, A. Dullweber, M. P. Hodges, F. Y. Naumkin, F. Calvo,
J. Hernandez-Rojas and T. F. Middleton, The Cambridge Cluster Database, URL
http://www-wales.ch.cam.ac.uk/CCD.html (2001).

F. Calvo, Personal Communication (2002).

J. R. Fern/’andez and P. Harrowell, Phys. Rev. E 67, 011403 (2002).

P. J. Steinhardt, D. Nelson and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
R. M. Lynden-Bell and D. J. Wales, J. Chem. Phys. 101, 1460 (1994).

R. E. Leone and P. v. R. Schleyer, Angew. Chem. Int. Ed. Engl. 9, 860 (1970).
R. Malek and N. Mousseau, Phys. Rev. E 62, 7723 (2000).

N. Mousseau, Personal Communication (2002).

D. Donati, J. F. Douglas, W. Kob, S. J. Plompton, P. H. Poole and S. C. Glotzer,
Phys. Rev. Lett. 80, 2338 (1998).

F. H. Stillinger and T. A. Weber, J. Phys. Chem. 87, 2833 (1983).
B. Doliwa and A. Heuer, Phys. Rev. Lett. 80, 4915 (1998).

D. J. Wales and J. Uppenbrink, Phys. Rev. B 50, 12342 (1994).
L. J. Munro and D. J. Wales, Faraday Disc. 106, 409 (1997).

B. Doliwa and A. Heuer, preprint cond-mat/0209139 (2002).

B. Doliwa and A. Heuer, preprint cond-mat /0205283 (2002).

G. Gilbert and S. C. Smith, Theory of Unimolecular and combination Reactions,

Blackwell, Oxford (1990).



REFERENCES 158

[237] T. F. Middleton and D. J. Wales, J. Chem. Phys. 118, 4583 (2003).
[238] J. Bell and P. Dean, Philos. Mag. 25, 1381 (1972).

[239] S. Taraskin, Pers. com. (2000).

[240] M. Page and J. W. Mclver, J. Chem. Phys. 88, 922 (1988).

[241] E. A. Jagla, Mol. Phys. 99, 753 (2001).

[242] P. M. Morse, Phys. Rev. 34, 57 (1929).

[243] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-
Holland, Amsterdam (1981).

[244] K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys 95, 1090 (1991).

[245] A. B. Bortz, M. H. Kalos and J. L. Lebowitz, J. Comp. Phys.17, 10 (1975).
[246] D. J. McGinty, J. Chem. Phys. 55, 580 (1971).

[247] J. J. Burton, J. Chem. Phys. 56, 3133 (1972).

[248] M. R. Hoare, Adv. Chem. Phys. 40, 49 (1979).

[249] G. Franke, E. R. Hilf and and P. Borrmann, J. Chem. Phys. 98, 3496 (1993).
[250] D. J. Wales, Mol. Phys. 78, 151 (1993).

[251] H. C. Kang and W. H. Weinberg, J. Chem. Phys. 90, 2824 (1988).

[252] L. A. Ray and R. C. Baetzold, J. Chem. Phys. pp. 2871-2878 (1990).

[253] M. I. Larsson, Phys. Rev. B 64, 115428 (2001).

[254] F. M. Bulnes, V. D. Pereyra and J. L. Riccardo, Phys. Rev. E 58, 86 (1998).
[255] G. Henkelman and H. J6nsson, J. Chem. Phys. 115, 9657 (2001).

[256] R. Q. Snurr, A. T. Bell and D. N. Theodorou, J. Phys. Chem. 98, 11948 (1994).
[257] M. L. Greenfield and D. N. Theodorou, Macromolecules 31, 7068 (1998).
[258] L.-M. Martinez and C. A. Angell, Nature 410, 663 (2001).

[259] D. Plazek, J. Chem. Phys. 49, 3678 (1968).



REFERENCES 159

[260] R. A. Horn and C. R. Johnson, Matriz Analysis, Cambridge University Press,
Cambridge (1985).



PUBLICATIONS

Some of the work presented in this thesis has been published in the following papers.

CHAPTER 2

e ‘Crystals of binary Lennard-Jones solids’,
T. F. Middleton, J. Hernandez-Rojas, P. N. Mortenson and D. J. Wales, Phys. Rev. B,
64, 184201 (2001).

CHAPTER 3

e ‘Energy landscapes of model glasses’,

T. F. Middleton, and D. J. Wales, Phys. Rev. B, 64, 024205 (2001).

e ‘Energy landscapes of model glasses II: results at constant pressure’,

T. F. Middleton, and D. J. Wales, J. Chem. Phys., 118, 4583 (2003).
CHAPTER 4

e ‘Kinetic Monte Carlo simulation of binary Lennard-Jones solid’,

T. F. Middleton, D. J. Wales, (2003), Submitted.

160



