Symplectic splitting methods for rigid body molecular dynamics

Andreas Dullweber
University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom

Benedict Leimkuhler®
Department of Mathematics, The University of Kansas, Lawrence, Kansas 66045

Robert McLachlan®
Department of Mathematics, Massey University, Palmerston North, New Zealand

(Received 11 June 1997; accepted 15 July 1997

Rigid body molecular models possess symplectic structure and time-reversal symmetry. Standard
numerical integration methods destroy both properties, introducing nonphysical dynamical behavior
such as numerically induced dissipative states and drift in the energy during long term simulations.
This article describes the construction, implementation, and practical application of fast explicit
symplectic-reversible integrators for multiple rigid body molecular simulations. These methods use
a reduction to Euler equations for the free rigid body, together with a symplectic splitting technique.
In every time step, the orientational dynamics of each rigid body is integrated by a sequence of
planar rotations. Besides preserving the symplectic and reversible structures of the flow, this scheme
accurately conserves the total angular momentum of a system of interacting rigid bodies. Excellent
energy conservation can be obtained relative to traditional methods, especially in long-time
simulations. The method is implemented in a research cog&ENT, and compared with a
quaternion/extrapolation scheme for the TIP4P model of water. Our experiments show that the
symplectic-reversible scheme is far superior to the more traditional quaternion methatP9©
American Institute of Physic§S0021-9607)02339-9

I. INTRODUCTION ficient (explicit) integration methods that are symplectic
and/or time-reversible. The loss of structure manifests itself

Rigid body molecular dynamics simulations are anin an energy drift during long-time simulations. Correcting
increasingly important tool in chemical and physical this drift by such measures as rescaling of the velodities
research:? With steady increases in the size of systems Ungoes not improve stability. In practice, very small steps in
der study and the time intervals over which simulations ar§jme often must be used in order to limit the energy drift.
carried out, and to keep pace with improvements in the realyjgreover, the loss of physicality associated with the destruc-
ism of molecular models, better numerical integrationion of structure can manifest itself in peculiar nonphysical
schemes are also needed. Symplectic and time-reversible iganhayior: in the next section we show that a discretization of
tegration methods are schemes which automatically Preseneg single rigid body using a nonsymplectic explicit Runge—

a corresponding mechanical structure of the phase flow, .8k utta discretization may havesymptotically stable (dissipa-

the_process_by which _pos_itions and mome_nta evolve in timerive) fixed pointssomething which is impossible in the true
While the primary motivation for mathematical study of geo- ?ymplectic flow(or under symplectic discretizatipn

metric integrators—as opposed to more traditional numerica One of the authors recently reported outstanding stability

schemes—may pe Iarge_ly aesthetic, there is growing eviy 4 efficiency improvements using a partially implicit sym-
dence that, particularly in large or lengthy computations,

S i - lectic and reversible method for rigid body molecular dy-
these geometrical integrators can provide clear-cut efficienc : . " U210 .

L . " “hamics simulation° This method employed a canonical
and stability improvements over standard integration

—7 rotation matrix formulation for each body and used con-
schemes:

For rigid bodies, the traditional use of parameters to rep-Stramed SHAKE(Ref. 1] integration to preserve orthogo-

. . . nality. In the current article, we further improve on this idea
resent the motiorie.g., quaternionsieads fo a straightfor- by using instead an integration method based on the classical
ward integration technigue using standard numerical integra—y h 9 i fg trained d : ltti q
tion methods such as explicit Runge—Kutta methods,r‘nec anics concepls ol constraned dynamics, spliting, an

predictor—corrector schemes, and Gragg—BuIirsch—Stoeﬂe‘mCtion'”l.2 Specifically, the Ham.iltor.1ian 's broken up so
extrapolatior?® However, the parameterized description in-t at the rotational free-body dynamics is decoupled from the

troduces additional coupling in the Hamiltonian between po_interaction terms. Each free rigid body is then integrated in

sitions and momenta, and effectively prevents the use of effUl€r (momentum representation using a further splitting
into integrable parts. The result is axplicit scheme which

) constructs the numerical solution by concatenation of inte-
Visitor at the Department of Applied Mathematics and Theoretical Physicsgrable flows. and thus automaticall
; - . . , y conserves the symplec-
Cambridge, United Kingdom, in 1996/97. . . .. . .
bvisitor at the Isaac Newton Institute for Mathematical Sciences, camliC Structure. A symmetric decomposition insures time-

bridge, United Kingdom, in 1996. reversibility, and the method can also be shown to conserve
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total angular momentum. Our approach is based on a splifinally, we update again by integrating the potential term
ting technique for treating a free rigid body independentlyfor one half time step:
proposed by Reicfi and McLachlaf* which was later ex- N+l n+12, 1 ni1
.15 . . . - p"Tt=p + 5Atf(g" ).
tended by Reicl? into a scheme for simulating a rigid body
in a potential field. The current article shows that for realisticThe fact that the numerical solution is constructed by string-
molecular applications involving multiple rigid bodies, the ing together a sequence of exact solutions of partial Hamil-
explicit symplectic approach is not only competitive but gen-tonians ensures that the result will be a symplectic method
erally far superior to the traditional quaternion-based integraéthe symplectic maps form a gro)p Although symplectic
tion approach. methods can be constructed by other techniduess the
Compared to standard methods, the symplectic approacplitting method which typically proves to be most useful in
is more stable, enabling the use of larger time steps. Conapplications“.'5'6The leapfrog method also respects the time-
pared to the semi-explicit SHAKE-based schem@&the reversal symmetry of the equations, and it preserves to
splitting method is more efficienfsince it is explicit. For ~ within a small multiple of computer rounding error the an-
multiple rigid bodies not coupled by constraints, the splittinggular momentum of a system of particlés the absence of
method thus appears to offer a substantial improvement overeriodic boundarigs An extension of the leapfrog method,
existing schemes. SHAKE, is available for holonomically constrainéé-body
simulations and is also symplectic and time-reversible.
Symplectic methods can be shown to exactly conserve
Il. SYMPLECTIC METHODS a nearby energy functiod ~H.2 This in turn can be shown

) ] ) _to ensure long term approximate conservation of energy
In this section, we introduce the concept of a symplectiG, certain case® It has also been shown that, following

method by deriving the popular Verléeapfrog integrator  «gcattering” events, such as the close approach of one rigid
used inN-body simulations by splitting the Hamiltonian. We 44y 1o another, symplectic integrators like Verlet return to
then show that a similar type of approach can be used Qery nearly the pre-encounter energy. This is a particularly
develop an integrator for a single rigid body, and we showyjce feature since it is these events that cause trouble when
that the latter scheme behaves more reliably than a Rungeysing standard methods. It is also easy to build extra proper-
Kutta method. ties such as conservation of momentum and reversibility into
A. Verlet as a symplectic splitting method symplectic integrators. They show excellent long term stabil-
. I ity and fidelity to the properties of solutions of the continu-
For systems with a Hamlltor_nan of the forki="T(p) ous model; in some sense they report qualitatively correct
+V(a), t_he_ Verlet_m(gthod provides a simple approach todynamics in complex situations which cannot be followed to
symplectic integratiod” Here, high accuracy. Finally, since they are simple, fast, and ex-
T(p)=ip™M~1p plicit, we consider them excellent for large molecular dy-

namics simulations.
is the kinetic energyM is a mass matrix andV is the

potential energy. The Verlet method can be viewed as con-
structing an approximate solution by pasting together the exB. A single rigid body
act solutions of the kinetic and potential partstbf

Given positiongg" and momenta", which approximate
the solution at time¢=t,+nAt, we first compute the exact
solution to just the potential part of the Hamiltonian for a
step of size;At in time. Since the equations of motion for

As an example, we now consider the case of single axi-
ally symmetric rigid body spinning in a linear potential field
and pinned at one point along its axis of symmetry. The
simplest physical interpretation is a heavy “Lagrange top,”
but we could also suppose it to model a molecular fragment

V=V(q) are acted on by a charge distant enough to permit linearization of
d the potential. This simple model illustrates in a striking fash-
at q=0, ion the advantages of symplectic methods over nonsymplec-

tic schemes, even when the former are of lower classical
order of accuracy.
dt p=f(a)=-VyV, We will assume that the components of the diagonalized
inertial tensor in body coordinates afre=1,=1, with I

we notice that we can solve them exactlyis constant dur- treated as a free parameter. We will also assume that the

ing the step ¢=g") andp undergoes a linear motion from

N ) mass, the gravitational constant, and the distance from the
prtop : center of mass to the fixed point are all one. The equations of
p"tY2=p+ 1 Atf(q"). motion can be developed in terms of a unit vector

=(uq,Us,uU3) representing the orientation of the body rela-

We next solve just the kinetic term for one full step in time, .. - ! .
tive to a fixed reference configuration, and the angular mo-

during which the momenta are constésinceT is indepen-

o . . . . menta m;, i=1,2,3, using a generalized Hamiltonian
dent ofq) and the positions evolve in straight line motion: o g . -
formalism:“ The u; can be viewed as playing a similar role
Q" i=q"+AtM p"t12 to quaternions. The energy of the system is given by
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i/, , 1, 05 1
H=H(mu)= 5 | 7t @75+ — 75|+ U3,
2 I3 0
and the equations are Hamiltonian with respect to the genel _g5 0
alized Poisson brack€tdefined for functions,G by ] 1
{F.G}:=—m(V,FXV_G) ! 1 ]
0
0
—u-(V_FXV,G-V_GXV,F). () I
This means that each of the components of the vector field i <108 <107
constructed by computing the Poisson bracket of the assoc 0 1
ated variable with the Hamiltonian function:
§ -0.5 § 0
d UyTr @ 5
—-up={u;,H}= : 3_U3772' g - &1
S -15 -2
and so on.
We will compare the numerical solution using a popular -2 -3
fourth order Runge—Kutta methduith the results obtained 25 "
from a symplectic splitting methotf:'* 0 50 100 0 50 100
(c) time (d) time

This splitting method is derived in a similar way to the

leapfrog method. We first breah into four pieces:
FIG. 1. Integrations performed with the fourth order Runge—Kutta method

H=H;t+H,+H3ztH,, (At=0.1): () u is plotted at each time step for a quasiperiodic orbit of the
spherical top, started from(0)=(0,1,0), #(0)=(0,0,~1); (b) a periodic
1, 1, 1, solution fromu(0)=(0,0,1), #(0)=(0,1,0); (c) energy error for(a); (d)
Hi=5 m{, Hy=5 75 Hz=5—m3 Hy=u;s. energy error for(b).
2 2 2l
Each of these terms is completely integrable. For example,
the solution evolves under the tetrfy according to sufficiently small, although the actual magnitude of the en-
d d ergy variation does of course depend on step size. Moreover,
gt u;=0, gt m1=0, this type of drift would be expected, essentially regardless of
the integration strategy used, as long as it is not a symplectic
d d or reversible method.
gt Y27 MUz, Gp T2T 173, The results of integrating instead with the symplectic
scheme are shown in Fig. 2. The energy fluctuation is
d d
au:;:_’iTle, aﬂ:;:_’ﬂl’ﬂz.

Both terms are thus integrated in terms of identical simulta-
neous planar rotations. Similar equations are obtained#ifor

andHj, while underH,, only = evolves, and according to 0
d -1
dt m= U2, 1 1
0 0
d ® 47
a To)=— Ul,
o . . . 0.1 .
which is just straight line motion. 01
The flow map ofH is approximated within a time step 0.05 0.05
by the concatenation of the flows on each of the four terms g 8
This method is only first order, but it is symplectic. > 0 > 0
. . . =) 5
As a numerical experiment, we solved the top using the ¢ g
popular explicit 4th order Runge—Kutta method. The motion ® _o.05 ¢ 0.0
of the center of mass from typical initial conditions is peri-
odic or quasiperiodic. We first chodg=1 (spherical top =015 s 00 0o s 100
and integrated the motion from various initial values. In Fig. time time

1 we show two trajectories along with the associated varia- © @

tion in energy, forAt=0.1. Note that there is a clear secular FIG. 2. The top solved using the first order symplectic methdt<0.1),

_(”ne_a'j drift in the energy with tim_e- This qualitative beha_v'_ and initial conditions as in Fig. 1¢a) quasiperiodic solution(b) periodic
ior is observed regardless of time step, as long as it iSolution;(c) energy error foxa); (d) energy error for(b).
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04 -3 FIG. 5. The lengthR=(u3+ u3+ u3)*2 of the unit vector associated with
the top along the solution of Fig(8.
-0.5 -4

0 50 100 0 50 100
(c) time (d) time

librium position, which has apparently become an asymptoti-
FIG. 3. The Runge-Kutta method{=0.1) on theskinny top initial con-  cally stable(i.e., dissipativgfixed point of the discrete map!

ditions as in Fig. 1:(a) quasiperiodic orbit, the successive points rapidly Note that there is no such artificial behavior present in the
decay toward the upright positioft) periodic solutionjc) energy error for

(@): (d) energy error forb). symplectic solutior(Fig. 4).
Since the variables; in the description of the top play a
similar role to quaternions, it might be argued that the prob-
greater, but there is no evident drift. The large difference inem with the Runge—Kutta top simulation is that the length
magnitude of the energy error is the result of the higher ordeg = JuZ+uZ+ U2 of u is decaying with timeFig. 5). Would
of accuracy of the Runge—Kutta methode are using the  normalizing this vector at each time step improve the results?
same step size aft=0.1); it could be eliminated by using @ This normalization does lead to a marked change in the
higher-order symplectic method instead of the simple splitsimulation results, but not for the better! The top now gradu-
ting scheme. ally evolves towards the “hanging down” positidi¥ig. 6).
We now make the numerical problem slightly more dif- |n Fig. 6(b), we also see that the energy error is now sub-
ficult by considering a “skinny top” [3=0.1) with the same  stantially worse.
initial data and step size. Again, we first attempted to use the  gimijlarly poor results were obtained when we rescaled
RUnge—Kutta method. The periodiC orbit was aga.in Correctl)the angu'ar momentar in order to preserve the energy at
computed, with similar energy error as for the spherical topgach step.
however, the quasiperiodic trajectory is now completely  |f we hold the time interval fixed and decrease the step
wrong[Fig. 3(@)]: the top spirals in toward the upright equi- sjze, we will of course eventually obtain correct results from
the Runge—Kutta method, but the appearance of such an ar-
tificial structure in an otherwisapparently stable numerical
computationis very disturbing. Moreover, we note that the
energy[Fig. 3(c)] is reasonably well preservedo within

0 10%), so it would not be immediately obvious from exami-
nation of the energy that the results were entirely incorrect.
-} To highlight this observation, we performed the same calcu-
0 0 !
(O
5
0.1 0.1 48
_ 005 _ 005 46
o 8 B
3 ; ] o
5 0 5z 0 “a4
-0.05 -0.05 4.2
-0.1 -0.1
0 50 100 0 50 100 I % 50 100
© time @ time time

FIG. 4. The symplectic method applied to the skinny tag+€0.1), initial FIG. 6. (a) With normalization R=1), the skinny top now converges to the
conditions as in Fig. 1(a) quasiperiodic solution(b) periodic solution;c) “hanging down” configuration{b) energy for the normalized Runge—Kutta
energy error for(@); (d) energy error for(b). method. Parameters and initial data are as in Fig. 3.
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125 namelyQ"Q=1. Then the system may be conveniently de-
scribed, and treated, using the methods of constrained
124.99 Hamiltonian dynamics. These methods make it easy to de-
rive not only the equations of motion for complex systefs,
10498 but also good geometric integrators for th&m?/ 1920

We denote the total mass of thit rigid body bym, , the
position of its center of mass hyy, linear momentum by, ,
orientation by Q;, and angular momentum in the body
frame, stored in a vector, by;. Hereq;, p;, and o are
vectors inR®, andQ; is a 3x3 orthogonal matrix>2°

ai 0 A 100 The Hamiltonian for the total system is the total energy,
given by the sum of the translational kinetic energy of each
FIG. 7. The Runge—Kutta trajectory of the skinny top from (0,1,0),#  body, TI*"{p;), the rotational kinetic energy of each body,
=(0,0-5), At=0.02. T{%(5;), and the potential energy(q,Q), which we take to
depend on the positions and orientations of the bodies only,
and not on their momenta. That is,

lation, increasingw(0) by a factor of five and decreasing the
step size by a corresponding factor. The resulting trajectory

and energy error are shown in Fig. 7. Despite the totally T(pm) =2 (TP(m)+ T ),

incorrect dynamics, the energy is conserved to within ' D
0.0004! _The. corresponding solu_tior_1 using the symplecti_c H(p,mq,Q)=T(p,m)+V(q,Q),

method is still well-behaved and is, in fact, a good approxi-

mation to the correct dynamic§ig. 9). where T p,) =] pi|2/2m; .

This example demonstrates some of the reasons why we We would now like to employ a leapfrog-like splitting
are interested in symplectic methods. We have seen thatapproach as in Sec. Il.A, but there are several subtleties.
popular standard method can introduce artificial dynamicaFirst, the solution of the free rigid body, due T6"(m), is
behavior in the simulation of simple rigid body problems, atexpensive to compute. However, it can be approximated ef-
time steps for which a lower-order symplectic splitting ficiently using a splitting method due to McLachtérand
method is well-behaved. In the next section, we will describeReich® To retain the nice properties of Verlet, the approxi-
the extension of the splitting method which is needed formation must be time-reversible and symplectic. This gives a

treating systems of rigid bodies. splitting method which is symplectic overall, time-reversible,

preserves total linear and angular momentum, and uses only
IIl. THE SPLITTING METHOD FOR RIGID BODY one force evaluation and one rotation of each rigid body per
SYSTEMS time step.

) Another difficulty is that the constrain@iTQizl must
~ We consider systems ¢presumably a large numben)of pe applied to the potential term. The equations of motion for
rigid bodies moving and rotating in three dimensions, withnis term are®

conservative forces acting on and between them. As in stan-
dard(e.g., quarternionmodels, the orientation of each body d

is specified by the rotation which it has undergone from a gt =0,
fixed reference configuration. But now there are two new
features:(i) we represent this rotation by ax38 matrix Q; d oV
(i) we add a constraint that this matrix actually be a rotation, (¢ Pi=— ﬁ_Qi' @
d
125.006 dt Qi=0,

¥ ’;‘;;‘9;‘\

125.004
P, X
r“l {3 " " ‘\, ‘\!‘ ’

(s
.A\;‘v»" 7 3 .
RO ol
e
If Rt NS R
A1

%
&

o "%,'z

o
V 0

d t(QT av)
— i =—10 L=,
dt ™ ' Q;

where the [,m) entry of the matrixgV/JQ; is just the de-
rivative with respect to the corresponding elemenQQof

125.002 |
\

energy

]l
Ll !

124.998 M infe

| (VI19Q)); m=3VIaQ|™,

% 1 124.99]
° and the notation rot refers to a mapping of 3 matrices to
vectors constructed by first computing the skew symmetric

part (A—AT), then associating this to a vector R¥:

124,994o w0 100

time

-1 -1

FIG. 8. The symplectic trajectory of the skinny top frams+=(0,1,0), =
=(0,0-5), At=0.02. rot(A): =skew Y(A—AT),
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where Z(At): =5, 1 at) 7, (4 At)
0 o —v? x 751 at) 7§ At). )
skew(v):=| —v? 0o ', 3
v =t 0 The above equatior(®,6,7) now define the approximate mo-

tion due to the kinetic energy teri(p, ) in (1). Equations
Since g, and Q; are constant, these equations are easilyf2) define the exact motion due to the potential energy term

solved. V(g,Q). In a long simulation we merely apply these two
The constrained differential equations due to tians-  Updates alternately, thus using one force evaluation and one
lational and rotationalkinetic energies are rigid body rotation per time step. There is some subtlety in

ensuring that the overall order of the method is still two—see
Appendix B. An alternative to Eq7) that uses fewer rota-

gt 4= m;, tions, and is much more accurate for nearly symmetric bod-
ies, is discussed in Appendix C.

d
aP=?
(4) IV. APPLICATION: TIP4P WATER

d . Due to the importance of water and aqueous solutions,
gt Q= Qi skew(l; "), we perform a molecular dynamics simulation of water as a
first benchmark for our integration scheme. In our model,
rigid water monomers interact with a TIP4P intermolecular
G (17 L), potential functiorf! The potential is based on the early ideas
of Bernal and Fowléf and comprises three point charges
together with an oxygen—oxygen Lennard-Jones term. The
where the X3 matrixli is the moment of inertia tensor of charges are located at the two hydrogen atoms and on the

theith rigid body. symmetry axes of the molecule. Details of our potential pa-
The motion of the centers of mass is rameters can be found elsewhételIP4P has been widely

used in molecular dynamics and Monte Carlo calculations on

gi(t)=q;(0)+Atp; /m; , (5 liquid water, ice, and hydrated proteins. However, it cannot

be expected to reproduce the true potential accurately be-
and need not be considered furthgks the bodies are now cause its simple form ignores important nonadditive polar-
uncoupled, we temporarily drop the subsciipt ization effects in water.

In practice, at this point we change variables to the prin-  We compare our symplectic method with a quaternion/
cipal axis of each body, so we can assume thatdiagonal.  extrapolation scheme based on a Gragg—Bulirsch—Stoer
Now we note that the rotational part 6f) is a sum of three  (GBS) integrator with adaptive step siZeGBS is not sym-
rigid bodies, with inertia tensors?), j=1,2,3, each with a plectic but known for high-accuracy solutions to ordinary
single nonzero entry; on the diagonal. The motion of a rigid differential equations with low computational effort. The
body with such a simple inertia tenscain be found in terms  adaptive step size is not crucial for our results. Both methods

of elementary functions. For example»nit is have been implemented in the software packageNT,?®
which can treat interacting molecules in a flexible and accu-
Q(1)=QuR()T rate way. Details of the implementation are given in Appen-
(// . .
!/x(t)- 17(t)=Rx( 6)770 ’ (6) dix A.

We have seen in the top examfgec. 1l that integrals
of motion (total energy, overall angular and linear momen-

=t /1,. In practice, we use rational orthogonal approxi-tum' etc) do not tell the whole story regarding physical re-
mations to the rotation&see Appendix A alism. Nonetheless, to have any hope of dynamical fidelity

Notice that the constrain®'Q=1, although used im- these quantities must be approximately conserved in a mo-
plicitly in the derivation, never needs to be artificially en- 1€cular dynamics simulation. We measure absolute total en-
forced. The matrice®); are always orthogonal because they€'9Y values and the standard deviatiop,(E) of the total
are only ever changed by multiplication by an elementaryE"€rgy relative to its absolute mean value,
orthogonal matrix.

The updates?,,v,,%, constructed in this way are o(E)

E

where R,(6) is a rotation about th& axis by an angled

symplectic and preserve the total angular momentum of each o(E)= —, (8
body. We now compose them so as to approximate the flow

of the whole body. That is, we apply them sequentially while

retaining the important time-reversible property: with

J. Chem. Phys., Vol. 107, No. 15, 15 October 1997
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FIG. 9. Relative standard deviation of the trimer energy which results from cime / ps 0 1000

a given number of force calculationsrfa 1 nstrajectory. The symplectic

method requires far fewer force calculations for the same accuracy com-

pared to quaternion/extrapolation with adaptive step @iraulations a—h FIG. 10. Evolution of total energy for the three lowéttp) and highest
(bottom) accuracies in Fig. 9 for a quaternion/extrapolation integration
scheme. All curves are smooth but drift away from the initial energy.

can reduce the effect but cannot eliminate the underlying
drift. This can also be seen in the evolution of the standard
deviation o (E) in Fig. 12. In contrast, if we look at the

same plot for the symplectic method we see an oscillating
but stable evolution of the total energy even at low accuracy
b(é:ig. 11). Stability in our example is lost only for time steps

which lead to accuracies below the lowest one shown in Fig.

E; denotes the energy value at thth evaluation, and all
relevant variables are evaluated every 100 fs. This should
long enough to avoid correlation effects.

. 9 (At>4fs).

In order to measure the computational costs, we calcu= W wrm to th dul f th I i d
late also the number of force evaluations needed for a certain Ie now urtn 0 el3mo du rs ot the overall finear an
accuracy. This number is the crucial parameter for efficiencﬁmgu ar momentéFigs. and 14
of an integration scheme because the calculation of forces

typically dominates the costs. It should be easy to convert

this number into real computational time for any given 485 ; ; . :
implementation of the force calculation on a particular com- At=4
puter. -49.0
In our first example we solve Newton's equations of E
motion for trajectories of 1 ns for a water trimer {®)5 at ? 93
fixed total energy50 kJ/mo). At this energy the water clus- = P kIl L 2 L L i LA LRL
ter is stable and we observe only a few isomerizations. All
trajectories start from the cyclic global miniméfrwith no 505 : : : ;
overall angular and linear momentum. ¢ 200 400 800 800 1000
At the beginning we focus on the computational costs 499999 |...2¢=0.05
and plot the standard deviation of the total energy(E)
versus the number of force calculations in Fig. 9. The figure E
shows how the new method outperforms quaternion/ 50,0000
extrapolation in efficiency. A quaternion/GBS simulation =
needs up to ten times more force calculations in order to -50.0001 -] '
achieve the same accuracy. For example, the new symplecti 5 - 0 - po 00
method needs about 1 million force evaluations for a time / ps

oe(E)=10"4, whereas quaternion/GBS requires 10 million
evaluations for the same accuracy in this simulation.

FIG. 11. The figures shows the total energy for the biggesi) and the

Another important difference becomes clear if we looksmallest(bottom step size used in Fig. 9 with the symplectic integration

at the evolution of the total energy as a function of integra_scheme. We always observed stable oscillation around the starting energy of

. . . . . 50 kJ/mol. The initial shift to higher energy in the top graph is an entropic
tion time (Figs. 10 and 1 Quaternion/extrapolation pro- effect due to starting at the global minimum and disappears for less distin-

duces a smooth but growing total energy. Higher accuracyuished starting points.
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FIG. 12. The plot of representative standard deviations shows again the drift'G- 14. Evolution of the overall angular momentum during the integration.
in energy for quaternion/extrapolation trajectories, whereas the symplectidhe symplectic method conserves the initially vanishing angular momentum

methods leads to stable energy conservation.

N
2 pi‘,
i=1

much more accurately. Notice that smaller step sizes in this method lead to
slightly more overall rotation of the system.

Piin= lar momentum in principle. The resulting difference becomes
obvious in Fig. 14. For quaternion/GBS the initially vanish-

N ing overall rotation is decreasing with increasing accuracy.

Pang— 2 nXpi+ |, 9) Nonetheless, it remains several orders of magnitude higher
=1 than for the symplectic method. The latter only suffers from

whereN is the number of molecules; denotes the vector
between the center of mass of moleculand the center of

accumulation of rounding error which grows with the num-
ber of force calculations. However, overall rotation remains

mass of the whole systenp; is the linear momentum of Nnegligible for the symplectic method.

moleculei, and#r| the corresponding angular momentum in

the same coordinate system.

We did not observe nonphysical effects in any of the
simulations. Both methods produced consistent results com-

by both methods. Therefore, it can serve to assess numericg®Mpling and normal mode analysis. We compared ensemble
rounding errors due to machine accuracy. These errordverages like caloric curves from microcanonical molecular
should increase with higher numbers of force evaluationsdynamics simulations with transformed Monte Carlo results

Figure 13 illustrates this effect.

for the canonical ensemble. We also reproduced intermolecu-

However, in contrast to our symplectic method,!ar normal mode frequencies with dipole autocorrelation
quaternion/extrapolation does not conserve the overall angdunctions in low energy molecular dynamics runs.

T T T

quaternions/GBS
|- -===-- symplectic method

-11

10

Iy

_
o‘

P,,/ (a.m.u. kl/mol)"”

l’ ’--d'
'/‘,
13

10 A 1

400 600
time / ps

Finally, we demonstrate that this comparison holds also
for bigger systems. We did some simulations (blbO)4q,
(H50)5q, and(H,0)5, with the same intermolecular potential
and obtained very similar results. Figure 15 shows the per-
formance for three different time stepAt=1,2,4 fs) in the
symplectic integration and one representative quaternion/
GBS result for each of the model clusters. It suggests that the
gap between the new method and nonsymplectic quaternion/
extrapolation increases with system size. Simulations at dif-
ferent total energies did not show any significant differences
and underlined the above conclusions.

V. SUMMARY

We have presented a powerful method for rigid body
molecular simulations of the type commonly used in chemi-
cal and physical studies. The symplectic splitting method is

FIG. 13. The initially vanishing overall linear momentum is in principle stable, and more reliable than standard quaternion integration

conserved by both methods. Therefore, the above plot gives an estimate Biethods, S.ince it mimics physical properties of t.he true ﬂOW
numerical rounding errors due to machine accuracy. of the continuous time problem. Moreover, the integrator is
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——r e ; the translational degrees of freedom will be propagated in a
simple leapfrog scheme. It will maintain the symplecticity of
the integration.

In the first step we need to calculate linear force vectors
f" and torqueg™ at timet,,=ty+ nAt for all molecules in the
system. Both are functions of all position vectogr&and ro-
tation matriceQ.

Having calculated the forces, we can start the integration
itself and propagate the momenta of all molecules from time
t, t0thy:

10

.(E)

10

T T

HO
0% 7T 12= 7"+ 1 At
2 1

(H20)30
10'5 Lo Y HO),
10°
number of force calculations

p"t2=p"+ 1 Atf", (A1)

Then we move the center of mass position a full time step,
FIG. 15. Computational efficiency of both methods for different model sys-

tems. For bigger systems the symplectic metfahque symbo)sperforms qn+1: q”+ Atp”* 12
increasingly better than the quaternion/extrapolation schéited sym-
bols). Results for(H,0)4q, (H,0),0, and(H,0)5, comprise symplectic simu- We now apply consecutive rotatiol to Rs to all an-

lations withAt=1,2,4 fs(i.e., 1 000 000, 500 000, and 250 000 force calcu- . . .
lations and one representative quaternion/Gragg—Bulirsch—Stoer rurg_UIar momenta and update all orientation matrices for a ful

(compare Fig. 2 time step fromt,, tot,, 1,

1 T -
Ri:=Ry EAt I—); a=Rim; Q=0Rg,
efficiently implemented in terms of a few planar rotations per !
rigid body at each time step, and is comparable in terms of -
work per time step to the standard quaternionic integrator. R2:=Ry( ); m=R,m; Q=QRJ,
Numerical calculations demonstrate the superiority of the

symplectic method to the standard approach. -

While the new method is in some respects comparableto R;:= RZ( ) . @=Rsm, Q=QRI,

SHAKE-based symplectic rigid body schenfé§, those s

methods sacrifice something in terms of robustnssce

they require the solution of a nonlinear system using some R;:=R, %At ?) m=R,m; Q=QR;],
iterative solver and in terms of computational complexity. 2
However, the SHAKE-based methods readily generalize to 1 T
systems of rigid bodiesonnected by constraiffs (e.g., R5:=Ry EM I—); 7=Rsm; Q=QR!,
joints or rod$, whereas the splitting method discussed here 1

does not. wherel(, |,, I3 are elements of the diagonal inertia tensor
of a molecule andr,, 7,, 5 are the corresponding com-
ponents ofsr in the principal axes systen®R,(¢) denotes a
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APPENDIX A: IMPLEMENTATION 0 1— ¢2/4 ¢
This appendix is intended to demonstrate how easily the ~ 1+¢%4 1+ ¢4,
symplectic method can be implemented in a molecular dy- ¢ 1— ¢4
namics program. 0 1+ %4 1+ 24

A molecule can be described by a center of mass posi-
tion vectorq, an orientation matriXQ, and vectors for its and all other rotations follow straightforwardly.
linear and angular momentufp and ). The elements of After obtainingg"** andQ"** for all molecules we can
are the direction cosines between the global axes system amdw calculate the force$"*! and torques#'*! at time
a local molecule-fixed frame. Positiogsand momentg of  t+ At and propagate the momenta another half time step:
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n+l_ n+1/24 1 n+1 d
p p + 5 Atf 5 q=0,
11,n-%—lz 1_‘,n+l/2_|_ %At7n+1_
L= 16.6)
This is the end of one integration step. Since the forces and dt P =
torques are not dependent on the momenta we do not need to
calculate the forces again, but can start directly with the first i Q=0
half time step for the momenid&q. Al). dt =
The method is implemented in our packagrienT,? q
which also incorporates the quaternion/GBS algorithm with  — 77122 rot(Qin(gi ,gj)XiT)ZE (Qin(gi ) XX
adaptive step siZeas an alternativeoRIENT is a program for dt =i J=i
carrying out calculations of various kinds for an assembly ofye yse these equations together wit; &) supplied by

interacting molecules. It uses a site—site potential specifiediandardoriENT routines for the interparticle forces.
by the user, including electrostatic, induction, repulsion, dis-

persion, and charge—transfer interactions if requiretihe
electrostatic interactions may be described by simple point
charges or by more elaborate descriptions involving distrib?- Dipolar soft spheres

uted multipoles” Distributed polarizabilities may be used if  pjipolar soft sphere models can also be handled. We sup-

required, and the site—site repulsion and dispersion anggse an interbody potential between partidlemdj of the
charge—transfer terms may be anisotropic. In the above cajg 72627

culations we did not use any potential cut-off or other

changes to the intermolecular TIP4P poterttal. V=V(0;,Qi,0;,Q))=Vs,+Vq,
whereVg, consists of short range interactions avgrepre-
sents the dipole—dipole terms:

1. Computation of interbody forces o\ 12
Vs.r.:46<_) )

(A4)

In the formulation of the equation of motion, we need to
compute the derivatives of the potential with respect to cen- 1 3
ter of mass .and rotatlongl components. In this sectlpn we Vo= s pi— 5 (1) (1),
show that this procedure is straightforward for both site-to- Fij rij
site and dipolar interactions.

ij

where

rp=gi—a;, rij=lryl
and u; denotes the orientation of théh dipole vector, easily

In our application(Sec. \}, we suppose each rigid body expressed in terms of the rotation mat€x and some initial
is composed of a number of point masses that interact paifixed reference orientatiop; :
wise with the point masses in the other rigid bodies. They do —
not interact within one body, because their relative positions m(O=Qipti.
are held fixed. Suppose tligymmetrig pair potential of two  Evaluation of the derivatives of the various terms with re-
point masses located atandy is W(x,y), creating a force spect to the center of mass positiomg)(is straightforward.
f=—V,W(x,y) on the mass at. To keep the equations clear The derivatives of the dipolar potential with respect to the
we will write them out for the case of a single particle components of the rotation matrix are also straightforward if
mounted on each body, af in the reference configuration we expresd/q4 in terms of the individual components &,
for body i. After timet it has reached the locatiog(t): i
=Q;(t)x;+q;(t). The total potential energy is then

a. Site—site potentials

Qi=(Q"),1<kI<3, m=(ul 2 ud).
V(q,Q)sz>i W(Qi(D)x+ai(1),Q;()x; +q(t)), (A2)  For example,
pep=20 3 2 QP ulw

giving derivatives

FAYS with derivatives
—=-2 f(§.§),
i J>1 J Im k m
W(Mi'ﬂj)Z% Qi Mimj -
v :
— T
a_ _j2>i f(&.§)x (A3) Similar expressions hold for the other terms and allow us to

work out the full derivatives. This approach can be extended
and the differential equation€) due to the potential are to treat other multipole approximatiofisas well.
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APPENDIX B: SECOND ORDER ACCURACY OF THE total energy of the system is in the rotational kinetic energy
SPLITTING METHOD of the bodies, this update will lead to a much more accurate
update overall.

In one test with two rigid bodies and initially half the
energy as rotational kinetic energy, this method was found to
be twice as fast in the rigid body updates and ten times as
expr( L At) expv(At)expr( L At) _ accurate overall.

/ . Furthermore, we can apply this idea ¢eneral rigid
When we take a large number, of time steps in a row, the - podies as well. We partition the Hamiltonian as

total update can be written

If we denote the timeékt solution of HamiltonianH by
expy(At), then the Verlet or leapfrog method of Sec. IIA can
be written

2 2

expr(%At)(exn,(At)expr(At))n expr( - %At), 2T=(ﬂ+ T2 W_%) 2 1 i)
PR PR T i 1)

because of the “flow property” exga)expr(b)=exp(a

+b). Essentially one need only alternate the updates dvfe to ] o
andT. The first term corresponds to a symmetric rigid body, and the

In the rigid body splitting method, we do not use the S8cond evolves by a planar rotation as in Eg). We can
exact solution exp, but an approximation to it, saf;. This ~ COMpose Fhese into an o_vergll rigid body update using three
approximation will not have the flow property. However, for rotations, instead of the five in E(y). Because the symmet-

the method ric update is more complicated, we found no change in speed
over Eq.(7), but for nearly symmetric bodies(~1,), there
expv( 3 At) ¢T(At)exp,( 3 At) , (B1)  were substantial improvements in accuracy.

Unfortunately, water is not symmetric enough! Its mo-
ments of inertia are proportional to 2.88, 1.88, and 1.00, and

expV( L At)(¢T(At)exp,(At))” eXIQ/( ~1 At), in practice we found only modest improvements using this

_ modified scheme in the present application.
so that we can still alternate the two updates, as beftfre.

both pieces of the Hamiltonian had been approximated, this
result would no longer holdi.The basic methodB1) is sec-
ond order because it has the time-symmetry property
f(At)f(—At)=13

n steps take the form
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APPENDIX C: SPECIAL RIGID BODY UPDATES

7(t)=R,m,
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