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Such an effect would explain the develop-
ment of a lupus-like disease in transgenic
mice that overexpress BAFF (12–14).
BAFF attenuates apoptosis of mature B
cells, heightens humoral responses, and
costimulates the response of mature B
cells to CD40L (15). Thus, BAFF and
BAFF-R may be important for the survival
of antigen-activated B cells as well as rest-
ing mature B cells. Further work is also re-
quired to resolve how BCMA and TACI
are involved in B cell activities. That TACI
may be a positive regulator of T cell–inde-
pendent responses or a negative regulator

of B cell activity awaits clarification. Giv-
en the B cell–selective expression of this
subfamily of TNFRs, future studies should
provide insights into how these receptors
guide transition of emergent B cells into
the mature pool, sustain antigen-specific
immune responses, and support the
longevity of post–germinal center B cells. 
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S C I E N C E ’ S C O M P A S S

T
he behavior of atomic and molecular
assemblies is governed by potential en-
ergy surfaces, which describe the com-

plex interactions between the components and
determine how chemical reactions progress or
whether a material forms a glass or a crystal.
On page 2067 of this issue, Wales (1) brings a
new analytical tool—catastrophe theory—to
the study of potential energy surfaces. He
shows that neighboring stable states and the
reaction paths that connect them can often
be described by universal functional forms
dictated by catastrophe theory.

A potential energy surface is commonly
described as a landscape. Mountain peaks
(local maxima), valley bottoms (local mini-
ma), and passes (saddle points representing a
minimum in one direction and a maximum in
a second, independent direction) are critical
points where the gradient vanishes. Except
for certain degenerate cases (called non-
Morse points), these are the only possible
types of critical point for smooth functions of
two variables. Smooth functions of one vari-
able typically have only minima and maxima.
But in higher dimensions, we must distin-
guish between different types of saddles.

In 1931, Morse developed a general
characterization of nondegenerate critical
points (2, 3) in what is regarded as one of
the most important contributions to 20th
century mathematics (4). Morse showed that
in the vicinity of any nondegenerate critical
point, the potential can be decomposed by a
smooth coordinate transformation into a
sum of simple, one-dimensional quadratic
terms in the individual coordinates. The crit-
ical point represents a local maximum along
coordinates associated with negative coeffi-
cients and a local minimum along coordi-

nates with positive coefficients. In higher
dimensions, saddle points are thus distin-
guished by an index d that represents the
number of independent directions for which
the potential is at a maximum. Local mini-
ma (d = 0) are of special interest because
they represent stable bound states.

The simplest degenerate case resisting
such a decomposition is the one-dimensional
cubic polynomial f(x) = x3/3, for which x = 0
is a non-Morse critical point that is neither a
minimum nor a maximum. This function is a
special member of the family of cubic poly-

nomials f(x) = x3/3 – ax (see the first figure).
For a > 0, there are two Morse critical points,
a minimum at a1/2 and a maximum at –a1/2.
For a < 0, there are no critical points. The
non-Morse a = 0 case separates these two re-
gions where Morse theory applies.

In higher dimensions, the potential around
a non-Morse point may be split into a Morse
part (which itself may be decomposed into
quadratic pieces) and a non-Morse part. For
singly degenerate critical points, an M-di-
mensional potential splits into an (M – 1)-di-
mensional Morse part and a one-dimensional
non-Morse part. The analysis of the non-
Morse parts at singly and doubly degenerate

critical points and their classification into
universal forms is the stuff of Thom’s cele-
brated [and, with respect to models of prison
riots and stock market crashes (5), controver-
sial] elementary catastrophe theory (5–8).

For families of potentials with up to five
parameters, there are only 11 structurally
stable non-Morse universal functional forms
or catastrophe functions. For one-parameter
families, the situation is even simpler. In the
absence of special symmetry conditions, the
cubic example (see the first figure)—the
fold catastrophe—is the only possible such
function. Occasionally, nature restricts the
class of applicable functions to those with
even symmetry, for example, to describe a
reaction path between geometrically equiva-
lent local minima that is symmetrical about
the intermediate transition point. The quar-

tic cusp catastrophe function f(x) = –x4/4 +
ax2/2 (see the second figure) and its nega-
tive then form the universal family of one-
parameter catastrophe functions.

Wales (1) uses catastrophe theory to
analyze the reaction path followed by
atomic and molecular clusters that are un-
dergoing a conformational change from
one local minimum to another. Such a path
passes through a transition point (a saddle
of index d = 1). If the local minima are ge-
ometrically and energetically distinct, the
path is asymmetrical and the transition
point generally more closely resembles the
energetically higher of the two minima.

P E R S P E C T I V E S : E N E R G Y  L A N D S C A P E S

Flirting with Catastrophe
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a > 0

f (x) = x 3/3 – ax

a = 0

a < 0

The simplest fold catastrophe.

a > 0

f (x) = –x 4/4 + ax 2/2
a = 0

a < 0

The simplest cusp catastrophe.



65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

14 SEPTEMBER 2001 VOL 293 SCIENCE www.sciencemag.org2014

This empirical rule is known as Ham-
mond’s postulate.

Wales shows (1) that the transition point
and one of the local minima often emerge
from a single non-Morse critical point at a
fold catastrophe. If the two points are suffi-
ciently close that the cubic fold catastrophe
function remains a reasonable approxima-
tion to the energy along the reaction path,
the basis of Hammond’s postulate becomes
clear: The higher energy minimum and the
transition point correspond to the relatively
closely spaced minimum and maximum of
the cubic catastrophe function and share a
common parent structure at the non-Morse
critical point. The lower energy minimum
lies at a considerable distance down the de-
scending left-hand tail of the catastrophe
function and is not related by shared
parentage to the transition point.

Wales also shows that for fold catastro-

phes, a quantitative relation holds between
the seemingly independent quantities of ener-
gy difference, vibration frequency, and path
length for the linked minimum and transition
point. The results are validated with large
databases of paths for various potentials, with
excellent agreement where the minimum lies
in close vicinity of the transition point.

A similar relation is also derived from
the cusp catastrophe function for symmet-
rical paths. Here the non-Morse critical
point gives birth to two geometrically
equivalent transition points linked to a
central minimum or to a central local tran-
sition point linked to equivalent peripheral
local minima. Such symmetrical critical
point triples arise, for example, in simple
rearrangements between permutational
isomers in clusters of identical atoms. 

Wales’ application of catastrophe theo-
ry, an analytical tool not widely familiar to

the scientific community, to energy land-
scapes is an exciting new development. It
is too soon to tell how useful the theory
will prove in explaining the complex be-
havior of such diverse systems as glasses,
clusters, and proteins, but an intriguing be-
ginning has been made.
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S C I E N C E ’ S C O M P A S S

F
or a chemical reaction to occur,
molecular collisions must deposit en-
ergy in a reactant or bring reactants

together such that they can rearrange
bonds. Powerful experimental and theoret-
ical techniques are unraveling the details
of these encounters, as the report by
Lorenz et al. (1) on page 2063 of this issue
illustrates. The authors combine several
experimental and computational tech-
niques to measure and analyze the sense of
rotation of a molecule after a collision.
The study reveals the role of subtle quan-
tum mechanical effects in such encounters.

Today’s arsenal of experimental tech-
niques for studying atomic and molecular col-
lisions comprises scattering probes, which ob-
serve the direction and speed of molecules af-
ter a collision, and spectroscopic probes,
which detect the quantum state of the
molecules—that is, their particular configura-
tion of energy, spin, momentum, charge, and
other quantum properties. In combination, the
two techniques yield detailed information
about molecular motion during a collision.

In such a combined experiment, a beam
of molecules prepared in one or a few
quantum states crosses another beam of
similarly prepared atoms or molecules. The
pressure is low to ensure that each molecule
collides at most once, at the point where the
beams cross. Collision may result in energy

transfer (inelastic scattering) or a reaction
(reactive scattering). Some experiments de-
termine the recoil speed and angle of the
scattered molecules and infer their total in-
ternal energy. Others use spectroscopy to
observe the population of individual quan-
tum states, determine the internal energy of
a single product state, and identify the
molecular motion (such as vibration or ro-
tation) in which this energy resides.

One of the most informative observa-
tions in a scattering experiment is the range
of angles in which the products appear.
This angular distribution reveals a great
deal about the interaction of the molecules.
For example, a broad, symmetric distribu-

tion often signals that the interaction is
“sticky”; that is, it proceeds through a
complex that rotates many times before it
decomposes. In contrast, a narrow, asym-
metric distribution indicates an interaction
that is much shorter than the rotation time.

One may measure the an-
gular distribution by moving a
detector about the intersection
region and measuring the in-
tensity of scattered molecules
at each angle. Alternatively,
laser spectroscopy can provide
similar information about the
recoil direction and speed of
the scattered molecules by
viewing the entire distribution
(for a single quantum state) at
once (2, 3). The first imaging
experiments of this kind ob-
served photolysis products (4).
One of the earliest applications
to scattering measured the en-
ergy transfer in collisions of Ar
atoms with NO molecules (5,
6). This system is the same

one that Lorenz et al. studied to determine
the sense of rotation of scattered NO.

These experimental tools are only part of
the machinery required to understand colli-
sion dynamics. Modern ab initio electronic
structure techniques allow the interaction en-
ergy of a system to be calculated in various
geometries. These discrete calculations can
be knit together into a smooth function that
gives the interaction potential for different
orientations and separations, often visualized
as a potential energy surface. One of the first
triumphs of molecular reaction dynamics
was the use of the qualitative topology of
such a surface to predict energy require-
ments and disposal in chemical reactions (7).
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Close Encounters
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θ

b′

Impact parameter

Scattering center

Scattering angle

Different paths—same outcome. Two trajectories with differ-

ent initial conditions (shown here in the center of mass) give

the same scattering angle. Attractive forces draw the trajectory

with the smaller impact parameter b toward the scattering

center until repulsive forces direct it outward, resulting in the

scattering angle θ. The trajectory with b′ experiences mainly at-

tractive forces, which carry it to the same scattering angle θ. A

quantum mechanical particle may sample both paths, produc-

ing interferences.
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