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Structural relaxation in atomic clusters: Master equation dynamics

Mark A. Miller,* Jonathan P. K. Doye, and David J. Wales†

University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
~Received 30 April 1999!

The role of the potential energy landscape in determining the relaxation dynamics of model clusters is
studied using a master equation. Two types of energy landscape are examined: a single funnel, as exemplified
by 13-atom Morse clusters, and the double funnel landscape of the 38-atom Lennard-Jones cluster. Interwell
rate constants are calculated using Rice-Ramsperger-Kassel-Marcus theory within the harmonic approximation,
but anharmonic model partition functions are also considered. Decreasing the range of the potential in the
Morse clusters is shown to hinder relaxation toward the global minimum, and this effect is related to the
concomitant changes in the energy landscape. The relaxation modes that emerge from the master equation are
interpreted and analyzed to extract interfunnel rate constants for the Lennard-Jones cluster. Since this system
is too large for a complete characterization of the energy landscape, the conditions under which the master
equation can be applied to a limited database are explored. Connections are made to relaxation processes in
proteins and structural glasses.@S1063-651X~99!05110-7#

PACS number~s!: 36.40.Ei, 61.46.1w
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I. INTRODUCTION

Some of the most interesting processes in chemical p
ics involve relaxation from a nonequilibrium state. Examp
include the folding of a protein from a denatured conform
tion and the formation of a crystal or glass upon cooling
liquid. Given a method for calculating the rate constants
processes between mutually accessible states, the evol
of a nonequilibrium probability distribution can be describ
by a master equation@1#.

A natural way to define a state in the master equation
provided by an ‘‘inherent structure’’ analysis of the potent
energy surface~PES! @2#. Except at high temperatures, th
configuration of an interacting system oscillates in the ba
of attraction surrounding a local minimum on the PES, a
sporadically undergoes transitions into neighboring basin
attraction. A local minimum can therefore be regarded a
single state in the master equation, and transition state
the PES provide the means for dynamics to occur betw
the minima. We have recently obtained databases of min
and transition states for a variety of systems@3–7#, providing
the necessary ingredients for a master equation study. T
are at least two advantages to modeling relaxation in
coarse-grained state-to-state way. First, the master equ
can usually be solved for much longer time scales than
accessible by direct simulations in which the equations
motion are integrated. Second, the master equation desc
the relaxation of an ensemble without the need for expl
averaging over separate trajectories. In fact, the master e
tion can be used as a guide for simulations, for example
devise optimal annealing schedules@8#.

In this contribution, the master equation is applied
structural databases that we have previously derived
some atomic clusters. Section II summarizes the ma
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equation technique and methods for obtaining state-to-s
rate constants in the microcanonical and canonical
sembles. Section III presents results for 13-atom Morse c
ters M13 as a function of the range of the potential. Th
energy landscapes of these clusters each resemble a fu
in which the minima are organized into pathways of decre
ing energy that lead to the global minimum on the PES. T
characteristics of the funnel change with the range of
potential, and have been studied in detail in previous w
@4#. Section III also includes a discussion of harmonic a
anharmonic partition function models for describing equil
rium properties of the clusters. In Sec. IV, dynamics on
paradigmatic double-funnel energy landscape of the 38-a
Lennard-Jones cluster, LJ38, are studied. We have previous
made a number of predictions concerning the dynamics
M13 @4# and LJ38 @5,6#, which can now be examined. We wi
also present some ways to interpret solutions of the ma
equation and extract information from them. The conditio
under which the master equation treatment of interwell
namics is valid will also be addressed, especially in the c
of LJ38, where the knowledge of the energy landscape
incomplete. Finally, Sec. V summarizes the main conc
sions from this work.

II. METHODS

A. Master equation

Let P(t) be a vector whose componentsPi(t) (1< i
<nmin) are the probabilities of the cluster residing in a p
tential well of the geometrical isomeri at time t, the total
number of such isomers beingnmin . The time evolution of
these probabilities is governed by

dPi~ t !

dt
5(

j Þ i

nmin

@ki j Pj~ t !2kji Pi~ t !#, ~1!

whereki j is the first order rate constant for transitions fro
well j to well i. We can set up a transition matrixW, with
components

h-
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3702 PRE 60MILLER, DOYE, AND WALES
Wi j 5ki j 2d i j (
m51

nmin

kmi , ~2!

so that the diagonal componentsWii contain minus the tota
rate constant out of minimumi. This definition allows us to
write the set of coupled linear differential equations~1!—the
‘‘master equation’’—in matrix form:

dP~ t !

dt
5WP~ t !. ~3!

If W cannot be decomposed into block form, then the sys
has a uniquely defined equilibrium statePeq, for which
(dP/dt)uP5Peq50, i.e., W has a single zero eigenvalu
whose eigenvector is the equilibrium probability distributio
W is asymmetric, but can be symmetrized using the con
tion of detailed balance: at equilibrium,

Wi j Pj
eq5Wji Pi

eq, ~4!

so thatW̃i j 5(Pj
eq/Pi

eq)1/2Wi j is symmetric.W and W̃ have
the same eigenvaluesl i , and their respective normalize
eigenvectorsu( i ) and ũ( i ) are related byu( i )5Sũ( i ), whereS
is the diagonal matrixSii 5APi

eq. Hence individual compo-

nents of the eigenvectors are related byuj
( i )5ũ j

( i )APj
eq. The

solution of Eq.~3! is then@1,9#

Pi~ t !5APi
eq(

j 51

nmin

ũi
( j )el j tF (

m51

nmin

ũm
( j )Pm~0!

APm
eq G , ~5!

whereũm
( j ) is componentm of ũ( j ).

Apart from the zero eigenvalue, all thel j ’s are negative
@1#. We label eigenvalues and eigenvectors in order of
creasing algebraic value of the eigenvalue, so thatl150,
andl j,0 for 2< j <nmin . As t→`, only the j 51 term in
Eq. ~5! survives, andP(t)→Peq. This limit defines the base
line to which the remaining modes decay exponentially. T
size of the contribution of modej to the evolution of the
probability of minimumi depends on componenti of eigen-
vector j, and on a weighted overlap between the initial pro
ability vector and eigenvectorj, i.e., the term in square
brackets in Eq.~5!. The sign of the product of these tw
quantities determines whether the mode makes an increa
or decreasing contribution with time. Combinations
modes with different signs give rise to the possibility of t
accumulation and subsequent decay of transient popula
as probability flows from the initial state to equilibrium v
intermediates.

Equation~5! requires the diagonalization of the matrixW̃,
whose dimension is the number of minima in the databa
nmin . The time required to compute the eigenvectors sca
as the cube of the dimension, and the storage requirem
scale as its square.~Although W̃ may be sparse, its eigen
vectors are not.! However, once diagonalization has be
achieved,Pi(t) can be calculated independently for a
minimum i at any instantt. The only restriction ont comes
from the accuracy to which the eigenvaluesl i can be ob-
tained; if the error is of the orderdl, Eq. ~5! may diverge as
t approaches 1/dl.
m
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An alternative way of solving the master equation is
integrate Eq.~3! numerically. This approach has the adva
tage of not requiring diagonalization ofW̃, and is therefore
the only way to proceed for large databases. However, it
a number of disadvantages. First, knowledge of the eigen
ues and eigenvectors ofW̃ is useful in interpreting the time
evolution ofP(t). Second, accurate integration over long p
riods can be very slow, since the accumulation of numer
error can cause the sum of the probabilities to diverge r
idly. Third, the full probability vectorP(t) ~rather than se-
lected components! must be propagated, and the integrati
must start from the time at which the initial probabilities a
specified.

If the initial probability vectorP(0) is strongly nonequi-
librium, many components ofP(t) change rapidly as soon a
the integration starts, and then relax more slowly towa
equilibrium. Therefore, when numerically integrating th
master equation, the step size required for a given accu
is usually smaller whent is closer to zero, and can be en
larged ast grows. To take advantage of this, the numeric
integration in the present work was performed using
Bulirsch-Stoer algorithm with an adaptive step size@10#. Re-
sults from this method coincided precisely with those of t
analytic solution, where the latter could be determined.

The linearity of the master equation rests on the assu
tion that the underlying dynamics are Markovian. The pro
ability of the transitioni→ j must not depend on the histor
of reaching minimumi, so that the elements of the transitio
matrix are indeed constants for a given temperature or t
energy. For this restriction to apply, states within a poten
well must equilibrate on a time scale faster than transition
different minima, so that the transitions are truly stochas
Previous results for other clusters@11,12# suggest that in-
trawell equilibration is quite rapid. The Markovian requir
ment will impose an upper limit on the temperatures
which the master equation can be applied to transitions
tween minima, since at high temperatures the phase p
does not reside in any one well long enough to estab
equilibrium within it. Division of configuration space into
the basins of attraction surrounding the minima is less us
in this dynamical regime.

B. Rate constants and equilibrium properties

To model the probability flow within a database
minima using the master equation requires a knowledge
the rate constantski j for their interconversion. For the pat
from minimumj through a particular transition state, denot
†, a general form for the rate constant is provided by Ri
Ramsperger-Kassel-Marcus~RRKM! theory @13#,

kj
†~E!5

W†~E!

hV j~E!
. ~6!

HereV j (E) is the density of states associated with minimu
j, and

W†~E!5E
V†

E

V†~E8!dE8 ~7!
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PRE 60 3703STRUCTURAL RELAXATION IN ATOMIC CLUSTERS: . . .
is the sum of states at the transition state with the reac
mode removed;V†(E) is the density of states at the trans
tion state excluding this mode, andV† is the potential energy
of the transition state. The total rate constantki j for the pro-
cessj→ i is then obtained by summing Eq.~6! over all tran-
sition states linkingj and i.

Rates in the canonical ensemble, i.e., as a function
temperature rather than energy, can be obtained from Eq~6!
by Boltzmann weighting; thus

kj
†~T!5

E
V†

`

kj
†~E!V j~E!e2E/kBT dE

E
Vj

`

V j~E!e2E/kBT dE

, ~8!

where Vj is the potential energy of minimumj. Since the
Laplace transforms

Zj~T!5E
Vj

`

V j~E!e2E/kBT dE and

Z†~T!5E
V†

`

V†~E!e2E/kBT dE ~9!

are the vibrational partition functions of the minimum a
transition states, respectively, we obtain

kj
†~T!5

kBT

h

Z†~T!

Zj~T!
. ~10!

Assigning a density of states or partition function to ea
minimum implies that the equilibrium properties of the sy
tem are described by the superposition principle@14–16#.
The total density of states and partition function are given

V~E!5(
i 51

nmin

V i~E! and Z~T!5(
i 51

nmin

Zi~T!. ~11!

Application of detailed balance to Eqs.~6! and~10! supplies
the equilibrium occupation probabilities in the microcano
cal and canonical ensembles:

Pi
eq~E!5V i~E!/V~E!, Pi

eq~T!5Zi~T!/Z~T!. ~12!

These components emerge from the master equation
t→`.

The use ofV i(E) and Zi(T) to calculate rates for the
master equation whenPÞPeq @i.e., when Eqs.~12! do not
hold# still requires thermal equilibration of phase poin
within each potential well. This condition is fulfilled unde
the time scale separation of interwell and intrawell moti
mentioned at the end of Sec. II A.

III. MORSE CLUSTERS

In this section, we apply the master equation to databa
derived for the 13-atom Morse clusterM13. The Morse po-
tential @17# can be written as

V5(
i , j

Vi j ; Vi j 5er(12r i j /r e)@er(12r i j /r e)22#e, ~13!
e

of

h
-

y

-
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es

wherer e ande are the dimer pair separation and well dep
respectively.r is a dimensionless parameter which det
mines the range of the interparticle forces, with smallr cor-
responding to long range. Physically meaningful values
cluder53.15 and 3.17 for sodium and potassium@18# up to
about 14 for C60 molecules@19,20#. Whenr56, the Morse
potential has the same curvature as the Lennard-Jones p
tial at the minimum.e, r e, and the atomic massm define the
system of reduced units for the Morse potential indep
dently of r, giving (mre

2/e)1/2 as the reduced unit of time.
Details of databases obtained for four values ofr have

been given previously@4#. They demonstrate that the energ
landscape of these clusters is a single funnel—a collectio
kinetic pathways leading to a particular low-energy structu
However, as the range of the potential is decreased, the m
difference in potential energy between adjacent minima
creases, and the funnel becomes less ‘‘steep.’’ At the s
time, the downhill barrier heights increase and the numbe
stationary points increases dramatically—the system m
then overcome more barriers to reach the global minimum
making the landscape more ‘‘rough.’’ These combined
fects are expected to hinder relaxation toward the glo
minimum. In Sec. III A, we examine the performance
some partition function models for the equilibrium properti
of the clusters, before addressing the dynamics in Sec. II

A. Partition function models

The ingredients for the equations of Sec. II B are the d
sities of states for each minimum and transition state. If
harmonic approximation is applied to the vibrational dens
of states of a one-componentN-atom cluster, the result is

V i
HO~E!5

2N!

hi
PG

~E2Vi !
k21

~k21!! ~hn̄ i !
k

, ~14!

wheren̄ is the geometric mean frequency,k53N26 is the
number of vibrational degrees of freedom, andhi

PG is the
order of the point group of the isomer. The correspond
partition function is

Zi
HO~T!5

2N!

hi
PG

~kBT!k

~hn̄ i !
k

e2Vi /kBT. ~15!

Equations~14! and~15! can be applied to transition states b
excluding the reactive mode, in which casek53N27.

The harmonic treatment is approximate in two way
First, the actual model potential becomes highly anharmo
as one moves away from a local minimum. Second, the d
sity of states around each minimum is modeled as the sur
area of a hyperellipsoid in phase space, and the overla
the hyperellipsoids belonging to different minima is n
glected. Both these effects become more pronounced as
total energy increases; highly anharmonic barrier regions
reached, and the phase space hyperellipsoids become la

A simple test of the partition function model is to com
pare the equilibrium probability of the global minimum pr
dicted by Eqs.~12! with the fraction of quenches to thi
structure in the course of a simulation. We have obser
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FIG. 1. Equilibrium occupation probability of the global minimum~top row! and canonical caloric curves~bottom row! for M13 with
r54 ~left column! and r56 ~right column!. Circles: canonical MC simulations; solid lines: harmonic approximation; dotted lines:
method, dashed lines: MB(hP50.1) method~see text!.
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elsewhere@12# that the harmonic approximation works qui
well for the equilibrium probabilities of LJ7 isomers in the
microcanonical ensemble, even in the liquidlike regime. F
ures 1~a! and 1~b! show how the harmonic approximatio
performs for the global minimum of theM13 clusters with
r54 and 6 in the canonical ensemble, using the datab
obtained previously@4#. The graphs also show the equilib
rium probability of the global minimum obtained by quenc
ing from canonical Monte Carlo~MC! simulations. In the
simulations, a spherical container of radius 3s was imposed
to prevent evaporation. At each temperature 23106 single-
particle warm-up steps were performed before collect
data over 23108 steps, quenching every 104 steps to find the
local minimum in which the phase point resided. The h
monic curves depart from the MC results soon after the c
ter begins to melt. Forr56 @Fig. 1~b!#, the harmonic curve
has the correct qualitative shape, but is shifted to higher t
perature. Forr54 @Fig. 1~a!#, however, the harmonic ap
proximation underestimates the MC result increasingly ba
above aboutkBT50.3e.

The modeling of partition functions of individual minim
for use in the master equation was the subject of an exten
-

es

g
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-
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ve

study by Ball and Berry@21,22#. These authors considered
variety of analytic forms forZi(T) which attempt to improve
on the shortcomings of the harmonic approximation. T
greatest improvement was produced using an anharm
model based on a first order expansion of the density
states for the Morse potential@23,24#. The anharmonic cor-
rection for each minimum was derived from the heights
the barriers connected to it. The resulting partition functi
for this ‘‘Morse barrier’’ ~MB! method is

Zi
MB~T!5Zi

HO)
j 51

ni

~11aj
( i )kBT!a i. ~16!

In this expression,ni is the number of transition states co
nected to minimumi, andaj

( i )5(2DVj
( i ))21 is the anharmo-

nicity parameter derived from the barrier height,DVj
( i ) , of

the j th transition state connected to minimumi. The power
a i5min@1,k/ni # compensates for the possibility that the
may be more thank transition states connected to a give
minimum, since the original model on which Eq.~16! is
based associated one barrier with each normal mode.
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MB model experiences problems when minima are c
nected by low barriers because the full series for the den
of states of a Morse oscillator, from which the partition fun
tion is derived, diverges askBT approachesDVj

( i ) . This be-
havior correctly corresponds to dissociation of the Morse
cillator, but for a cluster isomerization the density of sta
should remain finite above the barrier. Ball and Berry@21#
suggested two ways to circumvent this difficulty. In the fi
approach, anharmonic corrections were applied only to lo
energy minima, which tend not to have small barriers. T
prescription is not entirely satisfactory because the low b
riers of high-energy minima are a signature of the stro
anharmonicity in these states, which is then ignored by
method. Furthermore, some criterion for selecting mini
for anharmonic corrections is required. The second meth
called MB(hP), involved limiting the anharmonic correctio
aj

( i )kBT for each barrier to a plateau valuehP at temperatures
where it would exceed this value, i.e.,

Zi
MB(hP)

~T!5Zi
HO)

j 51

ni

~11min@hP ,aj
( i )kBT# !a i. ~17!

Although a reasonable value ofhP might be expected to be
around 0.5~i.e., wherekBT5DVj

( i )), the best agreement wit
quenching from constant temperature molecular dynam
~MD! simulations was achieved forhP'0.1.

The global minimum equilibrium probabilities of theM13
clusters withr54 and 6 using the MB and MB(hP) formu-
lations are shown by the dotted and dashed lines in Figs.~a!
and 1~b!. The inadequacy of the unconstrained MB mode
obvious; the large anharmonic corrections of the high-ene
minima cause these states to dominate as soon as the
come energetically accessible, making the probability of
global minimum plummet at an artificially low temperatur
For r54, the MB(hP) model produces a marginally bette
match to the MC data at low temperature than the harmo
approximation, but then deviates more rapidly. Forr56,
quite a reasonable improvement is achieved. However,
position of the curve is continuously adjustable from the M
method~effectively hP5`) to the harmonic approximation
(hP50), so it is difficult to argue that the improvement
based on physical insight.

The effect of the partition function model on the equili
rium probabilities of minima other than the global minimu
is hard to gauge for a system where there are so man
them, since the quench statistics are poor. However, an
pression of the overall description of the PES can be gai
through thermodynamic properties derived from the super
sition method. The internal energy can be obtained from
standard relationU5kBT2(] ln Z/]T)N,V . The harmonic ap-
proximation yields the classical equipartition result

UHO5
1

ZHO (
i 51

nmin

Zi
HO~Vi1kkBT!, ~18!

and the MB(hP) model @Eq. ~17!# gives
-
ty
-

-
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UMB(hP)5
1

ZMB(hP) (
i 51

nmin

Zi
MB(hP)FVi1kkBT

1a i~kBT!2(
j 51

ni aj
( i )Q~hP2aj

( i )kBT!

11aj
( i )kBT

G , ~19!

where the step function signifies that the derivative of
anharmonic correction from a given mode to the partiti
function is zero once the plateau has been reached. The
rivative is also assumed to vanish at the pointaj

( i )kBT
5hP , where the plateau starts, even though it is really d
continuous.

Figures 1~c! and 1~d! compare the canonical calori
curves ofM13 with r54 and 6 given by Eqs.~18! and~19!.
Also shown are the results from MC simulation, obtained
adding the kinetic contributionkkBT/2 to the configurational
part given by the simulations. For both clusters, the harmo
approximation underestimates the internal energy. The
method incorrectly predicts a sharp transition at the temp
tures where the equilibrium probability shifts from the glob
minimum in Figs. 1~a! and 1~b!. The MB(hP50.1) method,
however, represents only a marginal improvement on
harmonic approximation. We have also found this to be
case for the LJ9 cluster studied by Ball and Berry@21#, using
the model that gave the greatest improvement for the e
librium probabilities of the various isomers. This resu
shows that optimizing the models for the probabilities do
not necessarily produce the correct thermodynamic behav
Doye and Wales found that, while first order anharmo
corrections were enough to improve the thermodynamic
scription of LJ55 in the superposition method, second ord
corrections were necessary for the smaller LJ13 @24#.

Attempts to model the density of states of individu
minima using an analytic function of the energy implicit
assume that the ‘‘shape’’ of the basin of attraction is sim
enough to be described adequately by such a form. In p
tice, basins of attraction are probably highly complex o
jects. For example, in previous work@4# we saw that increas
ing the range of the potential removes locally stable minim
but remnants of these features are likely to persist as sh
ders or inflections on the PES, so that regions of configu
tion space that were associated with shallow minima fo
shorter-ranged potential become formally associated w
other minima when the range is increased. These feat
might explain why the model partition function results
Fig. 1 are worse forr54 than forr56.

To illustrate this effect, we have performed microcano
cal MD simulations ofM13 with r54, and LJ13, which
closely resemblesM13 with r56. Periodic quenching was
applied, and the Euclidean distanceD was calculated be-
tween the configuration point taken at the start of the que
and the local minimum to which it converged. The distrib
tion of D for the subset of quenches that led to the glo
minimum is plotted in Fig. 2 at two energies for each clust
In each case, the lower energy has been chosen just a
that at which the trajectory can escape from the global m
mum, so that over 95% of quenches return to the glo
minimum, and the cluster is exploring a large proportion
the catchment basin of this structure. The higher energy
chosen such that about half the quenches return to the gl
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3706 PRE 60MILLER, DOYE, AND WALES
minimum. The corresponding distributions are broader a
peak at a higher value ofD, as would be expected. Th
shaded region on each graph shows the distribution ofD for
the minima directly connected to the global minimum. Ea
of these minima is surrounded by its own basin of attracti
and a barrier must be surmounted before the configura
point enters the catchment basin of the global minimu
Even so, in Fig. 2~b! for LJ13, the tail of the high-energy
quench distribution overlaps somewhat with the distribut
of connected minima, indicating that some of the points
the basin of attraction of the global minimum are as far fro
it as the closest local minima. In Fig. 2~a! for M13 with r
54, however, the high-energy quench distribution overla
completely with the distribution of connected minima. T
overlap means that many configurations which differ str
turally from the global minimum as much as the connec
local minima still quench to the global minimum. Such co
figurations may include structures which for a sligh
shorter-ranged potential fall into the catchment basin o
different local minimum.

Further evidence for the complexity of the global min

FIG. 2. Distribution of Euclidean distances to the global mi
mum from configuration points in its basin of attraction for~a!
M13, r54 and ~b! LJ13. For each cluster, the distributions from
microcanonical MD simulations at two energies are shown.
lower energy the majority of quenches lead to the global minimu
and at higher energy about half do so. The quench interval wa
reduced time units. The duration of the high-energy simulations
63105, and that of the low-energy ones was 33105. The shaded
areas show the distance distribution of minima that are dire
connected to the global minimum.
d

h
,
n
.

n
n

s

-
d
-

a

mum basin comes from Fig. 1. The MC results forr56
show that the increase in gradient of the caloric curve
indicative of the system sampling a new region of config
ration space—occurs at the temperature where the trajec
begins to escape from the global minimum, as shown by
decrease inPgmin

eq . The transition is therefore out of the bas
of attraction of the global minimum, effectively from solid
like to liquidlike states. The analogous results forr54 show
that the transition feature in the caloric curve starts before
probability of the global minimum drops significantly. Th
behavior is suggestive of a weak transition from configu
tions close to the global minimum to higher-energy ones,
taking place within the basin of attraction of the global min
mum itself.

The picture of the basin of attraction around the glob
minimum that emerges is therefore complex. It extends
into configuration space from the icosahedron, and past
catchment basins of local minima in certain directions. T
structural dissimilarity of some points which are formal
associated with the global minimum suggests that quench
might not be the most meaningful way of dividing config
ration space among the various minima. From this point
view, the underestimation of the global minimum probabil
in Fig. 1~a! by the harmonic superposition method is som
what misleading, since it is not helpful to think of the dista
configurations as belonging to the icosahedral well. The h
monic approximation may therefore give a more meaning
probability that the cluster has a structure resembling
global minimum than quenching.

In summary, although the harmonic approximation h
only partial success in describing the equilibrium propert
of the clusters examined here, it is attractive in its simplici
lack of empirical parameters, and clear physical basis. M
complicated analytic models do not necessarily prov
greater insight, or even systematically improved results.
therefore adopt the harmonic approximation for the rate c
stant and equilibrium property expressions in Sec. II B, w
the proviso that they will only be applied at low and mode
ate temperatures, where the description should be adeq
for our purposes. The resulting microcanonical rate c
stants, via Eq.~6!, are given by

ki
†~E!5

hi
PG

hPG†

n̄ i
k

n̄†(k21) S E2V†

E2Vi
D k21

, ~20!

and the canonical expression from Eq.~10! is

kj
†~T!5

hj
PG

hPG†

n̄ j
k

n̄†(k21)
e2(V†2Vj )/kBT. ~21!

Finally, we note that the harmonic superposition method
likely to be more successful in the canonical ensemble t
the microcanonical because at constant temperature the
locity distribution is independent of the configuration poin
In contrast, at fixed total energy the kinetic energy is sign
cantly further ‘‘above’’ the PES when the configuratio
point is near a deep potential well than when it is ne
higher-lying ones.
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FIG. 3. Relaxation of minima, grouped in ‘‘layers’’ away from the global minimum, forM13 at four values of the range parameterr. In
each plot, layer 1 is the global minimum, layer 2 contains all minima directly connected to layer 1, etc. In each case, the microcanon
energy is chosen such that the equilibrium probability of the global minimum is 0.4; forr54, 6, 10, and 14;E/e5233.17,229.42,
228.43, and229.78, respectively. The inset forr514 shows the first half of the layer 5 curve with a logarithmic time axis. The time i
units of (mre

2/e)1/2.
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B. Relaxation and the range of the potential

1. Relaxation to the global minimum

We now turn to the effect of the range of the potential
the dynamics of theM13 clusters in the light of our previou
analysis of the energy landscapes@4#. The larger number of
rearrangements and smaller energy gradient on paths to
global minimum, as well as the higher downhill barriers, a
expected to impede relaxation to the global minimum as
range of the potential is decreased.

Figure 3 illustrates the range dependence of structura
laxation to the global minimum. The minima are group
into ‘‘layers’’ according to the smallest number of rearrang
ments required to reach the global minimum. Layer 1 c
tains only the global minimum, and leveli 11 contains all
minima directly connected to a minimum in leveli, but not
to any minimum in a layer lower thani. The initial probabil-
ity vector at each value ofr is a uniform distribution among
the minima in the furthest layer from the global minimum
The energy has been chosen such that the equilibrium p
the

e

e-

-
-

b-

ability of the global minimum is 0.4, and the solution of th
master equation is shown until the time at which 80% of t
population~i.e., 0.32) has been achieved.

The most striking trend is the increasing time scale as
potential range decreases, as predicted by the lands
analysis@4#. The r514 cluster takes over three orders
magnitude longer to reach 80% of equilibrium than ther
54 cluster. Note that for the latter system, the time sc
plotted is only of the order of a few vibrational periods@4#.
In the light of previous work@12# the application of the
master equation to ther54 cluster is therefore probably a
the limit of validity, since the assumption of stochastic tra
sitions breaks down when the relaxation time approaches
vibrational period.

The relaxation is straightforward forr54; the furthest
layer decays while the populations of the global minimu
and the intermediate layer grow monotonically. Atr56 we
see the accumulation and decay of a transient populatio
layer 3 as the outward flow from these minima does
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3708 PRE 60MILLER, DOYE, AND WALES
match the rapid initial input from the furthest layer. Th
layer 3 minima therefore constitute a kinetic bottleneck
relaxation down the funnel of the PES. More complex b
havior arises forr510 and 14, where there are six layers
minima. The probabilities experience an initial jump as t
system is released from its strongly nonequilibrium state,
then relax slowly to their final values. Layer 5 atr514
~shown in the inset of Fig. 3! shows particularly complicated
behavior, rising suddenly at first, decaying slightly, and th
rising again before relaxing monotonically. This oscillatio
occurs because layer 4 develops a transient popula
blocking further downward output from layer 5 while layer
is still releasing probability into layer 5 from above.

These results show why increasing the range of the po
tial has been considered as an operation to smooth the
that could aid global optimization@25#. However, this opera-
tion, although not in this example, often leads to a chang
the identity of the global minimum@26,27#.

2. Search times

By analogy with the ‘‘folding time’’ in the protein folding
literature, we can examine the ability of the cluster to find
global minimum by defining a ‘‘search time’’ as the tim
taken for the probability of the global minimum to reach
particular value after the system is released from a none
librium state. Here we use a probability threshold of 0.4,
we will discuss the effects of changing this choice.

Figure 4 shows the search time forM13 as a function of
temperature using four values ofr. The initial probability
vector was a uniform distribution among the minima in t
layer furthest from the global minimum. The qualitativ
shape of the curves is easily understood. As the tempera
is increased from low values, the search time decreases
cause the thermal energy rises above the barriers betwee
minima. An optimal temperatureTopt is reached, where the
search time is a minimum,topt, above which it rises becaus
the thermodynamic driving force toward the global minimu
is reduced at higher temperatures. Ultimately, the equi
rium probability of the global minimum falls below th

FIG. 4. Search time as a function of temperature forM13 at four
values of the range parameterr. The search time is defined as th
time taken for the probability of the global minimum to reach 0
starting from an even probability distribution among the minima
the layer furthest from the global minimum. The time is in units
(mre

2/e)1/2.
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threshold of 0.4, and the search time is no longer defin
Similar behavior has been observed for the same reason
direct simulations of KCl clusters@28# and lattice protein
models@29#, as well as a master equation study of idealiz
energy landscapes@30#.

Table I lists the temperatureTopt and timetopt for optimal
searching, as well as the two temperaturesTlow andThigh at
which the search time equals 2topt. The differenceThigh
2Tlow provides a measure of the width of the temperat
window for which searching is relatively fast. The value
topt increases withr, as expected from the relaxation profile
of Sec. III A 1, and this slowing down is accompanied by
decrease in the temperature widthThigh2Tlow . As the range
of the potential is decreased, the energy gap between
global minimum and the other minima becomes smaller, a
the energy range spanned by the minima narrows. He
other minima come into play at lower temperature, and
temperature at which the global minimum ceases to do
nate the equilibrium populations is lower when the poten
is short ranged. This observation explains whyThigh falls as
r increases. For highr, the downhill barriers between
minima are on average larger, so that as the temperatu
decreased, isomerization processes slow down more dram
cally than for smallr. Hence, the search time increases mo
rapidly as the temperature is lowered beyondTopt when the
potential is short ranged, resulting in the narrower range
Thigh2Tlow .

An analogy can be drawn here with the ease of folding
proteins. The ratioTf /Tg of the ‘‘folding temperature’’
~where the native state becomes thermodynamically m
stable! to the ‘‘glass transition temperature’’~where the ki-
netics slow down dramatically! has been used as a measu
of the ability of a protein to fold correctly@29,31#. For the
cluster,Tf is roughly related toThigh, which decreases with
increasingr, while Tg increases because of the higher bar
ers for short-ranged potentials. HenceTf /Tg falls, in accor-
dance with the observation that searching for the glo
minimum is harder whenr is high.

Interestingly, the curves in Fig. 4 forr54, 6, and 10 have
similar shapes. For example, the values ofTopt differ by only
7%. Furthermore,Topt lies about three quarters of the wa
from Tlow to Thigh in all three cases, as shown by the la
column of Table I.r514 represents an extreme case
which relaxation to the global minimum becomes very slo
for values outside a small range nearTopt. This optimum
temperature is a compromise between the slow dynamic

,

TABLE I. ‘‘Searching’’ characteristics ofM13 at four values of
the range parameterr. Topt is the optimal searching temperature,
which the search time is a minimum,topt . Tlow and Thigh (Tlow

,Thigh) are the two temperatures at which the search time eq
2topt .

r kBTopt /e topt /(mre
2/e)1/2 kBTlow /e kBThigh/e

Topt2Tlow

Thigh2Tlow

4 0.293 1.47 0.135 0.344 0.76
6 0.305 6.54 0.218 0.333 0.76

10 0.285 130 0.235 0.301 0.76
14 0.200 2200 0.170 0.214 0.68
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PRE 60 3709STRUCTURAL RELAXATION IN ATOMIC CLUSTERS: . . .
even moderately low temperatures, and the rapidly decr
ing thermodynamic weight of the global minimum at mo
erately high temperatures.

Choosing a different occupation probability of the glob
minimum as the criterion for the search time has predicta
effects. If a higher threshold is used, the search time
creases at any given temperature. The equilibrium proba
ity of the global minimum drops below the threshold at
lower temperature, so the upper limit for which the sea
time is defined decreases. The search time rises more ste
below Topt because the probabilities must come closer
their equilibrium values, and this approach is asympto
The combined effect is that the search time curves all
come narrower. However, for the cases tested (r54 and 6!,
Topt changed by only 10% as the threshold was varied fr
0.2 to 0.5.

3. Relaxation of the total energy

The evolution of the probability vector towardsPeq is ex-
pressed macroscopically by the relaxation of some ove
propertyA to its equilibrium valueAeq. If this property has a
well defined valueAi for each statei in the master equation
the expectation value is a weighted average which can
expressed as a function of time using Eq.~5!:

^A~ t !&5(
i 51

nmin

Ai Pi~ t !5(
j 51

nmin

cje
l j t5Aeq1(

j 52

nmin

cje
l j t,

~22!

where

cj5F(
i 51

nmin

AiAPi
eqũi

( j )GF (
m51

nmin

ũm
( j )Pm~0!

APm
eq G , ~23!

and the last expression in Eq.~22! uses the fact that thej
51 term defines the baseline for relaxation, sincel150. A
mean relaxation timet r can be defined by normalizing th
profile of ^A& againstt ~such that it decays from 1 to 0!, and
evaluating the area under the resulting curve@32#. For pure
Debye ~single exponential! relaxation, i.e., exp(2lt), one
simply obtainst r5l21. Subtracting the equilibrium value
from the right-hand side of Eq.~22!, integrating fromt50 to
`, and normalizing using the value att50 yields

t r52(
j 52

nmin

cjl j
21Y (

j 52

nmin

cj . ~24!

If the eigenvectors and eigenvalues of the transition ma
are not available,t r can be obtained by propagating the ma
ter equation numerically until̂ A& has effectively equili-
brated, and then numerically integrating the normalized
laxation profile. Here we will examine the relaxation of th
total energy ofM13 as the populations of the minima equil
brate at constant temperature. Within the harmonic appr
mation, therefore, we needAi5Vi1kkBT in Eqs. ~22! and
~23!.

Theoretical treatments have shown that, under partic
circumstances, the multi-exponential decay that arises f
the master equation can lead to a variety of asymptotic
s-

l
le
-
il-

h
ply
o
.
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ll

e
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-

i-

ar
m
e-

haviors. For example, the random energy model, where
states have a Gaussian distribution of energies, can lea
ther to stretched exponential„}exp@2(t/t)u#… or to power law
(}@t/t#p) relaxation of autocorrelation functions, dependi
on the form chosen for the transition rates@33#. Palmeret al.
also derived a stretched exponential behavior for a hierar
cally constrained model@34#. In contrast Skorobogatiyet al.
found power law and logarithmic (}2 ln t) decay, but not
stretched exponential decay, of the total energy in a pro
model @35#, depending on the temperature regime.

Starting from a uniform distribution among the minima
the layer furthest from the global minimum, we found th
none of the above forms~pure or stretched exponentia
power law, or logarithmic! gave a robust fit to the decay o
the total energy from the master equation. At sufficien
long times, Eq.~22! approaches a pure exponential behavi
since all contributions except that of the slowest mode h
decayed. At intermediate times, the parameters~particularly
the stretching exponentu) that produced the best fit for th
stretched exponential form were highly sensitive to the ti
interval over which data were supplied, and the result
curves often deviated significantly from the master equat
solution. The difficulty of obtaining an acceptable fit in
creased with decreasing temperature, where the spread o
exponentsl j is wider. Of course, there is no reason why
general multiexponential form like Eq.~22! should conform
to any simplified model.

Although the relaxation profiles are complicated, t
mean relaxation times~integrated profiles! were found to fol-
low simple empirical expressions. Figure 5 shows the lo
rithm of the relaxation time as a function of inverse tempe
ture forM13 with r54 and 14. Ther514 plot in Fig. 5~b! is
well fitted by the Arrhenius formt r5t0 exp(A/kBT) with
t059.3431023(mre

2/e)1/2 and A52.00e. The r54 plot in
Fig. 5~a!, however, shows a significant deviation from th
linearized Arrhenius expression. It is better fitted by t
ubiquitous Vogel-Tammann-Fulcher~VTF! form @36#

t r5t0 expF A

kB~T2T0!G , ~25!

as shown by the solid line, for which the parameters aret0

51.86(mre
2/e)1/2, A50.0699e, and kBT050.051e. These

values were found by least squares fitting of the logarithm
Eq. ~25! with equally weighted points.

The slower relaxation and larger database for ther514
cluster meant that it was not computationally feasible to
tend Fig. 5~b! to lower temperature—the lowest point show
is at kBT50.13e—and it is possible that deviation from th
Arrhenius behavior would occur below this value. Howev
the curvature of ther54 plot is clear over the same rang
indicating that the relaxation dynamics of the two cluste
respond differently to temperature changes. The origins
the difference probably stem from the decreasing slope of
energy landscape as the range of the potential is shorte
The energy intervals spanned by the minimum and transi
state samples at higherr are narrower, making the landscap
more uniform. This uniformity means that a change in t
temperature has a similar effect on most of the individ
interwell processes, each of which separately has an Arrh
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3710 PRE 60MILLER, DOYE, AND WALES
ius temperature dependence in the model we have used@Eq.
~21!#. On the steeper landscape of ther54 cluster, however,
there is a greater spread of local minimum energies and
rier heights, so that as the temperature is lowered, some
cesses become ‘‘frozen out’’ before others, resulting
longer relaxation times than expected by extrapolation of
high-temperature behavior.

In structural glasses, Arrhenius temperature depende
of relaxation times is associated with strong liquids, wher
VTF behavior is indicative of fragility@37#. If this classifi-
cation can be applied to clusters, the results of this sec
suggest that increasing the range of the potential introduc
degree of fragility. Stillinger’s picture of strong liquids hav
ing a ‘‘uniformly rough’’ energy landscape@32# is in line
with our previous analysis@4#, which showed that decreasin
the range of the potential tends to lower the mean ene
difference between connected minima~the slope!, and in-
crease the barriers between them~the roughness!. Hence at
low r paths between pairs of minima are organized into
larger-scale funnel, while for higherr the funnel feature is
less prominent and a more uniform series of paths with
nificant barriers must be traversed to reach the global m
mum.

FIG. 5. Canonical ensemble Arrhenius plots for the relaxat
time of the total energy ofM13 at ~a! r54 and~b! r514. Circles
are mean relaxation times from the master equation, dashed
are fits to the Arrhenius form, and the solid line in~a! is a fit to the
Vogel-Tammann-Fulcher~VTF! form. The relaxation time is in
units of (mre

2/e)1/2.
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4. Relaxation modes

Is the time scale of relaxation mostly determined by t
slowest relaxation mode of the master equation, i.e., the l
negative nonzero eigenvalue of the transition matrix, or
the process it describes relatively unimportant? Equati
~22! and ~23! show that the contribution of a given mode
the relaxation of a global property depends both on the pr
erty and on the initial probability distribution. However, w
can still probe the nature of the probability flow described
a particular relaxation mode by comparing the size and s
of the components in the corresponding transition matrix
genvector. Consider Eq.~5! for a particular value ofj; mode
j makes an important contribution to the probability evo

tion of minimum i if ui
( j )—or equivalently APi

eqũi
( j )—is

large in magnitude. The mode represents an overall flowbe-
tweenminima i andk if ui

( j ) anduk
( j ) have opposite signs.

The extreme eigenvalues and eigenvectors of the tra
tion matrix can be obtained efficiently for large matrices u
ing Lanczos iteration@38#. Inspection of the components o
the eigenvectors forM13 at different values ofr and differ-
ent temperatures reveals some general trends. The ext
modes~i.e., the slowest and fastest! describe probability flow
between a small number of minima, typically fewer th
five. The fastest modes tend to be between minima that
directly connected by transition states. In contrast, the sl
est modes are between unconnected minima, and probab
flow involves intermediate minima. The slow modes tend
involve one highly populated minimum. Hence, if the initi
probabilities of the other minima that feature in these rel
ation modes~with eigenvector components of opposite sig!
are far from their equilibrium values, the slow modes m
limit the overall relaxation.

The number of minima participating in relaxation modej
can be measured using the index

ñ j5

S (
i 51

nmin

@ ũi
( j )APi

eq#2D 2

(
i 51

nmin

@ ũi
( j )APi

eq#4

, ~26!

which varies from 1 tonmin . Figure 6 showsñ j as a function
of the eigenvaluel j for all the relaxation modes ofM13,
with r56 at two temperatures. As observed above, the nu
ber of minima involved in the fastest and slowest modes
small. Many intermediate modes only involve a small nu
ber of minima too, but the modes that describe more glo
flow are all clustered in the center of the~logarithmic! scale.
This pattern is more pronounced at the higher temperatu

In a typical application of the master equation, therefo
the initial processes involve rapid equilibration betwe
small groups of minima that are adjacent in configurat
space. This is followed by wider probability flow betwee
larger groups of minima, and finally slow adjustment of t
population of a few minima via processes involving multip
rearrangements.
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PRE 60 3711STRUCTURAL RELAXATION IN ATOMIC CLUSTERS: . . .
IV. INTERFUNNEL DYNAMICS IN LJ 38

We now turn to the double-funnel energy landscape of
38-atom Lennard-Jones cluster LJ38. The potential energy is
given by @39#

V5(
i , j

Vi j , Vi j 54eF S s

r i j
D 12

2S s

r i j
D 6G , ~27!

wheres is the pair separation at whichVi j 50, ande is the
pair well depth. We will uses and e as the units of the
quantities they measure, setting both equal to unity; the
pology of the PES is not affected by the values of the
parameters.

The LJ38 cluster is too large for a complete catalog
minima and transition states to be obtained. However,
have previously performed a thorough characterization of
low-energy regions of the PES using a database of 6
minima and 8633 transition states@5,6#. The resulting dis-

FIG. 6. Number of minima participating in a relaxation mode
the master equation as a function of the eigenvalue of the mod
M13, r56, at ~a! kBT50.15e and~b! kBT50.40e. The mode with
zero eigenvalue has been excluded.l is in units of (e/mre

2)1/2.
e

o-
e

e
e
0

connectivity graph@5,6# clearly showed two separated re
gions of configuration space, each having the character
funnel. The global minimum lies at the bottom of a sm
funnel associated with 28 minima that are characterized
face-centered-cubic packing. The larger funnel of 4
minima leads to the lowest-energy icosahedrally pac
minimum. Since this secondary funnel accounts for a la
volume of configuration space, and because the liquid
minima are structurally more similar to the icosahed
minima than the fcc ones, the icosahedral funnel is expec
to act as a kinetic trap for relaxation from high-energy sta
to the global minimum.

By grouping together the minima in each of the two fu
nels, we can study not only equilibration within the funne
as for M13, but also the dynamics between the funne
Hence we define the probabilities

Pfcc~ t !5 (
i Pfcc

Pi~ t ! and Picos~ t !5 (
i P icos

Pi~ t !.

~28!

The database obtained in previous work@5,6# is a good rep-
resentation of the low-lying regions of the PES, but does
extend far into the liquidlike regime, and so we are restric
to studying the dynamics at low temperatures, where the
of the liquid is less important. This is not a serious restr
tion, since the time scale separation of interfunnel and
trafunnel processes should be greatest at low temperatu

To obtain an impression of the temperature range o
which valid conclusions can be drawn, Fig. 7 presents so
properties calculated using the harmonic superposition
proximation and the full low-energy database of 60
minima and 8633 transition states. Figure 7~a! showsPfcc

eq

andPicos
eq as a function of temperature. The global minimu

only dominates at very low temperatures, since the lar
number of minima and lower vibrational frequencies in t
icosahedral funnel cause the phase volume of the latte
rise rapidly. At sufficiently high temperature the clust
should melt, and the occupation probabilities of the two fu
nels, which contain predominantly solidlike structure
should approach zero. However, the steady rise of the cu
marked ‘‘rest’’ ~i.e., 12Pfcc2Picos) is interrupted atkBT
'0.2e, reflecting the fact that the sample of minima does n
represent the relevant regions of the PES very well ab
this temperature. Figure 7~b! shows the heat capacity, de
rived from CV5(]U/]T)V and Eq.~18!. The small peak at
kBT'0.12e results from the transition from the fcc to icos
hedral regions of configuration space, and the main pea
kBT'0.18e signifies the melting transition. These featur
are largely in agreement with a more sophisticated anh
monic superposition method, which was designed to mo
the thermodynamics from a representative sample of min
@24,40#. The harmonic results presented here predict a lo
peak for the melting transition, and beyond the melting te
perature the heat capacity returns to its solidlike value. T
result again reveals the deficiencies of the sample of min
in the liquidlike regime. We conclude, however, that as far
thermodynamic properties are concerned, the present sa
should be adequate forkBT,0.2e. The corresponding limit
in the microcanonical ensemble isE,2150e, and the fcc

or
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3712 PRE 60MILLER, DOYE, AND WALES
and icosahedral funnels have equal probability atE5
2160.5e. We note that conventional simulations would n
be able to measure the quantities in Fig. 7 reliably at s
temperatures because the interfunnel dynamics are too s
One of the aims of this section is to quantify the rate
passage between the funnels.

A. Pruning the database

Because the time scale of interfunnel processes is so
at low temperatures, numerical integration of the mas
equation is not feasible, so we must diagonalize the rate
trix and use Eq.~5!. However, diagonalization routines a
likely to run into numerical problems when the matrix el
ments span many orders of magnitude. Figure 8 shows
lowering the temperature widens the spread of eigenval
At sufficiently low temperature, a number of eigenvalues
gin to appear to be slightly positive, or the diagonalizati
routines may fail altogether. Czerminski and Elber repor
similar problems@9#, and therefore restricted their studies
sufficiently high temperatures. In Sec. III B we saw that t
eigenvalues at the extremes of the spectrum tend to be a
ciated with probability flow between a small number
minima. If these minima are kinetically isolated, they cau
the transition matrix to become nearly decomposable, giv
rise to the numerical difficulties. Since they do not parti
pate in the probability flow we should seek to exclude the

FIG. 7. Low-temperature properties of LJ38 calculated using the
harmonic superposition approximation.~a! Equilibrium occupation
probability of the fcc and icosahedral funnels and the rest of c
figuration space, and~b! the heat capacity.
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If they are not kinetically isolated, they will also appear
other, faster, relaxation modes.

From a practical point of view, even if the transition m
trix can be diagonalized without numerical difficulty, it i
worth considering whether all the minima play a significa
role. If some can be discarded without affecting the rela
ation, the size of the matrix can be reduced, saving com
tational effort. Because of the astronomical number
minima on the PES, a large proportion of the minima fou
in a partial search are only linked to one other minimum
the database. Within the restricted sample, these min
constitute ‘‘dead ends’’ for probability flow. They can act a
buffers, absorbing and releasing probability as it flows
ward equilibrium through the connected minimum, but th
cannot act as pathways for flowbetweenminima or larger
regions of the PES. The dead-end minima in our sample t
to be high in energy since the search algorithm@6# only
explores connections from low-energy minima thorough
When a high-energy minimum is found, the search po
returns to the previous minimum and tends not to revisit
high-energy ones. When modeling the probability flow fro
the bottom of one funnel into the other, high-energy de
end minima are unlikely to play an important role becau
their equilibrium probability is low and they do not media
interfunnel flow.

-

FIG. 8. Spectra of transition matrix eigenvalues for LJ38 in the
microcanonical ensemble at~a! E52160e and ~b! E52150e. In
each case, the eigenvalue of the most prominent interfunnel mo
marked by an arrow, showing the greater separation of its time s
from the other relaxation modes at low energy.l is in units of
(e/ms2)1/2.
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These considerations suggest ways of pruning the d
base. First, dead-end minima were identified, and were fo
to constitute about 70% of the sample of 6000 minima.
eliminate the kinetically isolated minima at a given energ
the total outward rate constant was calculated for each d
end minimum, and the minimum was discarded if the r
fell below a certain threshold. For example, at a total ene
of E52160e, the rate constants for individual process
span the range 10241 to 100(e/ms2)1/2. Choosing a threshold
of 10212, which corresponds to a time scale of seconds
argon parameters, reduces the sample of minima to 594
threshold of 10210 reduces it to 5861. While this may b
sufficient to remove numerical difficulties in the diagonaliz
tion procedure, the matrices are still rather large.

Trimming the sample on the basis of equilibrium pro
abilities reduced the number of minima more dramatica
At E52160e, discarding dead-end minima whose equili
rium probability was less than 10210, left just 1825 minima,
and a threshold of 1028 left 1782. Clearly, the number o
minima removed by such a method decreases with increa
energy, since higher-energy states then become more p
lated. We will gauge the effect of pruning the database
examining the sensitivity of the results to the choice of
threshold.

B. Interfunnel rate constants

What is the rate of crossing between the fcc and icosa
dral funnels? We have previously shown that interconvers
of the fcc and icosahedral minima is a multiple-step proc
@5#—the lowest-energy path in our sample involves 13 s
cessive rearrangements—but let us consider the ov
scheme

fcc
 icos, ~29!

with ‘‘forward’’ and ‘‘reverse’’ rate constantsk1 and k2 .
The rate of change of the occupation probability of the
funnel is accordingly

dPfcc~ t !

dt
52k1Pfcc~ t !1k2Picos~ t !. ~30!

From Fig. 7, we see that at sufficiently low temperature o
the two funnels are significantly occupied at equilibrium,
opposed to minima associated with the liquidlike state. A
suming that this is also the case away from equilibrium, p
vided that the initial probability is itself confined to the fun
nels, we can write

Pfcc~ t !1Picos~ t !51. ~31!

Using Eq.~31! and the equilibrium relationship

k1Pfcc
eq5k2Picos

eq , ~32!

integration of Eq.~30! gives the basic result of first orde
kinetics for a two-state model:

lnF Pfcc~ t !2Pfcc
eq

Pfcc~0!2Pfcc
eqG52~k11k2!t. ~33!
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Figure 9~a! shows plots of Eq.~33! and the analogous
expression forPicos(t) in the microcanonical ensemble atE
52160e, starting from the global minimum. The plots we
obtained from the analytic solution of the master equat
after removing all dead-end minima with an equilibriu
probability of less than 1028, as described in Sec. IV A. The
two lines are straight and coincide, and the slope yieldsk1

1k254.99310212(e/ms2)1/2. This value closely matche
one of the eigenvalues of the transition matrix,ul4u
54.98310212(e/ms2)1/2, suggesting that the correspondin
eigenvector describes flow between the two funnels. T
‘‘net flow index’’ into or out of a funnelF produced by
relaxation modei of the master equation can be obtained
summing the components of eigenvectori that correspond to
the minima belonging toF @41#:

f i
F5 (

j PF
ũj

( i )APj
eq. ~34!

If mode i represents probability flow between the funne
then f i

fcc and f i
icos will be larger in magnitude than for othe

eigenvectors, and will have opposite signs, so that an
creasing contribution is made to one funnel and a decrea
contribution to the other, depending on the initial probabil
vector @see Eq.~5!#. At E52160e, for the mode whose

FIG. 9. Plots of Eq.~33! for LJ38 in the microcanonical en-
semble with the initial probability of the global minimum set
unity. Solid lines are Eq.~33! for the fcc funnel, and dashed line
are the equivalent for the icosahedral funnel.~a! E52160e. ~b!
E52150e. In ~a! the lines coincide. The units of time are~a!
1012(ms2/e)1/2 and ~b! (ms2/e)1/2.
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TABLE II. Interfunnel rate constants for LJ38 in the canonical ensemble.nmin8 andnts8 are the numbers of
minima and transition states remaining in the database after discarding minima with an equilibrium
ability of less than 1028. f fcc, f icos, andl are the net flow indices and the eigenvalue of the interfunnel mo
l, k1 , andk2 are tabulated in units of (e/ms2)1/2.

kBT/e nmin8 nts8 l f fcc f icos k1 k2

0.09 1770 4371 28.50310215 0.282 20.281 7.36310216 7.77310215

0.10 1770 4371 23.96310213 0.399 20.392 7.48310214 3.22310213

0.11 1783 4384 29.74310212 0.471 20.470 3.22310212 6.52310212

0.12 1809 4410 21.52310210 0.500 20.499 7.39310211 7.80310211

0.13 1851 4453 21.6631029 0.483 20.482 1.0631029 5.97310210

0.14 1978 4583 21.3531028 0.438 20.435 1.0031028 3.5331029

0.15 2264 4872 28.6431028 0.381 20.374 7.0931028 1.5431028

0.16 2620 5232 24.4631027 0.320 20.306 3.9231027 5.3631028

0.17 2985 5599 21.9231026 0.259 20.229 1.7731026 1.5231027

0.18 3363 5981 27.1331026 0.202 20.196 6.7731026 3.5731027
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eigenvalue matches2(k11k2), we find f 4
fcc50.495 and

f 4
icos520.495. The next largest net flow index for the f

funnel wasf 93
fcc53.9731024 ~with a corresponding index fo

the icosahedral funnel off 93
icos59.9431027) and that for the

icosahedral funnel wasf 9
icos520.143~with a corresponding

index for the fcc funnel off 9
fcc54.3831025). This result

unambiguously identifies the fourth mode with interfunn
relaxation at this energy.

To test the effect of having pruned the database, we l
ered the threshold for removal of minima from an equil
rium probability of 1028 to 10212, resulting in a larger re-
maining sample of 2289 minima. The net flow inde
picked out relaxation mode 17, whose eigenvalue wasl17
524.98310212(e/ms2)1/2, i.e., the same as was obtaine
with the higher threshold. Replotting Fig. 9~a! also yielded
the same result as before. We note that, even though this
sample is less than half the size of the full database,
lowest eigenvalues already clash with the precision of
‘‘zero’’ eigenvalue. Hence some pruning is essential for n
merical tractability and desirable for computational spe
and it does not affect the result in this case.

At low energy, the interfunnel mode is easily identifie
As the energy is raised and more processes become ‘‘un
zen,’’ the distinction is somewhat less clear. Figure 9~b!
shows Eq.~33! starting from the global minimum atE5
2150e. The database was pruned using an equilibrium pr
ability threshold of 1028, and contained 3789 minima. Whil
the decay ofPfcc(t) obeys the linearized relationship, th
evolution of Picos(t) deviates from it increasingly as tim
progresses. This deviation is partly because minima out
the two funnels have non-negligible populations, so Eq.~31!
does not hold, and also becausePicos(t) does not rise mono
tonically to its equilibrium value, but overshoots slight
and then decays. The net flow index picks outl95

529.1931025(e/ms2)1/2 with f 95
fcc50.0859 and f 95

icos

520.0686. These values are considerably smaller than th
obtained atE52150e. Although other modes may have
higher flow index for one funnel, the value for the oth
funnel is then either much smaller~indicating that the mode
describes flow between one funnel and the nonfunnel sta!,
or of the same sign~indicating that flow is notbetweenthe
funnels!.
l
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The slope of the solid line in Fig. 9~b! is
29.3531025(e/ms2)1/2, which is not far froml95, but is
actually closer tol96529.3931025(e/ms2)1/2. However,
mode 96 is only weakly interfunnel:f 96

fcc51.9131024 and
f 96

icos525.3631024. At relatively high energies, where
minima outside the funnels come into play and the simplifi
scheme of Eq.~29! breaks down, the net flow index therefo
still provides a convenient way of identifying the most im
portant interfunnel relaxation mode and extracting the qu
tity (k11k2). This method also has the advantage tha
does not require evaluation of the master equation solu
itself.

The equilibrium relationship Eq.~32! allows the separate
rate constantsk1 andk2 for interfunnel flow to be obtained
from the eigenvalue. Table II showsk1 andk2 as functions
of temperature in the canonical ensemble. At each temp
ture, the database was pruned using an equilibrium proba
ity threshold of 1028, and the table shows how many of th
full sample of 6000 minima and 8633 transition states
mained. At the lowest two temperatures, the pruning pro
dure removed all dead-end minima. The table also sho
that the net flow indices for the interfunnel mode decreas
magnitude at the higher temperatures. This reduction
result of the increasing involvement of higher-energy a

FIG. 10. Arrhenius plot ofk1 ~circles! andk2 ~squares! for the
interfunnel dynamics of LJ38. The lines are fits to the formk
5A exp(2Ea /kBT). The units of the rate constant are (e/ms2)1/2.
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PRE 60 3715STRUCTURAL RELAXATION IN ATOMIC CLUSTERS: . . .
nonfunnel minima. Over the course of doubling the tempe
ture, k1 changes by ten orders of magnitude. For argon
rameters, the span of time scales is hundreds of nanosec
to an hour.

Figure 10 shows that, over the temperature range in Ta
II, k1 and k2 obey an Arrhenius temperature dependen
law. Only very slight curvature is visible in thek2 results.
Fitting to the form k5A exp(2Ea /kBT) gives the pre-
exponential factors and activation energies for the forw
and reverse processes:

k1 : fcc→ icos, A511.1~e/ms2!1/2, Ea54.12e,

k2 : icos→fcc, A53.18~e/ms2!1/2, Ea53.19e.

Interestingly, the effective activation energy fo
fcc→ icos is close to the overall barrier on the lowest-ene
path between the funnels, starting from the global minim
@5#, which is 4.22e. This result suggests that the pathwa
passing over the highest-energy transition state on
lowest-energy pathway determine the interfunnel dynam
Ea for icos→fcc, however, is significantly lower than th
overall potential barrier for the reverse process, which
3.54e, starting from the lowest-energy icosahedral minimu
The discrepancy can be attributed to the fact that more t
one minimum in the icosahedral funnel is substantially oc
pied. Hence the effective barrier from the icosahedral fun
should not be measured from the lowest-energy minimum
the icosahedral funnel, but with respect to a weighted av
age of the minimum energies,( i P icosPiVi . The slight curva-
ture in the Arrhenius plot fork2 is a result of the temperatur
dependence of this average.

An alternative method for computing the rates for inte
funnel conversion would be to calculate first the free ene
barrier between the two funnels, and then the transmis
coefficient for passage over this barrier@42,43#. The free
energy barriers have been calculated for LJ38, and were
found to decrease nonlinearly as the temperature is incre
toward that required for melting. Therefore, if this method
also to show an Arrhenius behavior, the temperature dep
dence of the transmission coefficient must compensate
that of the free energy barriers.

We have seen that the interfunnel rates drop dramatic
as the temperature is lowered. At the same time, the incr
ing net flow indices show that the corresponding relaxat
modes become more distinct from other processes. Th
features concur with Stillinger’s interpretation ofa processes
in fragile liquids @32#. In this picture,b processes are faste
and more localized in configuration space, whereas tha
processes, which become relatively slow at low tempe
tures, are thought to occur between ‘‘craters’’~a similar con-
cept to funnels! on the energy landscape. These differen
give rise to a bifurcation of time scales, which is visible f
LJ38 in the eigenvalue spectra of Fig. 8. However,a pro-
cesses have been observed to have a non-Arrhenius tem
ture dependence, in contrast with the results of Fig. 10.
Arrhenius behavior may be a genuine feature of the dyn
ics of the LJ38 cluster, but could also be a limitation of th
present approach. For example, our incomplete database
tains only a limited number of paths between the two fu
nels. However, competition between such paths would
-
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expected to lead to an increase in the effective activa
energy with temperature~higher barrier paths could be com
petitive at higher temperatures! which is the opposite behav
ior to that which is observed in fragile liquids. Other limita
tions of our approach are the limited temperature range o
which our database can be applied, and the simplification
the modeling of individual processes. We note that Angel
et al. also observed an unexpected Arrhenius behavior
their master equation study of a fragile glass former@44,45#.

The slight negative curvature in our plot ofk2 ~Fig. 10!
may provide a clue to the origin of the non-Arrhenius beha
ior of thea process in fragile liquids. For LJ38, the curvature
is due to the small temperature dependence of the ave
energy of the occupied minima in the icosahedral funnel.
fragile liquids it has been found that below a certain te
perature the average energy of the sampled minima decre
with decreasing temperature until a temperature is reache
which further relaxation down the PES becomes kinetica
impossible@46,47#. If the energies of the transition states th
have to be crossed to allow the structural relaxation ass
ated with thea process do not depend on temperature,
effective activation energy should increase with decreas
temperature, as is observed for fragile liquids. One coroll
of this interpretation, which could be checked by simulatio
is that for strong liquids the average energy of samp
minima would be expected to be relatively independent
temperature.

C. Equilibration

The progress of the probability vector toward equilibriu
can be visualized using equilibration graphs@30,48–50#.
Such a graph has a time axis, on which lines denote a gr
of states in local equilibrium with each other. Nodes jo
lines at the time that the corresponding groups first come
equilibrium, until there is just one group and the whole sy
tem has equilibrated. We define the time that minimai and j
come into equilibrium as the smallest value oft after which

uPi~ t !Pj
eq2Pj~ t !Pi

equ

APi~ t !Pj~ t !Pi
eqPj

eq
<j ~35!

is always satisfied, and in the present work we setj50.01.
Figure 11 shows equilibration graphs for the six minim

in each of the two funnels of LJ38 that have the greates
equilibrium probability atE52150e. They are numbered in
order of increasing probability within each funnel. The initi
vertical position of each minimum is taken as the integra
path lengthSgm along the shortest path to the global min
mum, making the two groups clearly distinguishable on t
axis. Three microcanonical energies are plotted, spanning
range of applicability of our database. The sample w
pruned using an equilibrium threshold of 1028 at each en-
ergy. The evolution of two initial probability vectors wa
considered: in the left-hand graphs, the initial probability
the global minimum is unity, and in the right-hand graphs t
probability commences in the lowest-energy icosahed
minimum.

In each of the six graphs, the minima within a funn
come into equilibrium with each other before the separ
funnels do so. This result explicitly demonstrates the lon
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FIG. 11. Equilibration graphs
for LJ38 in the microcanonical en-
semble at three energies:~a! and
~b! 2160e, ~c! and ~d! 2155e,
and ~e! and ~f! 2150e. In each
row, the left-hand graph is for the
global minimum~labeled 1! hav-
ing an initial probability of 1, and
the right-hand graph is for the
lowest-energy icosahedral mini
mum ~labeled 38) having an ini-
tial probability of 1. Lines repre-
senting individual minima
commence at a vertical positio
corresponding to the shortest inte
grated path lengthSgm to the glo-
bal minimum, and an arbitrary
horizontal position. Nodes join
lines when the correspondin
states first come into equilibrium
In ~a!, unprimed numbers indicate
minima in the fcc funnel, and
primed numbers indicate minima
in the icosahedral funnel. The
time is in units of (ms2/e)1/2.
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time scale of the interfunnel dynamics. The order of equ
bration within each funnel is the same at all three energ
studied, irrespective of the funnel in which the probability
initiated. There is a small exception in graph (e), where
minimum 68 in the icosahedral funnel equilibrates with 38
and 58 before it joins 18, 28, and 48. Interestingly, the
lowest-energy icosahedral minimum 38 is one of the last
minima to reach equilibrium within the icosahedral funn
presumably because of the high barriers surrounding it@5#.

The equilibration of the fcc funnel is much more sensiti
to the initial probability than that of the icosahedral funn
in spite of the fact that the rate constantsk1 and k2 are
roughly equal atE52160e. This difference in behavior o
the two funnels arises from the fact that the absolute pr
abilities of the minima in the fcc funnel, other than the glob
minimum itself, are several orders of magnitude smaller th
those of the minima in the icosahedral funnel. Hence sm
changes in probability due to transient flows easily dist
the equilibrium between minima in the fcc funnel, since d
tance from equilibrium is measured relative to the final pro
-
s

,

,

-
l
n
ll
b
-
-

ability by the left-hand side of inequality~35!. When the
cluster starts in the global minimum, the probability of th
fcc minima decreases monotonically, and the minima wit
the funnel can equilibrate with each other rapidly. When
probability is initialized in the lowest-energy icosahedr
minimum, however, the influx of probability to the fcc fun
nel must pass through the minima within the funnel on
way to the global minimum, and the transients must se
down almost completely before equilibrium is permanen
established. This effect is reflected by the shift of the equ
bration nodes of the fcc funnel to later times as one g
from the left-hand-side to the right-hand-side equilibrati
graphs in Fig. 11.

At sufficiently low energy, the global potential energ
minimum must be the most populated state at equilibriu
However, we have seen that there is a kinetic bottlenec
entering its funnel. Hence, if the cluster is prepared in
liquidlike state, it is most likely to collapse into the icosah
dral funnel, which is larger and structurally more similar
the liquid, even though it is not the equilibrium state. Ove
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sufficiently long time, the cluster must then convert to t
global minimum. Our master equation model shows this
havior clearly. Starting from a uniform distribution among
the 25 highest-energy minima in the sample,Pfcc(t) and
Picos(t) were monitored as the system evolved towards eq
librium at the low energy ofE52160e. The results are
shown in Fig. 12.

The initial states decay rapidly into other nonfunn
states, and the two funnels experience a slow increas
population. Although some probability enters the fcc funn
it reaches a plateau while the population of the icosahe
funnel continues to grow. This growth reaches a maxim
before eventually decaying toward its equilibrium value,
the probability trickles into the global minimum. The icos
hedral funnel acts as a kinetic trap, and only releases
cluster into the global minimum on a long time scale. W
note that direct simulation of the trapping effect by stand
MD would therefore be highly problematic.

Although Fig. 12 unambiguously demonstrates the se
rate fast and slow contributions to the relaxation, the prec
partitioning between the two funnels at the plateau stage
depend on the initial probability distribution. The distrib
tion chosen here is rather artificial because our sample
minima does not extend into the liquidlike range. If we cou
release the system from a high-temperature liquidlike st
the fraction of probability flowing into the icosahedral funn
would probably be even larger because of the greater st
tural similarity of the liquidlike structures with the icosah
dral rather than fcc minima. Although the fraction of fc
minima is already small in our database, it would be mu
smaller in a more comprehensive sample.

Two-stage dynamics have been observed experimen
in the folding of hen egg lysozyme, in which two routes
the native state have been postulated: one fast and direc
other passing via partially folded conformations which act
kinetic traps and reorganize to the native state only slo
@51#. Conversely, the protein plasminogen activator inhibi
1 rapidly folds to the active state, but converts to an inact
form on a much slower time scale@52#, implying that the
active state is not the global free energy minimum but is o
metastable, like the icosahedral minima in LJ38 at low en-
ergy. Similarly, human prion protein has two long-live

FIG. 12. Relaxation of LJ38 from high-energy minima at a tota
energy of2160e, showing the fast and slow contributions to th
final probability of the fcc funnel. The time is in units o
(ms2/e)1/2.
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forms, whose relative stability can be adjusted by varying
pH. The time scale for conversion to the more stable form
of the order of days@53#.

V. SUMMARY

We have applied the master equation to the structural
tabases forM13 and LJ38 derived in previous work@4,6# to
model relaxation processes in these atomic clusters. This
proach can be applied to time scales far longer than th
accessible by direct simulation, and describes the behavio
an equilibrating ensemble without the need to average o
separate trajectories.

The harmonic approximation for the density of states
individual minima and transition states provides a simple
physically clear basis for calculating equilibrium properti
and rate constants. Provided it is not applied at excessi
high temperatures, it gives a qualitatively useful descript
of the thermodynamic and dynamic properties of the ene
landscape.

As we predicted@4#, relaxation to the global minimum is
slower when the range of the potential is shorter. An optim
temperature for this relaxation is obtained by a comprom
between the decreasing rates at low temperatures and
decreasing thermodynamic driving force at high tempe
tures. When the range of the potential is long, the clus
exhibits a wide temperature window over which relaxation
quite efficient. In contrast, when the range is short, sm
deviations from the optimal temperature hinder the rate
preciably.

Although the relaxation profiles of the total energy
fixed temperature do not appear to be well described by
of the commonly used empirical forms, the temperature
pendence of the mean relaxation time followed an Arrhen
law for r514 and a Vogel-Tammann-Fulcher law atr54.
These results again reflect the greater uniformity of the sh
range PES that was deduced in the landscape analysis.

Application of the analytic solution of the master equati
to the low-energy database of LJ38 required the removal of
unimportant minima and transition states from the samp
‘‘Dead-end’’ minima were removed if their equilibrium
probability fell below a low threshold at the temperature
interest. The relaxation modes of the resulting database w
analyzed using a flow index to extract the rate of pass
between the two funnels on the energy landscape at low t
peratures. The equilibration patterns within and between
funnels clearly revealed the double-funnel structure. Hig
energy distributions relaxed preferentially into the second
funnel of icosahedral minima rather than the close-pac
funnel surrounding the global minimum. This behavior ste
from the greater structural similarity of the liquid to th
icosahedral minima, which is reflected in the patterns of c
nectivity on the PES. Eventually, the cluster escaped fr
this kinetic trap into the global minimum, which is thermo
dynamically favored at sufficiently low temperature.
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