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Structural relaxation in atomic clusters: Master equation dynamics
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The role of the potential energy landscape in determining the relaxation dynamics of model clusters is
studied using a master equation. Two types of energy landscape are examined: a single funnel, as exemplified
by 13-atom Morse clusters, and the double funnel landscape of the 38-atom Lennard-Jones cluster. Interwell
rate constants are calculated using Rice-Ramsperger-Kassel-Marcus theory within the harmonic approximation,
but anharmonic model partition functions are also considered. Decreasing the range of the potential in the
Morse clusters is shown to hinder relaxation toward the global minimum, and this effect is related to the
concomitant changes in the energy landscape. The relaxation modes that emerge from the master equation are
interpreted and analyzed to extract interfunnel rate constants for the Lennard-Jones cluster. Since this system
is too large for a complete characterization of the energy landscape, the conditions under which the master
equation can be applied to a limited database are explored. Connections are made to relaxation processes in
proteins and structural glass¢$1063-651X99)05110-7

PACS numbd(s): 36.40.Ei, 61.46tw

[. INTRODUCTION equation technique and methods for obtaining state-to-state
rate constants in the microcanonical and canonical en-
Some of the most interesting processes in chemical physembles. Section Il presents results for 13-atom Morse clus-
ics involve relaxation from a nonequilibrium state. Examplesters M3 as a function of the range of the potential. The
include the folding of a protein from a denatured conforma-energy landscapes of these clusters each resemble a funnel,
tion and the formation of a crystal or glass upon cooling ain which the minima are organized into pathways of decreas-
liquid. Given a method for calculating the rate constants fordng energy that lead to the global minimum on the PES. The
processes between mutually accessible states, the evoluti§haracteristics of the funnel change with the range of the
of a nonequilibrium probability distribution can be describedpotential, and have been studied in detail in previous work
by a master equatiofi]. [4]. Section Il also includes a discussion of harmonic and
A natural way to define a state in the master equation i@nharmonic partition function models for describing equilib-
provided by an “inherent structure” analysis of the potential ium properties of the clusters. In Sec. IV, dynamics on the
energy surfacéPES [2]. Except at high temperatures, the paradigmatic double-funnel energy landscape of the 38-atom
configuration of an interacting system oscillates in the basi-€nnard-Jones cluster, 4] are studied. We have previously
of attraction surrounding a local minimum on the PES, andnade a number of predictions concerning the dynamics of
sporadically undergoes transitions into neighboring basins o 13[4] and L3g[5,6], which can now be examined. We will
attraction. A local minimum can therefore be regarded as &Iso present some ways to interpret solutions of the master
single state in the master equation, and transition states d@fluation and extract information from them. The conditions
the PES provide the means for dynamics to occur betweerinder which the master equation treatment of interwell dy-
the minima. We have recently obtained databases of minimaamics is valid will also be addressed, especially in the case
and transition states for a variety of systei@s7], providing  of LJsg, where the knowledge of the energy landscape is
the necessary ingredients for a master equation study. Theiigcomplete. Finally, Sec. V summarizes the main conclu-
are at least two advantages to modeling relaxation in thisions from this work.
coarse-grained state-to-state way. First, the master equation
can usually be solved for much longer time scales than are Il. METHODS
accessible by direct simulations in which the equations of
motion are integrated. Second, the master equation describes
the relaxation of an ensemble without the need for explicit Let P(t) be a vector whose componeni(t) (1<i
averaging over separate trajectories. In fact, the master equan,,;,) are the probabilities of the cluster residing in a po-
tion can be used as a guide for simulations, for example teential well of the geometrical isomerat timet, the total
devise optimal annealing schedu(&s. number of such isomers being,;,. The time evolution of
In this contribution, the master equation is applied tothese probabilities is governed by
structural databases that we have previously derived for

some atomic clusters. Section I summarizes the master dp;(t) min
T:jsti [kij Pj(t) = k;i Pi(1)], 1

A. Master equation

*Present address: Department of Chemistry, University of Washwherek;; is the first order rate constant for transitions from
ington, Box 351700, Seattle, WA 98195-1700. well j to well i. We can set up a transition matri§¢, with
TAuthor to whom correspondence should be addressed. components
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Nmin An alternative way of solving the master equation is to
Wi =kij— §ijmz—l Kmi» (2 integrate Eq(3) numerically. This appr~oach has the advan-
N tage of not requiring diagonalization ®¥, and is therefore

so that the diagonal componeis; contain minus the total the only way to proceed for large databases. However, it has
rate constant out of minimur This definition allows us to & Number of disadvantages. First, knowledge of the eigenval-

write the set of coupled linear differential equatigis—the ~ ues and eigenvectors &Y is useful in interpreting the time

“master equation”—in matrix form: evolution of P(t). Second, accurate integration over long pe-
riods can be very slow, since the accumulation of numerical
dP(t) error can cause the sum of the probabilities to diverge rap-
—ar - WPQ). (3 idly. Third, the full probability vectorP(t) (rather than se-

lected componentsnust be propagated, and the integration
If W cannot be decomposed into block form, then the systenmust start from the time at which the initial probabilities are
has a uniquely defined equilibrium staR9 for which  specified.
(dP/dt)|p—pes=0, i.e., W has a single zero eigenvalue If the initial probability vectorP(0) is strongly nonequi-
whose eigenvector is the equilibrium probability distribution. librium, many components d¥(t) change rapidly as soon as
W is asymmetric, but can be symmetrized using the condithe integration starts, and then relax more slowly toward

tion of detailed balance: at equilibrium, equilibrium. Therefore, when numerically integrating the
master equation, the step size required for a given accuracy
W;; PF=W;; P, (4)  is usually smaller when is closer to zero, and can be en-

larged ast grows. To take advantage of this, the numerical
so that\7vi]-=(P}9q/Pieq)1/2\Nij is symmetric W andW have integration in the present work was performed using a
the same eigenvalues;, and their respective normalized Bulirsch-Stoer algorithm with an adaptive step 4iz6]. Re-
eigenvectorm(i) andu® are related bw(i):S"l‘J(i)’ wheresS sults f_rom th|_s method coincided precisely with tho_se of the
is the diagonal matris; = \P® Hence individual compo- analytlc_solut_lon, where the latter cquld be determined.

) 0_~() 55 . The linearity of th_e master Qquatlon rests on the assump-
nents of the eigenvectors are relatedlfyy=u’ VPf% The  ion that the underlying dynamics are Markovian. The prob-
solution of Eq.(3) is then[1,9] ability of the transitioni—j must not depend on the history

of reaching minimum, so that the elements of the transition
5) matrix are indeed constants for a given temperature or total

energy. For this restriction to apply, states within a potential
well must equilibrate on a time scale faster than transitions to
different minima, so that the transitions are truly stochastic.
Previous results for other clustef$1,12 suggest that in-
trawell equilibration is quite rapid. The Markovian require-
ment will impose an upper limit on the temperatures at
which the master equation can be applied to transitions be-

and\;<0 for 2<j<ny,. Ast—x, only thej=1 term in i - ! t hiah t t the oh int
Eqg. (5) survives, andP(t) — P This limit defines the base- ween minima, since at high temperatures the phase poin
does not reside in any one well long enough to establish

line to which the remaining modes decay exponentially. The =~~~ TR A ; . :
size of the contribution of modg to the evolution of the equilibrium within it. Division of configuration space into

probability of minimumi depends on componenbf eigen- the basins of attraction surrounding the minima is less useful

vectorj, and on a weighted overlap between the initial prob—In this dynamical regime.

ability vector and eigenvectoy, i.e., the term in square

brackets in Eq(5). The sign of the product of these two B. Rate constants and equilibrium properties
guantities determines whether the mode makes an increasing

or decreasing contribution with time. Combinations of X ) .
modes with different signs give rise to the possibility of the MiNiMa using the master equation requires a knowledge of

accumulation and subsequent decay of transient populatior}8€ rate constants;; for their interconversion. For the path
as probability flows from the initial state to equilibrium via F0M Minimumj through a particular transition state, denoted
intermediates. T, a general form for the rate constant is provided by Rice-

Equation(5) requires the diagonalization of the matii, Ramsperger-Kassel-Marc{&RKM) theory[13),
whose dimension is the number of minima in the database, WH(E)
Nmin- The time required to compute the eigenvectors scales kJ-T(E)Z hQ.(E) (6)
as the cube of the dimension, and the storage requirements !

scale as its squaréAlthough W may be sparse, its eigen-

vectors are not.However, once diagonalization has beenHere();(E) is the density of states associated with minimum
achieved, P;(t) can be calculated independently for anyj, and

minimum i at any instant. The only restriction ort comes

from the accuracy to which the eigenvaluescan be ob-

tained; if the error is of the ordei\, Eq. (5) may diverge as Wi (E)= IEQT(E’)dE’ @)

t approaches BA. vi

nmin~ ) Nmin o Pm(O)
Pi(h)=VPFY, e X Ul ——
=1 m=1 Pm

whereu{!) is componentn of u(.

Apart from the zero eigenvalue, all thg's are negative
[1]. We label eigenvalues and eigenvectors in order of de
creasing algebraic value of the eigenvalue, so that 0,

To model the probability flow within a database of
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is the sum of states at the transition state with the reactivevherer, ande are the dimer pair separation and well depth,
mode removed()'(E) is the density of states at the transi- respectively.p is a dimensionless parameter which deter-
tion state excluding this mode, aid is the potential energy mines the range of the interparticle forces, with srpatior-
of the transition state. The total rate consteptfor the pro-  responding to long range. Physically meaningful values in-
cessj—i is then obtained by summing E¢p) over all tran-  cludep=3.15 and 3.17 for sodium and potassi{&] up to
sition states linking andi. about 14 for G, moleculeg19,20. Whenp=6, the Morse
Rates in the canonical ensemble, i.e., as a function opotential has the same curvature as the Lennard-Jones poten-
temperature rather than energy, can be obtained front@q. tial at the minimume, r,, and the atomic mass define the

by Boltzmann weighting; thus system of reduced units for the Morse potential indepen-
dently of p, giving (mr2/€)*? as the reduced unit of time.
JWkT(E)Q_(E)e—E/kBT dE Deta_ils of dat_abases obtained for four valuespolfiave
vt ) been given previouslf4]. They demonstrate that the energy

kiT(T): o ' ®) landscape of these clusters is a single funnel—a collection of
f Q(E)e” ElkeT dE kinetic pathways leading to a particular low-energy structure.
Vi However, as the range of the potential is decreased, the mean
difference in potential energy between adjacent minima de-
creases, and the funnel becomes less “steep.” At the same
time, the downhill barrier heights increase and the number of
@ stationary points increases dramatically—the system must
Zj(T):j Q;(E)e” F*sT dE  and then overcome more barriers to reach the global minimum—
Vi making the landscape more “rough.” These combined ef-
" fects are expected to hinder relaxation toward the global
ZT(T)ZJ Qf(E)e FkeT dE (99  minimum. In Sec. Il A, we examine the performance of
vt some partition function models for the equilibrium properties
of the clusters, before addressing the dynamics in Sec. Il B.

where V| is the potential energy of minimurp Since the
Laplace transforms

are the vibrational partition functions of the minimum and
transition states, respectively, we obtain

A. Partition function models

! kT ZT(T) . . .
K[(T)=— 5= (10) The ingredients for the equations of Sec. Il B are the den-

h z;(T) sities of states for each minimum and transition state. If the
Assigning a density of states or partition function to eachharmomc approximation is applied to the vibrational density

) L2 o . of states of a one-componeNRtatom cluster, the result is
minimum implies that the equilibrium properties of the sys-
tem are described by the superposition princiild—16. ONI (E—V,)* 1
The total density of states and partition function are given by QiHO(E) SRR b — (14

) ) hPC (k—1)!(hy;)~
QE)=>, O(E) and Z(T)=2>, z(T). (11 _ _ _
i=1 i=1 wherev is the geometric mean frequenoy=3N—6 is the

number of vibrational degrees of freedom, anfef is the
order of the point group of the isomer. The corresponding

partition function is

Application of detailed balance to Eq®) and(10) supplies
the equilibrium occupation probabilities in the microcanoni-
cal and canonical ensembles:

PPAE)=Q,(E)/Q(E), PAT)=2z(T)/Z(T). (12 _ 2N! (kgT)"

- —e_vi/kBT_ (15)

zHom) = °
hPe (hv))«

I

These components emerge from the master equation as
{—oo,

The use of();(E) and Z;(T) to calculate rates for the Equations14) and(15) can be applied to transition states by
master equation wheR+P® [i.e., when Eqs(12) do not excluding the reactive mode, in which case3N—7.
hold] still requires thermal equilibration of phase points The harmonic treatment is approximate in two ways.
within each potential well. This condition is fulfilled under First, the actual model potential becomes highly anharmonic
the time scale separation of interwell and intrawell motionas one moves away from a local minimum. Second, the den-

mentioned at the end of Sec. Il A. sity of states around each minimum is modeled as the surface
area of a hyperellipsoid in phase space, and the overlap of
IIl. MORSE CLUSTERS the hyperellipsoids belonging to different minima is ne-

glected. Both these effects become more pronounced as the
In this section, we apply the master equation to databasegtal energy increases; highly anharmonic barrier regions are
derived for the 13-atom Morse clustbt;3. The Morse po-  reached, and the phase space hyperellipsoids become larger.
tential[17] can be written as A simple test of the partition function model is to com-
pare the equilibrium probability of the global minimum pre-
VZE Vi Vij:ep(l—rij Ira[errii"d—27¢, (13) dicted by.Eqs.(12) with the fr_action_ of quenches to this
i< structure in the course of a simulation. We have observed
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FIG. 1. Equilibrium occupation probability of the global minimuep row) and canonical caloric curvedottom row for M5 with
p=4 (left column and p=6 (right column. Circles: canonical MC simulations; solid lines: harmonic approximation; dotted lines: MB
method, dashed lines: MB=0.1) method(see texk

elsewherd12] that the harmonic approximation works quite study by Ball and Berry21,22. These authors considered a

well for the equilibrium probabilities of Ldisomers in the variety of analytic forms foZ;(T) which attempt to improve

microcanonical ensemble, even in the liquidlike regime. Fig-on the shortcomings of the harmonic approximation. The

ures 1a) and Xb) show how the harmonic approximation greatest improvement was produced using an anharmonic

performs for the global minimum of thdl,; clusters with model based on a first order expansion of the density of

p=4 and 6 in the canonical ensemble, using the databasetates for the Morse potentif23,24]. The anharmonic cor-

obtained previously4]. The graphs also show the equilib- rection for each minimum was derived from the heights of

rium probability of the global minimum obtained by quench- the barriers connected to it. The resulting partition function

ing from canonical Monte CarlMC) simulations. In the for this “Morse barrier” (MB) method is

simulations, a spherical container of radius &as imposed

to prevent evaporation. At each temperature 12° single- N _

particle warm-up steps were performed before collecting ZM"(M)=z/°T] (1+a{PkgT)“. (16)

data over X 10? steps, quenching every 46teps to find the =1

local minimum in which the phase point resided. The har-

monic curves depart from the MC results soon after the clusln this expressionp; is the number of transition states con-

ter begins to melt. Fop=6 [Fig. 1(b)], the harmonic curve nected to minimum, anda{’=(2AV{")~* is the anharmo-

has the correct qualitative shape, but is shifted to higher temmicity parameter derived from the barrier heightvf'), of

perature. Forp=4 [Fig. 1(a)], however, the harmonic ap- the jth transition state connected to minimumrhe power

proximation underestimates the MC result increasingly badlyy;=min[1,«/n;] compensates for the possibility that there

above aboukgT=0.3e. may be more thar transition states connected to a given
The modeling of partition functions of individual minima minimum, since the original model on which E¢L6) is

for use in the master equation was the subject of an extensidieased associated one barrier with each normal mode. The
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MB model experiences problems when minima are con- 1 "min

nected by low barriers because the full series for the density ~ UMB(7P = —— ' ZMB(7)| \/ 4 (g T
. . o MB(7p) i i B

of states of a Morse oscillator, from which the partition func- Z Pli=1

tion is derived, diverges dsgT approacheQVJ('). This be-

havior correctly corresponds to dissociation of the Morse os- +a;(kgT)?
cillator, but for a cluster isomerization the density of states noe i
should remain finite above the barrier. Ball and Bdr2y]

suggested two ways to circumvent this difficulty. In the firstwhere the step function signifies that the derivative of the
approach, anharmonic corrections were applied only to lowanharmonic correction from a given mode to the partition
energy minima, which tend not to have small barriers. Thisfunction is zero once the plateau has been reached. The de-
prescription is not entirely satisfactory because the low barrivative is also assumed to vanish at the poaPksT

riers of high-energy minima are a signature of the strong= 5, , where the plateau starts, even though it is really dis-
anharmonicity in these states, which is then ignored by thigontinuous.

method. Furthermore, some criterion for selecting minima Figures 1c) and Xd) compare the canonical caloric

for anharmonic corrections is required. The second methodsyrves ofM 13With p=4 and 6 given by Eqg18) and(19).
called MB(7p), involved limiting the anharmonic correction Also shown are the results from MC simulation, obtained by
a{kgT for each barrier to a plateau valug at temperatures  adding the kinetic contributiorksT/2 to the configurational
where it would exceed this value, i.e., part given by the simulations. For both clusters, the harmonic
approximation underestimates the internal energy. The MB
method incorrectly predicts a sharp transition at the tempera-
. : _ tures where the equilibrium probability shifts from the global
Z:\AB(WP)(T):ZPOLL (1+min[7p,a ke TD. (1D minimum in Figs. 1a) and 1b). The MB(7p=0.1) method,
however, represents only a marginal improvement on the
harmonic approximation. We have also found this to be the

Although a reasonable value g might be expected to be case for the Lgcluster studied by Ball and Berf1], using
around 0.5i.e., wherekBTzAVj(”), the best agreement with the model that gave the greatest improvement for the equi-

guenching from constant temperature molecular dynamicgbrium probabjlities of the various isomers. Thls result
(MD) simulations was achieved fofp~0.1 shows that optimizing the models for the probabilities does

The global minimum equilibrium probabilities of thé BOt necezs%\r/il); profduceczj t?ﬁ forriﬁt tr}_errtnodgnamichbehavi_or.
clusters witho=4 and 6 using the MB and MB{fp) formu- oye ?n ales foun ht at, while tlrr18 t(r)]r er 3“ arm_or:jlc
lations are shown by the dotted and dashed lines in Figs. 1 corrections were enougnh to improve the thermodynamic de-

and 1b). The inadequacy of the unconstrained MB model isscnphctJ_n of L1s in the super?ostl';]lon meltlhod,azecond order
obvious; the large anharmonic corrections of the high-energ)(/:or'z\eC lons were n%ceissharydor ne srpa efsll ]f' individual
minima cause these states to dominate as soon as they be- ttempts to model the density of states of individua

come energetically accessible, making the probability of thdninima l:rs]mghan“arr]\alytl”c f;mr::n%n qf thfe energy mph_cﬂlyl
global minimum plummet at an artificially low temperature. assume that the “shape” of the basin of attraction is simple

For p=4, the MB(%p) model produces a marginally better e_nough to be describe_zd adequately by SL.’Ch a form. In prac-
match to the MC data at low temperature than the harmoni@®e: basins of attraction are probably highly Comp'ex ob-
approximation, but then deviates more rapidly. For6, jects. For example, in previous wofk] we saw that Increas-
quite a reasonable improvement is achieved. However, thi0g the range of the potential removes locally stable minima,

position of the curve is continuously adjustable from the MB ut remnants of these features are likely to persist as shoul-

method(effectively »p=2) to the harmonic approximation ders or inflections on the PES, so that regions of configura-
(75=0), so it is difficult to argue that the improvement is tion space that were associated with shallow minima for a

based on physical insight shorter-ranged potential become formally associated with
The effect of the partitibn function model on the equilib- other minima when the range is increased. These features

rium probabilities of minima other than the global minimum rn_lgh; explain thy trle4rm)delf parEt(ISon function results in
is hard to gauge for a system where there are so many (ﬁ"g_l'_ .ﬁtretwczrsteh_opg i an horp— ' f d mi .
them, since the quench statistics are poor. However, an im- 0 llustrate this €fiect, we have performed microcanoni-

pression of the overall description of the PES can be gainegfﬂsxf rzisrglrﬂz}gﬁs Ojvl\i{[lﬁpvzitg Flg:r?c; d?::n(;ulc_j\s(:'hiv:gi(\:/\r/]as
. . . v 13 - .
through thermodynamic properties derived from the superpo pplied, and the Euclidean distanBewas calculated be-

sition method. The internal energy can be obtained from th ween the configuration point taken at the start of the quench
; _ 2 i -
standard relatiot)=kgT (71n Z/dT)yy. The harmonic ap- 4% o ool minimum to which it converged. The distribu-

roximation yields the classical equipartition result :
P y quip tion of D for the subset of quenches that led to the global
minimum is plotted in Fig. 2 at two energies for each cluster.

ni a,(i)(ﬂp_ajkaT)
=1 1+allkgT

, (19

n;

Nimin In each case, the lower energy has been chosen just above
UHO:% E ZMO(V;+ kkgT), (18  that at which the trajectory can escape from the global mini-
i=1 mum, so that over 95% of quenches return to the global

minimum, and the cluster is exploring a large proportion of
the catchment basin of this structure. The higher energy was
and the MB(p) model[Eq. (17)] gives chosen such that about half the quenches return to the global
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mum basin comes from Fig. 1. The MC results for6
show that the increase in gradient of the caloric curve—
indicative of the system sampling a new region of configu-
ration space—occurs at the temperature where the trajectory
begins to escape from the global minimum, as shown by the
decrease ifPg1,,. The transition is therefore out of the basin
of attraction of the global minimum, effectively from solid-
like to liquidlike states. The analogous results ot 4 show
that the transition feature in the caloric curve starts before the
probability of the global minimum drops significantly. This
behavior is suggestive of a weak transition from configura-
tions close to the global minimum to higher-energy ones, all
taking place within the basin of attraction of the global mini-
mum itself.
‘ ‘ The picture of the basin of attraction around the global
® minimum that emerges is therefore complex. It extends far
F=—337¢ into configuration space from the icosahedron, and past the
%1 ] catchment basins of local minima in certain directions. The
structural dissimilarity of some points which are formally
associated with the global minimum suggests that quenching
might not be the most meaningful way of dividing configu-
E=30.0¢ | ration space among the various minima. From this point of
view, the underestimation of the global minimum probability
in Fig. 1(a) by the harmonic superposition method is some-
what misleading, since it is not helpful to think of the distant
configurations as belonging to the icosahedral well. The har-
monic approximation may therefore give a more meaningful
probability that the cluster has a structure resembling the
global minimum than quenching.

FIG. 2. Distribution of Euclidean distances to the global mini- N summary, although the harmonic approximation has
mum from configuration points in its basin of attraction f@  ONIY partial success in describing the equilibrium properties
Mys, p=4 and(b) Ldys. For each cluster, the distributions from of the clusters examined here, it is attractive in its simplicity,
microcanonical MD simulations at two energies are shown. Atlack of empirical parameters, and clear physical basis. More
lower energy the majority of quenches lead to the global minimumcomplicated analytic models do not necessarily provide
and at higher energy about half do so. The quench interval was 1greater insight, or even systematically improved results. We
reduced time units. The duration of the high-energy simulations wagherefore adopt the harmonic approximation for the rate con-
6x10°, and that of the low-energy ones wax 30°. The shaded stant and equilibrium property expressions in Sec. Il B, with
areas show the distance distribution of minima that are directljthe proviso that they will only be applied at low and moder-
connected to the global minimum. ate temperatures, where the description should be adequate
for our purposes. The resulting microcanonical rate con-

minimum. The corresponding distributions are broader andtants, via Eq(6), are given by
peak at a higher value db, as would be expected. The

occurrence

D/oc

shaded region on each graph shows the distributidD fdr hPG  k  [E—yT\«-1

the minima directly connected to the global minimum. Each kT(E): P! ( ) , (20)
of these minima is surrounded by its own basin of attraction, ' hPCT T DI E—V;

and a barrier must be surmounted before the configuration

point enters the catchment basin of the global minimum_.4 the canonical expression from Eg0) is

Even so, in Fig. &) for LJ;3, the tail of the high-energy

guench distribution overlaps somewhat with the distribution .

of connected minima, indicating that some of the points in N hjPG vy VoV keT

the basin of attraction of the global minimum are as far from kij(T)= PGt St 1) © el (21)

it as the closest local minima. In Fig(& for M5 with p

=4, however, the high-energy quench distribution overlaps

completely with the distribution of connected minima. The Finally, we note that the harmonic superposition method is

overlap means that many configurations which differ strucdlikely to be more successful in the canonical ensemble than

turally from the global minimum as much as the connectedhe microcanonical because at constant temperature the ve-

local minima still quench to the global minimum. Such con-locity distribution is independent of the configuration point.

figurations may include structures which for a slightly In contrast, at fixed total energy the kinetic energy is signifi-

shorter-ranged potential fall into the catchment basin of aantly further “above” the PES when the configuration

different local minimum. point is near a deep potential well than when it is near
Further evidence for the complexity of the global mini- higher-lying ones.
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FIG. 3. Relaxation of minima, grouped in “layers” away from the global minimum,Nby; at four values of the range paramegerin
each plot, layer 1 is the global minimum, layer 2 contains all minima directly connected to layer 1, etc. In each case, the microcanonical total
energy is chosen such that the equilibrium probability of the global minimum is 0.4p#ot, 6, 10, and 14F/e=—33.17-29.42,
—28.43, and-29.78, respectively. The inset fpr=14 shows the first half of the layer 5 curve with a logarithmic time axis. The time is in
units of (mr2/€)Y2.

B. Relaxation and the range of the potential ability of the global minimum is 0.4, and the solution of the
master equation is shown until the time at which 80% of this
) population(i.e., 0.32) has been achieved.

We now turn to the effect of the range of the potential on'  The most striking trend is the increasing time scale as the
the dynamics of thé (5 clusters in the light of our previous potential range decreases, as predicted by the landscape

analysis of the energy landscagiéds. The larger number of analysis[4]. The p=14 cluster takes over three orders of

rearrangements and smaller energy gradient on paths to ”ﬁ‘?agnitude longer to reach 80% of equilibrium than fhe
global minimum, as well as the higher downhill barriers, are

expected to impede relaxation to the global minimum as the_4 cluster. Note that for the latter system, the time scale
P P 9 lotted is only of the order of a few vibrational periofd§.

range of the potential is decreased. P

Figure 3 illustrates the range dependence of structural ré—n the light o_f previous work{12] .the application of the
laxation to the global minimum. The minima are groupedmaster equation to the=4 cluster is therefore probably at

into “layers” according to the smallest number of rearrange—the limit of validity, since the assump_tion pf stochastic tran-
ments required to reach the global minimum. Layer 1 conSitions breaks _down when the relaxation time approaches the
tains only the global minimum, and level 1 contains all ~ Vibrational period.

minima directly connected to a minimum in levielbut not The relaxation is straightforward fgg=4; the furthest

to any minimum in a layer lower than The initial probabil- ~ layer decays while the populations of the global minimum
ity vector at each value of is a uniform distribution among and the intermediate layer grow monotonically. /&t 6 we

the minima in the furthest layer from the global minimum. see the accumulation and decay of a transient population in
The energy has been chosen such that the equilibrium prollayer 3 as the outward flow from these minima does not

1. Relaxation to the global minimum
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10° : : . TABLE I. “Searching” characteristics oM ;3 at four values of
p=14 the range parameter. T, is the optimal searching temperature, at
\J which the search time is a minimumgy. Tioy and Trign (Tiow
10° | i <Thyigr) are the two temperatures at which the search time equals
p=6 p=10 2Tgpt-
Q
5
s10 | 1 Topt_ Tiow
§ . p KeTopt/€ Top!(Mra/€)* KeTiow/e KpThign/e Thigh™ Tiow
p=
10" L ] 4 0.293 1.47 0.135 0.344 0.76
6 0.305 6.54 0.218 0.333 0.76
10 0.285 130 0.235 0.301 0.76
10° : : . 14  0.200 2200 0.170 0.214 0.68
0.0 0.1 0.2 0.3 04

kgT /e

FIG. 4. Search time as a function of temperatureMgg at four  threshold of 0.4, and the search time is no longer defined.
values of the range parameter The search time is defined as the Similar behavior has been observed for the same reasons in
time taken for the probability of the global minimum to reach 0.4, direct simulations of KCI cluster§28] and lattice protein
starting from an even probability distribution among the minima in models[29], as well as a master equation study of idealized
the layer furthest from the global minimum. The time is in units of energy landscapd$0].

(mrg/e) ™2, Table | lists the temperatuf®,, and timer,, for optimal

o searching, as well as the two temperatufgg, and Ty, at
lmatchsthg 'rapldthlmtl?l Input f;fi”: thek_furttheit tlfllyer' I-(”f‘e which the search time equalsr@,. The differenceTygy
ayer 5 minima therelore constitute a Kinetic bottieneck 1or_ ' “nrovides a measure of the width of the temperature
relaxation down the funnel of the PES. More complex be~yindow for which searching is relatively fast. The value of
havior arises fop=10 and 14, where there are six layers of ToptiNCreases withp, as expected from the relaxation profiles
minima. The probabﬂme_s experience an |n.|t_|alljump as thepf sec. 111 A 1, and this slowing down is accompanied by a
system is released from |'§s s_trongly nonequilibrium state, angecrease in the temperature Widtg,— Tiow - AS the range
then relax slowly to their final values. Layer 5 a=14 4t the potential is decreased, the energy gap between the
(shown in the inset of Fig.)3hows particularly complicated g|ghal minimum and the other minima becomes smaller, and
behavior, rising suddenly at first, decaying slightly, and thenpe energy range spanned by the minima narrows. Hence,
rising again before relaxing monotonically. This oscillation gther minima come into play at lower temperature, and the
occurs because layer 4 develops a transient populatiofemperature at which the global minimum ceases to domi-
blocking further downward output from layer 5 while layer 6 pate the equilibrium populations is lower when the potential
is still releasing probability into layer 5 from above. is short ranged. This observation explains vilhy, falls as

These results show why increasing the range of the poter; increases. For highp, the downhill barrier% between
tial has been considered as an operation to smooth the PEginima are on average larger, so that as the temperature is
that could aid global optimizatiof5]. However, this opera- gecreased, isomerization processes slow down more dramati-
tion, although not in this example, often leads to a change iRy than for smalp. Hence, the search time increases more
the identity of the global minimurfi26,27. rapidly as the temperature is lowered beydhg; when the
potential is short ranged, resulting in the narrower ranges of
Thigh™ Tiow -

By analogy with the “folding time” in the protein folding An analogy can be drawn here with the ease of folding in
literature, we can examine the ability of the cluster to find itsproteins. The ratioT;/T, of the “folding temperature”
global minimum by defining a “search time” as the time (where the native state becomes thermodynamically most
taken for the probability of the global minimum to reach astablg to the “glass transition temperaturgfhere the ki-
particular value after the system is released from a nonequpetics slow down dramaticaliyhas been used as a measure
librium state. Here we use a probability threshold of 0.4, butof the ability of a protein to fold correctly29,31]. For the
we will discuss the effects of changing this choice. cluster,T; is roughly related tdl gy, Which decreases with

Figure 4 shows the search time fif,3 as a function of increasingp, while Ty increases because of the higher barri-
temperature using four values pf The initial probability — ers for short-ranged potentials. HenEg/ T, falls, in accor-
vector was a uniform distribution among the minima in thedance with the observation that searching for the global
layer furthest from the global minimum. The qualitative minimum is harder whep is high.
shape of the curves is easily understood. As the temperature Interestingly, the curves in Fig. 4 fer=4, 6, and 10 have
is increased from low values, the search time decreases bsimilar shapes. For example, the valueg gf; differ by only
cause the thermal energy rises above the barriers between thig¢o. FurthermoreT, lies about three quarters of the way
minima. An optimal temperaturé,, is reached, where the from Ty, to Ty, in all three cases, as shown by the last
search time is a minimunr,,;, above which it rises because column of Table I.p=14 represents an extreme case in
the thermodynamic driving force toward the global minimumwhich relaxation to the global minimum becomes very slow
is reduced at higher temperatures. Ultimately, the equilibfor values outside a small range n€Bg,. This optimum
rium probability of the global minimum falls below the temperature is a compromise between the slow dynamics at

2. Search times
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even moderately low temperatures, and the rapidly decreasaviors. For example, the random energy model, where the
ing thermodynamic weight of the global minimum at mod- states have a Gaussian distribution of energies, can lead ei-
erately high temperatures. ther to stretched exponentia exd — (t/7)?]) or to power law
Choosing a different occupation probability of the global («[ 7/t]P) relaxation of autocorrelation functions, depending
minimum as the criterion for the search time has predictablen the form chosen for the transition raf88]. Palmeret al.
effects. If a higher threshold is used, the search time inalso derived a stretched exponential behavior for a hierarchi-
creases at any given temperature. The equilibrium probabikally constrained modé¢B4]. In contrast Skorobogatigt al.
ity of the global minimum drops below the threshold at afound power law and logarithmic{(—Int) decay, but not
lower temperature, so the upper limit for which the searchstretched exponential decay, of the total energy in a protein
time is defined decreases. The search time rises more steephodel[35], depending on the temperature regime.
below T, because the probabilities must come closer to Starting from a uniform distribution among the minima in
their equilibrium values, and this approach is asymptoticthe layer furthest from the global minimum, we found that
The combined effect is that the search time curves all benone of the above formgpure or stretched exponential,
come narrower. However, for the cases tesied 4 and 6, power law, or logarithmicgave a robust fit to the decay of
Topt changed by only 10% as the threshold was varied fronthe total energy from the master equation. At sufficiently
0.2 to 0.5. long times, Eq(22) approaches a pure exponential behavior,
since all contributions except that of the slowest mode have
3. Relaxation of the total energy decayed. At intermediate times, the parametpesticularly
The evolution of the probability vector towar@§is ex-  the stretching exponer#t) that produced the best fit for the
pressed macroscopically by the relaxation of some Overaﬂ‘,tretched expone_ntlal form were hlghl_y sensitive to the time
propertyA to its equilibrium valueA®. If this property has a Interval over which data were supplied, and the resulting
well defined valued; for each staté in the master equation, CUrves often deviated significantly from the master equation

the expectation value is a weighted average which can peolution. The difficult.y of obtaining an acceptable fit in-
expressed as a function of time using E5): creased with decreasing temperature, where the spread of the

exponents\; is wider. Of course, there is no reason why a

general multiexponential form like E¢g22) should conform

to any simplified model.

Although the relaxation profiles are complicated, the

(220  mean relaxation time@ntegrated profileswere found to fol-

low simple empirical expressions. Figure 5 shows the loga-
where rithm of the relaxation time as a function of inverse tempera-

ture forM (3 with p=4 and 14. Thep=14 plot in Fig. 8b) is

Nmin ] Mmin - p well fitted by the Arrhenius formr, =75 exp@/kgT) with
> Aiﬁ"ﬁi‘”H > UEA)LS; . (23 7,=9.34x10 ¥(mr/e)"2 and A=2.00. The p=4 plot in
=1 m=1 VP Fig. 5@a), however, shows a significant deviation from the
linearized Arrhenius expression. It is better fitted by the
ubiquitous Vogel-Tammann-FulchévTF) form [36]

Nmin Nmin Nmin

<A(t)>:21 AiPi(t):El Cje}\jt:Aeq'i‘ 22 Cjexjt,
i= i= i=

Cj=

and the last expression in E(R2) uses the fact that thg
=1 term defines the baseline for relaxation, singe=0. A
mean relaxation timer, can be defined by normalizing the
profile of (A) againstt (such that it decays from 1 tg,0and A
evaluating the area under the resulting cui82]. For pure T =To ex;{—_},

; ) ! : kg(T—Tp)
Debye (single exponentialrelaxation, i.e., exp{At), one
simply obtains7,=\"1. Subtracting the equilibrium value
from the right-hand side of Eq§22), integrating fromt=0 to
o, and normalizing using the value &t 0 yields

(29

as shown by the solid line, for which the parametersgre

=1.86(mr2/e)Y?, A=0.069%, and kgT,=0.051. These

values were found by least squares fitting of the logarithm of
- . Eq. (25 with equally weighted points.

-~ 1 The slower relaxation and larger database for gkel4
=2 G 2‘2 Ci- (24) cluster meant that it was not computationally feasible to ex-
tend Fig. %b) to lower temperature—the lowest point shown
If the eigenvectors and eigenvalues of the transition matrixs atkgT=0.13c—and it is possible that deviation from the
are not availabler, can be obtained by propagating the mas-Arrhenius behavior would occur below this value. However,
ter equation numerically unti{A) has effectively equili- the curvature of theg=4 plot is clear over the same range,
brated, and then numerically integrating the normalized reindicating that the relaxation dynamics of the two clusters
laxation profile. Here we will examine the relaxation of the respond differently to temperature changes. The origins of
total energy ofM 13 as the populations of the minima equili- the difference probably stem from the decreasing slope of the
brate at constant temperature. Within the harmonic approxienergy landscape as the range of the potential is shortened.
mation, therefore, we needl=V,+ kkgT in Egs.(22) and  The energy intervals spanned by the minimum and transition
(23. state samples at highgrare narrower, making the landscape

Theoretical treatments have shown that, under particulamore uniform. This uniformity means that a change in the
circumstances, the multi-exponential decay that arises frortemperature has a similar effect on most of the individual
the master equation can lead to a variety of asymptotic beinterwell processes, each of which separately has an Arrhen-

=2
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4. Relaxation modes

Is the time scale of relaxation mostly determined by the
slowest relaxation mode of the master equation, i.e., the least
negative nonzero eigenvalue of the transition matrix, or is
the process it describes relatively unimportant? Equations
(22) and(23) show that the contribution of a given mode to
the relaxation of a global property depends both on the prop-
erty and on the initial probability distribution. However, we
can still probe the nature of the probability flow described by
a particular relaxation mode by comparing the size and sign
of the components in the corresponding transition matrix ei-

08, p s 10 genvector. Consider E¢S) for a particular value of; mode
e/ kT j makes an important cqntrlbutlon to the probablllfty evolu-
tion of minimum i if u’—or equivalently \/Pfu{)—is
12 ® large in magnitude. The mode represents an overall Bew
tweenminimai andk if u{? andu{’ have opposite signs.
10 | ) The extreme eigenvalues and eigenvectors of the transi-
o tion matrix can be obtained efficiently for large matrices us-
8 o . ing Lanczos iteratiof38]. Inspection of the components of
; e : the eigenvectors fol .5 at different values op and differ-
6 O/,o | ent temperatures reveals some general trends. The extreme
o modes(i.e., the slowest and fastgstescribe probability flow
/0'6 between a small number of minima, typically fewer than
4 [ 0 ] five. The fastest modes tend to be between minima that are
directly connected by transition states. In contrast, the slow-
24 p p p s est modes are between unconnected minima, and probability

flow involves intermediate minima. The slow modes tend to
involve one highly populated minimum. Hence, if the initial
FIG. 5. Canonical ensemble Arrhenius plots for the relaxationprobabilities of the other minima that feature in these relax-
time of the total energy oM 5 at (8) p=4 and(b) p=14. Circles  ation modegwith eigenvector components of opposite gign
are mean relaxation times from the master equation, dashed lingre far from their equilibrium values, the slow modes may
are fits to the Arrhenius form, and the solid line(a is a fit to the  [imit the overall relaxation.
Vogel-Tammann-Fulche(VTF) form. The relaxation time is in The number of minima participating in relaxation mgde
units of (mr3/e)">. can be measured using the index

&/ kgT

ius temperature dependence in the model we have [isgd
(21)]. On the steeper landscape of {fwe 4 cluster, however, Nin 2
there is a greater spread of local minimum energies and bar- ( > [ﬁi(l')\/ﬁq]z)
rier heights, so that as the temperature is lowered, some pro- 7= =1 (26)
cesses become “frozen out” before others, resulting in I Nmin ~ i) Sewa ’
longer relaxation times than expected by extrapolation of the Z’l [u! \/ﬁ]
high-temperature behavior.
In structural glasses, Arrhenius temperature dependence
of relaxation times is associated with strong liquids, whereas _ . . . ~ .
VTF behavior is indicative of fragilityf37]. If this classifi- which varies from 1 tay,. Figure 6 shpwmj as a function
. . . ._of the eigenvalue\; for all the relaxation modes df 3,
cation can be applied to clusters, the results of this section !

. . - with p=6 at two temperatures. As observed above, the num-
suggest that increasing the range of the potential mtroducesba(:“r of minima. involved in the fastest and slowest modes is
degree of fragility. Stillinger’s picture of strong liquids hav-

) “uniforml h land olis in I small. Many intermediate modes only involve a small num-
ing a “uniformly rough” energy landscapg82] is in line o of minima too, but the modes that describe more global
with our previous analysigt], which showed that decreasing o,y are all clustered in the center of thiegarithmid scale.

the range of the potential tends to lower the mean energypis pattern is more pronounced at the higher temperature.
difference between connected minin(the slopg, and in- In a typical application of the master equation, therefore,
crease the barriers between thétime roughness Hence at  the initial processes involve rapid equilibration between
low p paths between pairs of minima are organized into &mall groups of minima that are adjacent in configuration
larger-scale funnel, while for higher the funnel feature is space. This is followed by wider probability flow between
less prominent and a more uniform series of paths with sigtarger groups of minima, and finally slow adjustment of the
nificant barriers must be traversed to reach the global minipopulation of a few minima via processes involving multiple
mum. rearrangements.
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40 . . . connectivity graph(5,6] clearly showed two separated re-
(a) gions of configuration space, each having the character of a
funnel. The global minimum lies at the bottom of a small
. funnel associated with 28 minima that are characterized by
30 - | face-centered-cubic packing. The larger funnel of 446
’ minima leads to the lowest-energy icosahedrally packed
minimum. Since this secondary funnel accounts for a large
= 20 - L m | volume of configuration space, and because the liquidlike
’ =5 minima are structurally more similar to the icosahedral
minima than the fcc ones, the icosahedral funnel is expected
to act as a kinetic trap for relaxation from high-energy states
10 - 1 to the global minimum.
By grouping together the minima in each of the two fun-
: nels, we can study not only equilibration within the funnels
R ) : o as for M3, but also the dynamics between the funnels.
0 5 =) =) X q 2 Hence we define the probabilities
10 10 10 10 10 10
—A
100 w r 1 Pe)= 2 Pi(t) and Pidt)= 2 Pi(t).
(b) i efcc i eicos
(28)
80 ; 1
‘. The database obtained in previous wpsk6] is a good rep-
S resentation of the low-lying regions of the PES, but does not
60 o . extend far into the liquidlike regime, and so we are restricted
to studying the dynamics at low temperatures, where the role
" of the liquid is less important. This is not a serious restric-
40 + _ tion, since the time scale separation of interfunnel and in-
trafunnel processes should be greatest at low temperature.
To obtain an impression of the temperature range over
20 . which valid conclusions can be drawn, Fig. 7 presents some
properties calculated using the harmonic superposition ap-
proximation and the full low-energy database of 6000
05 Fileenl 1 minima and 8633 transition states. Figure)7shows Pge
10 10 and Pl as a function of temperature. The global minimum

only dominates at very low temperatures, since the larger
FIG. 6. Number of minima participating in a relaxation mode of number of minima and lower vibrational frequencies in the

the master equation as a function of the eigenvalue of the mode fdfeS@hedral funnel cause the phase volume of the latter to
Mys, p=6, at(a) keT=0.15 and (b) kgT=0.4Ce. The mode with  ise rapidly. At sufficiently high temperature the cluster

zero eigenvalue has been excludeds in units of (e/mr2)Y2, should melt, and the occupation probabilities of the two fun-
nels, which contain predominantly solidlike structures,
IV. INTERFUNNEL DYNAMICS IN LJ 45 should approach zero. However, the steady rise of the curve

VZE Vij’ Vij:46

i<j

marked “rest” (i.e., 1— P~ Picod iS interrupted atkgT
We now turn to the double-funnel energy landscape of the< 0. 2¢, reflecting the fact that the sample of minima does not
38-atom Lennard-Jones clustersgJThe potential energy is represent the relevant regions of the PES very well above
given by[39] this temperature. Figure(h) shows the heat capacity, de-
rived from Cy=(9U/dT)y and Eq.(18). The small peak at
12 6 kg T~0.12¢ results from the transition from the fcc to icosa-
g g . . . .
_) _(_> , (27 hedral regions of configuration space, and the main peak at
ij Fij ksT~0.18¢ signifies the melting transition. These features
are largely in agreement with a more sophisticated anhar-
whereo is the pair separation at whidl; =0, ande is the  monic superposition method, which was designed to model
pair well depth. We will uses and e as the units of the the thermodynamics from a representative sample of minima
quantities they measure, setting both equal to unity; the tof24,40. The harmonic results presented here predict a lower
pology of the PES is not affected by the values of thesgeak for the melting transition, and beyond the melting tem-
parameters. perature the heat capacity returns to its solidlike value. This
The LJg cluster is too large for a complete catalog of result again reveals the deficiencies of the sample of minima
minima and transition states to be obtained. However, wén the liquidlike regime. We conclude, however, that as far as
have previously performed a thorough characterization of théhermodynamic properties are concerned, the present sample
low-energy regions of the PES using a database of 6006hould be adequate fézT<<0.2¢. The corresponding limit
minima and 8633 transition statg§,6]. The resulting dis- in the microcanonical ensemble < —150¢, and the fcc
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FIG. 7. Low-temperature properties ofdgEalculated using the
harmonic superposition approximatio@ Equilibrium occupation
probability of the fcc and icosahedral funnels and the rest of con
figuration space, antb) the heat capacity.

FIG. 8. Spectra of transition matrix eigenvalues fogdih the
microcanonical ensemble &) E= —160e and (b) E= —150e. In
each case, the eigenvalue of the most prominent interfunnel mode is
marked by an arrow, showing the greater separation of its time scale

. . from the other relaxation modes at low eneray.is in units of
and icosahedral funnels have equal probability Bt (elma?)2

—160.5%. We note that conventional simulations would not
be able to measure the quantities in Fig. 7 reliably at suchf they are not kinetically isolated, they will also appear in
temperatures because the interfunnel dynamics are too slowther, faster, relaxation modes.
One of the aims of this section is to quantify the rate of From a practical point of view, even if the transition ma-
passage between the funnels. trix can be diagonalized without numerical difficulty, it is
worth considering whether all the minima play a significant
role. If some can be discarded without affecting the relax-
ation, the size of the matrix can be reduced, saving compu-
Because the time scale of interfunnel processes is so longtional effort. Because of the astronomical number of
at low temperatures, numerical integration of the masteminima on the PES, a large proportion of the minima found
equation is not feasible, so we must diagonalize the rate man a partial search are only linked to one other minimum in
trix and use Eq(5). However, diagonalization routines are the database. Within the restricted sample, these minima
likely to run into numerical problems when the matrix ele- constitute “dead ends” for probability flow. They can act as
ments span many orders of magnitude. Figure 8 shows th#tuffers, absorbing and releasing probability as it flows to-
lowering the temperature widens the spread of eigenvaluesvard equilibrium through the connected minimum, but they
At sufficiently low temperature, a number of eigenvalues becannot act as pathways for flobetweenminima or larger
gin to appear to be slightly positive, or the diagonalizationregions of the PES. The dead-end minima in our sample tend
routines may fail altogether. Czerminski and Elber reportedo be high in energy since the search algorithéh only
similar problemd9], and therefore restricted their studies to explores connections from low-energy minima thoroughly.
sufficiently high temperatures. In Sec. Ill B we saw that thewWhen a high-energy minimum is found, the search point
eigenvalues at the extremes of the spectrum tend to be ass@turns to the previous minimum and tends not to revisit the
ciated with probability flow between a small number of high-energy ones. When modeling the probability flow from
minima. If these minima are kinetically isolated, they causethe bottom of one funnel into the other, high-energy dead-
the transition matrix to become nearly decomposable, givingnd minima are unlikely to play an important role because
rise to the numerical difficulties. Since they do not partici- their equilibrium probability is low and they do not mediate
pate in the probability flow we should seek to exclude theminterfunnel flow.

A. Pruning the database
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These considerations suggest ways of pruning the data-
base. First, dead-end minima were identified, and were found
to constitute about 70% of the sample of 6000 minima. To
eliminate the kinetically isolated minima at a given energy,
the total outward rate constant was calculated for each dead-
end minimum, and the minimum was discarded if the rate
fell below a certain threshold. For example, at a total energy
of E=—160e, the rate constants for individual processes
span the range 10 to 1(e/ma?)*2. Choosing a threshold
of 1012, which corresponds to a time scale of seconds for
argon parameters, reduces the sample of minima to 5944. A
threshold of 100 reduces it to 5861. While this may be
sufficient to remove numerical difficulties in the diagonaliza- '
tion procedure, the matrices are still rather large. time

Trimming the sample on the basis of equilibrium prob- 0
abilities reduced the number of minima more dramatically. -
At E= —160e, discarding dead-end minima whose equilib- ®» T
rium probability was less than 18° left just 1825 minima,
and a threshold of IC° left 1782. Clearly, the number of
minima removed by such a method decreases with increasing
energy, since higher-energy states then become more popu-
lated. We will gauge the effect of pruning the database by
examining the sensitivity of the results to the choice of the
threshold.

n{ [PO-PYPO)-P™)}

=2t

-4}

Wn{[P()-P*1P©0)-P7])

B. Interfunnel rate constants

. . . -6 : :
What is the rate of crossing between the fcc and icosahe- 0 10000 20000 30000

dral funnels? We have previously shown that interconversion time

of the fcc and icosahedral minima is a multiple-step process

[S}—the lowest-energy path in our sample involves 13 SUCSemble with the initial probabilty of the global minimum set to

cessive rearrangements—but let us consider the over nity. Solid lines are Eq(33) for the fcc funnel, and dashed lines

scheme are the equivalent for the icosahedral funr@). E=—160e. (b)

(29) E=—150Ce. In (a) the lines coincide. The units of time afa)
10*(ma?/€)Y? and (b) (ma?/ )2

FIG. 9. Plots of Eq.(33) for LJsg in the microcanonical en-

fcc=icos,

with “forward” and “reverse” rate constantk, andk_ .
The rate of change of the occupation probability of the fcc
funnel is accordingly

Figure 9a) shows plots of Eq(33) and the analogous
expression foP;,{t) in the microcanonical ensemble &t
= —160e, starting from the global minimum. The plots were

dP(t) obtained from the analytic solution of the master equation
fcc _ . .. . el
=~k Prec(t) +K_Picod1). (30)  after removing all dead-end minima with an equilibrium
dt probability of less than 1%, as described in Sec. IV A. The

. - two lines are straight and coincide, and the slope vyi&lds
From Fig. 7, we see that at sufficiently low temperature onlyJr Kk =4.99x 10_12?€/m02)1/2_ This value cIoseI; métclﬁes

the two funnels are significantly occupied at equilibrium, aS)e of the cigenvalues of the transition matri |

opposed to minima associated with the liquidlike state. As-_ P 012 . :
suming that this is also the case away from equilibrium, pro- 4.98<10 e/mo”) 7, suggesting that the corresponding

. S oo ) eigenvector describes flow between the two funnels. The
vided that the |n_|t|al probability is itself confined to the fun “net flow index” into or out of a funnelF produced by
nels, we can write

relaxation mode of the master equation can be obtained by
(31) summing the components of eigenvedtthat correspond to

Prec(t) * Picod ) = 1. the minima belonging té [41]:

Using Eq.(31) and the equilibrium relationship

fr=2> uype (34)

k,Pgi=k_Pgd (32 feF

fcc icos’

integration of Eq.(30) gives the basic result of first order If mode i represents probability flow between the funnels,

kinetics for a two-state model: then f° and ' will be larger in magnitude than for other
eigenvectors, and will have opposite signs, so that an in-
creasing contribution is made to one funnel and a decreasing

=—(k,.+ko)t. (33 contribution to the other, depending on the initial probability
vector [see EqQ.(5)]. At E=—160e¢, for the mode whose

n Pfcc(t) - P?cqc
Pfcc(o) - Pfec0<|:
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TABLE Il. Interfunnel rate constants for Lgin the canonical ensemble;,;, andn; are the numbers of
minima and transition states remaining in the database after discarding minima with an equilibrium prob-
ability of less than 108. ¢, £ and\ are the net flow indices and the eigenvalue of the interfunnel mode.
\, k., andk_ are tabulated in units ofe{ma?)*2.

kgT/e ! Ny A free ficos Ky ko

Nmin

0.09 1770 4371 —8.50x10° 15 0.282 —0.281 7.36¢10° 16 7.77x10°1°
0.10 1770 4371 -3.96x10 %  0.399  -0.392 7.4%10° % 3.22x10
0.11 1783 4384 —9.74x10°? 0471 -0.470 3.2X10°%2  6.52x10712
0.12 1809 4410 —1.52x10° 0500 —0.499 7.3%10° % 7.80x10 %
0.13 1851 4453 —1.66x10°° 0.483  —0.482 1.06¢10°° 5.97x 10 1°
0.14 1978 4583 —1.35<10°8 0.438 —0.435 1.0x10°8 3.53x10°°
0.15 2264 4872 —8.64x10°8 0.381 —0.374 7.0x10°8 1.54x10°8
0.16 2620 5232 —4.46x10°7 0.320 —0.306 3.9x10°7 5.36x 108
0.17 2985 5599 —1.92x10°° 0.259 —0.229 1.7%x10°° 1.52x10°7
0.18 3363 5981 —7.13x10°° 0.202 —0.196 6.7%10°© 3.57x10° 7

eigenvalue matches-(k, +k_), we find f/=0.495 and The slope of the solid line in Fig. (B) s

fi9S_ _(.495. The next largest net flow index for the fcc ~ 939X 10" °(e/ma®) "%, which is not far fromhs, but is

— —5 2\1/2
funnel wasf!¢=3.97x 10~* (with a corresponding index for 2Ctually Closer tohgs=—9.39<10"*(e/mo) However,
mode 96 is only weakly interfunnefgs=1.91X10"" and

the icosahedral funnel df$3°=9.94x 10~7) and that for the '
o ) §°=—5.36X10 4. At relatively high energies, where

icosahedral funnel wat*™= —0.143(with a corresponding n?iﬁni:na outside the funnels come into play and the simplified
index for the fcc funnel off°=4.38x107%). This result piay P

nambiauously identifies the fourth mode with interf nnelscheme of Eq(29) breaks down, the net flow index therefore
u 'guousty 1 ., u with 1 u still provides a convenient way of identifying the most im-
relaxation at this energy.

To test the effect of having pruned the database. we IOWportant interfunnel relaxation mode and extracting the quan-
gp - oo oty (ke +ko). This method also has the advantage that it
ered the threshold for removal of minima from an equilib-

i o L does not require evaluation of the master equation solution
rium probability of 108 to 10 *2 resulting in a larger re- q q

maining sample of 2289 minima. The net flow index itsel.
picked out relaxation mode 17, whose eigenvalue was The equilibrium relationship Eq32) allows the separate

. ! rat nstant ndk_ for interfunnel flow t tain
=—4.98<10 (e/ma?)'? i.e., the same as was obtained ate constantk,, andk_ for interfunnel flow to be obtained

. ) ; ) ) from the eigenvalue. Table Il shows andk_ as functions
with the higher threshold. Replotting Fig(s) also ylelde_d of tempera?ure in the canonical evrﬁemble. At each tempera-
the same result as before. We note that, even though this "Yre, the database was pruned using an equilibrium probabil-

sample is less than half the size of the full database, thﬁy threshold of 108, and the table shows how many of the

lowest eigenvalues already clash with the precision of th?ull sample of 6000 minima and 8633 transition states re-

e oo o esente] o e, A e fowest o femperatre, h prning proce
and it does not a%cect the result in this casz P dure removed all dead-end minima. The table also shows
) that the net flow indices for the interfunnel mode decrease in

At low energy, the interfunnel mode is easily identified. magnitude at the higher temperatures. This reduction is a

As the energy is raised and more processes become “unfrg- . S . i
zen,” the distinction is somewhat less clear. Figur@)9 Yesult of the increasing involvement of higher-energy and

shows EQ.(33) starting from the global minimum &=
—150e. The database was pruned using an equilibrium prob-
ability threshold of 108, and contained 3789 minima. While
the decay ofP;(t) obeys the linearized relationship, the
evolution of P;.,{t) deviates from it increasingly as time
progresses. This deviation is partly because minima outside
the two funnels have non-negligible populations, so B4)
does not hold, and also becau®g,{(t) does not rise mono-

rate constant
—_
(=3

tonically to its equilibrium value, but overshoots slightly 10"

and then decays. The net flow index picks oOMgs

=-9.19x10 %(e/ma?)¥? with f=0.0859 and fi§° 10

=—0.0686. These values are considerably smaller than those

obtained atE= —150e. Although other modes may have a 107 h L : " -

higher flow index for one funnel, the value for the other
funnel is then either much smalléndicating that the mode
describes flow between one funnel and the nonfunnel $fates FIG. 10. Arrhenius plot ok, (circles andk_ (squaresfor the
or of the same sigfiindicating that flow is nobetweenthe interfunnel dynamics of ls}. The lines are fits to the fornk
funnels. =A exp(—E,/kgT). The units of the rate constant are/ifho?)*/2

e/ kgT
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nonfunnel minima. Over the course of doubling the temperaexpected to lead to an increase in the effective activation
ture, k, changes by ten orders of magnitude. For argon paenergy with temperaturgnigher barrier paths could be com-
rameters, the span of time scales is hundreds of nanosecongistitive at higher temperatuneshich is the opposite behav-
to an hour. ior to that which is observed in fragile liquids. Other limita-
Figure 10 shows that, over the temperature range in Tablgons of our approach are the limited temperature range over
II, k. andk_ obey an Arrhenius temperature dependencevhich our database can be applied, and the simplifications in
law. Only very slight curvature is visible in tHe_ results. the modeling of individual processes. We note that Angelani
Fitting to the form k=Aexp(—E,/ksT) gives the pre- etal also observed an unexpected Arrhenius behavior in
exponential factors and activation energies for the forwardheir master equation study of a fragile glass forifet,45.

and reverse processes: The slight negative curvature in our plot kf (Fig. 10
may provide a clue to the origin of the non-Arrhenius behav-
k,: fcc—icos, A=11.1e/mo?)Y? E,=4.12, ior of the & process in fragile liquids. For kg, the curvature
is due to the small temperature dependence of the average
k_: icos—fcc, A=3.18e/mo?)Y? E,=3.1%. energy of the occupied minima in the icosahedral funnel. For

fragile liquids it has been found that below a certain tem-

Interestingly, the effective activation energy for Perature the average energy of the sampled minima decreases
fcc—icos is close to the overall barrier on the lowest-energyWith decreasing temperature until a temperature is reached at
path between the funnels, starting from the global minimunivhich further relaxation down the PES becomes kinetically
[5], which is 4.22. This result suggests that the pathwayslmpossmle[46,4ﬂ. If the energies of the transition states that.
passing over the highest-energy transition state on thbave tq be crossed to allow the structural relaxation associ-
lowest-energy pathway determine the interfunnel dynamicsated with thea process do not depend on temperature, the
E, for icos—fcc, however, is significantly lower than the effective activation energy should increase with decreasing
overall potential barrier for the reverse process, which igémperature, as is observed for fragile liquids. One corollary
3.54¢, starting from the lowest-energy icosahedral minimum._Of this interpretation, whlch could be checked by simulation,
The discrepancy can be attributed to the fact that more thal$ that for strong liquids the average energy of sampled
one minimum in the icosahedral funnel is substantially occuMinima would be expected to be relatively independent of
pied. Hence the effective barrier from the icosahedral funnel€mperature.
should not be measured from the lowest-energy minimum in
the icosahedral funnel, but with respect to a weighted aver- C. Equilibration
age of the minimum energies, ci.oPiVi. The slight curva-
ture in the Arrhenius plot fok _ is a result of the temperature
dependence of this average.

An alternative method for computing the rates for inter-

The progress of the probability vector toward equilibrium
can be visualized using equilibration grapf30,48-50Q.
Such a graph has a time axis, on which lines denote a group
of states in local equilibrium with each other. Nodes join

. '€"%ines at the time that the corresponding groups first come into
barrier between the two funnels, and then the transmlssmgqu”ibrium until there is just one group and the whole sys-

coefficient for passage over this barrig#2,43. The free tem has equilibrated. We define the time that mininaadj

energy barriers have been calculated foggLJanq were cgme into equilibrium as the smallest valuetdadfter which
found to decrease nonlinearly as the temperature is increase

toward that required for melting. Therefore, if this method is |P,(t)PS— P, (1) P
also to show an Arrhenius behavior, the temperature depen- AR S b B (35)
dence of the transmission coefficient must compensate for VPi(D)Py(t) PP

that of the free energy barriers.

We have seen that the interfunnel rates drop dramaticallis always satisfied, and in the present work we&e0.01.
as the temperature is lowered. At the same time, the increas- Figure 11 shows equilibration graphs for the six minima
ing net flow indices show that the corresponding relaxatiorin each of the two funnels of Ld that have the greatest
modes become more distinct from other processes. Thesgyuilibrium probability atE= — 150e. They are numbered in
features concur with Stillinger’s interpretation @fprocesses  order of increasing probability within each funnel. The initial
in fragile liquids[32]. In this picture,8 processes are faster vertical position of each minimum is taken as the integrated
and more localized in configuration space, whereasdhe path lengthS"™ along the shortest path to the global mini-
processes, which become relatively slow at low temperamum, making the two groups clearly distinguishable on this
tures, are thought to occur between “cratefg’similar con-  axis. Three microcanonical energies are plotted, spanning the
cept to funnelson the energy landscape. These differencesange of applicability of our database. The sample was
give rise to a bifurcation of time scales, which is visible for pruned using an equilibrium threshold of F0at each en-
LJsg in the eigenvalue spectra of Fig. 8. However,pro-  ergy. The evolution of two initial probability vectors was
cesses have been observed to have a non-Arrhenius tempecansidered: in the left-hand graphs, the initial probability of
ture dependence, in contrast with the results of Fig. 10. Théhe global minimum is unity, and in the right-hand graphs the
Arrhenius behavior may be a genuine feature of the dynamprobability commences in the lowest-energy icosahedral
ics of the Ldg cluster, but could also be a limitation of the minimum.
present approach. For example, our incomplete database con-In each of the six graphs, the minima within a funnel
tains only a limited number of paths between the two fun-come into equilibrium with each other before the separate
nels. However, competition between such paths would béunnels do so. This result explicitly demonstrates the longer
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] 51 i FIG. 11. Equilibration graphs

for LJsg in the microcanonical en-

0 . X semble at three energieq@) and

10" 10° 10° 10" 10" (b) —160e, (c) and (d) — 155,

time time and (e) and (f) —150e. In each

row, the left-hand graph is for the

20 ' ' ' ' 20 ' ' ' ' global minimum (labeled 2 hav-

| © - L @ ing an initial probability of 1, and

1 5L ) the right-hand graph is for the
lowest-energy icosahedral mini-

o 1 o mum (labeled 3) having an ini-
>~ 4 =~ 10 4 tial probability of 1. Lines repre-
E&, %, senting individual minima
] commence at a vertical position
. 5+ . corresponding to the shortest inte-

grated path lengti$®™ to the glo-

bal minimum, and an arbitrary

0° & 1 10 10 10  10° horizontal position. Nodes join
time lines when the corresponding

states first come into equilibrium.
In (a), unprimed numbers indicate
minima in the fcc funnel, and
primed numbers indicate minima
. in the icosahedral funnel. The
time is in units of Mma?/ €)'

0 0
10' 10’ 10° 10* 10° 10° 10' 10° 10’ 10* 10° 10°

time scale of the interfunnel dynamics. The order of equili-ability by the left-hand side of inequalit{35). When the
bration within each funnel is the same at all three energiesluster starts in the global minimum, the probability of the
studied, irrespective of the funnel in which the probability isfcc minima decreases monotonically, and the minima within
initiated. There is a small exception in graph)( where the funnel can equilibrate with each other rapidly. When the
minimum 6’ in the icosahedral funnel equilibrates with 3 probability is initialized in the lowest-energy icosahedral
and 5 before it joins T, 2’, and 4. Interestingly, the minimum, however, the influx of probability to the fcc fun-
lowest-energy icosahedral minimuni 3s one of the last nel must pass through the minima within the funnel on its
minima to reach equilibrium within the icosahedral funnel,way to the global minimum, and the transients must settle
presumably because of the high barriers surroundififilit ~ down almost completely before equilibrium is permanently
The equilibration of the fcc funnel is much more sensitiveestablished. This effect is reflected by the shift of the equili-
to the initial probability than that of the icosahedral funnel, bration nodes of the fcc funnel to later times as one goes
in spite of the fact that the rate constakts andk_ are  from the left-hand-side to the right-hand-side equilibration
roughly equal aE= —160e. This difference in behavior of graphs in Fig. 11.
the two funnels arises from the fact that the absolute prob- At sufficiently low energy, the global potential energy
abilities of the minima in the fcc funnel, other than the globalminimum must be the most populated state at equilibrium.
minimum itself, are several orders of magnitude smaller tharHowever, we have seen that there is a kinetic bottleneck to
those of the minima in the icosahedral funnel. Hence smaléntering its funnel. Hence, if the cluster is prepared in a
changes in probability due to transient flows easily disturdiquidlike state, it is most likely to collapse into the icosahe-
the equilibrium between minima in the fcc funnel, since dis-dral funnel, which is larger and structurally more similar to
tance from equilibrium is measured relative to the final prob-the liquid, even though it is not the equilibrium state. Over a
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10 forms, whose relative stability can be adjusted by varying the
icosahedral funnel pH. The time scale for conversion to the more stable form is
0.8 of the order of day$53].
& 0.6 || initial states | V. SUMMARY
§ We have applied the master equation to the structural da-
£ 04 tabases foiM 5 and Lg derived in previous work4,6] to
model relaxation processes in these atomic clusters. This ap-
proach can be applied to time scales far longer than those
02 fec funnel accessible by direct simulation, and describes the behavior of
an equilibrating ensemble without the need to average over
0.0100 s e " separate trajectories.
ime The harmonic approximation for the density of states of

individual minima and transition states provides a simple but

FIG. 12. Relaxation of Ls} from high-energy minima at a total physically clear basis for calculating equilibrium properties
energy of—160e, showing the fast and slow contributions to the and rate constants. Provided it is not applied at excessively
final probability of the fcc funnel. The time is in units of high temperatures, it gives a qualitatively useful description
(ma?/ €)', of the thermodynamic and dynamic properties of the energy

- . landscape.
sufficiently long time, the cluster must then convert to the g e predicted 4], relaxation to the global minimum is
global minimum. Our master equation model shows this beég|ywer when the range of the potential is shorter. An optimal
havior clearly. Starting from a uniform distribution amongst iemperature for this relaxation is obtained by a compromise
the 25 highest-energy minima in the sampR.(t) and  pepveen the decreasing rates at low temperatures and the
Pico(t) were monitored as the system evolved towards equigecreasing thermodynamic driving force at high tempera-
librium at the low energy oft=—160e. The results are yres. When the range of the potential is long, the cluster
shown in Fig. 12. o exhibits a wide temperature window over which relaxation is

The initial states decay rapidly into other nonfunnel g ite efficient. In contrast, when the range is short, small
states, and the two funnels experience a slow increase ifeviations from the optimal temperature hinder the rate ap-
population. Although some probability enters the fcc fU””e|-preciany.
it reaches a plateau while the population of the icosahedral ajthough the relaxation profiles of the total energy at
funnel continues to grow. This growth reaches a maximumixed temperature do not appear to be well described by any
before eventually decaying toward its equilibrium value, asyf the commonly used empirical forms, the temperature de-
the probability trickles into the global minimum. The icosa- hendence of the mean relaxation time followed an Arrhenius
hedral funnel acts as a kinetic trap, and only releases thg,, for p=14 and a Vogel-Tammann-Fulcher law @t 4.
cluster into the global minimum on a long time scale. WeThege results again reflect the greater uniformity of the short-
note that direct S|mulat|or_1 of the trapping effect by standardrange PES that was deduced in the landscape analysis.

MD would therefore be highly problematic. Application of the analytic solution of the master equation
Although Fig. 12 unambiguously demonstrates the sepag, the low-energy database of fFequired the removal of
rate fast and slow contributions to the relaxation, the Precisgnimportant minima and transition states from the sample.

partitioning between the two funnels at the plateau stage ca¥hesd-end” minima were removed if their equilibrium
depend on the initial probability distribution. The distribu- ,ropapility fell below a low threshold at the temperature of
tion chosen here is rather artificial because our sample Qhgrest. The relaxation modes of the resulting database were
minima does not extend into t_he liquidlike range. I_f we C°“|danalyzed using a flow index to extract the rate of passage
release the system from a high-temperature liquidlike statgeyeen the two funnels on the energy landscape at low tem-
the fraction of probability flowing into the icosahedral funnel peratures. The equilibration patterns within and between the
would probably be even larger because of the greater strugynnels clearly revealed the double-funnel structure. High-
tural similarity of the liquidlike structures with the icosahe- energy distributions relaxed preferentially into the secondary
dral rather than fcc minima. Although the fraction of fcc fynnel of icosahedral minima rather than the close-packed
minima is already small in our database, it would be muchynne| surrounding the global minimum. This behavior stems
smaller in a more comprehensive sample. _ from the greater structural similarity of the liquid to the

_ Two-stage dynamics have been observed experimentalitysahedral minima, which is reflected in the patterns of con-
in the folding of hen egg lysozyme, in which two routes to nectivity on the PES. Eventually, the cluster escaped from
the native state have been postulated: one fast and direct, thes kinetic trap into the global minimum, which is thermo-

o_ther_ passing via partially_folded conformations which act aSjynamically favored at sufficiently low temperature.
kinetic traps and reorganize to the native state only slowly

[51]. Conversely, the protein plasminogen activator inhibitor ACKNOWLEDGMENTS
1 rapidly folds to the active state, but converts to an inactive
form on a much slower time sca[&2], implying that the D.J.W. is grateful to the Royal Society, M.A.M. is grate-
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