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Abstract
Thermodynamic and dynamic properties of biomolecules can be calculated using a
coarse-grained approach based upon sampling stationary points of the underlying potential
energy surface. The superposition approximation provides an overall partition function as a
sum of contributions from the local minima, and hence functions such as internal energy,
entropy, free energy and the heat capacity. To obtain rates we must also sample transition
states that link the local minima, and the discrete path sampling method provides a systematic
means to achieve this goal. A coarse-grained picture is also helpful in locating the global
minimum using the basin-hopping approach. Here we can exploit a fictitious dynamics
between the basins of attraction of local minima, since the objective is to find the lowest
minimum, rather than to reproduce the thermodynamics or dynamics.

1. Introduction

Sampling stationary points of the underlying potential energy
surface (PES) provides a convenient way to coarse-grain
calculations of both thermodynamic and dynamic properties
in molecular science [1]. In particular, this approach is not
subject to the problems of ergodicity-breaking encountered in
conventional simulations, and it is usually possible to address
kinetics on the experimental time scale.

The stationary points in question are configurations where
the gradient of the potential energy vanishes, which are further
classified according to their Hessian index, i.e. the number
of imaginary normal mode frequencies that they possess.
A formally exact global partition function is obtained by
summing over contributions from local minima, where all the
normal mode frequencies are positive (or zero):

Z(T ) =
∑

α

Zα(T ). (1)

The individual Zα(T ) are often calculated using a classical
harmonic approximation for the vibrational density of states.
This superposition approach is at least 30 years old [1–8] and
it has been implemented with both anharmonic and quantum
corrections [1].

To address kinetics we must also determine the transition
states that link the local minima; these are defined here
as stationary points of the potential energy that possess a

single imaginary force constant [9]. Individual rate constants
for transitions between connected local minima can then be
obtained using statistical rate theory [10–14], which is usually
implemented using classical harmonic densities of states [1].

Practical implementations of this potential energy
landscape view depend upon efficient techniques for
characterizing the local minima and transition states. Locating
the transition states is generally the most time-consuming part
of such a study. However, it is now possible to treat large
systems quite routinely using methods based upon hybrid
eigenvector-following [1, 15, 16] and the doubly nudged-
elastic-band approach [17].

Once a suitable connected database of stationary points
has been constructed, a global kinetic analysis can be
performed using master equation [18, 19] or kinetic Monte
Carlo [20–23] techniques. Master equation approaches have
also been applied to discretized lattice models of proteins
[24–26] and secondary structure models of RNA [27]. It is
also important to address the issue of sampling, since the
number of stationary points generally grows exponentially
with system size [5, 28, 29]. The discrete path sampling
approach [1, 30, 31] described in section 4 provides a means
to construct appropriate databases systematically for larger
systems.

The basin-hopping approach to global optimization [32],
which is a generalization of the ‘Monte Carlo plus energy
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Figure 1. One-dimensional potential energy functions (left) and the corresponding disconnectivity graphs (right). The dotted lines indicate
the energies at which a superbasin analysis was performed.

minimization’ procedure of Li and Scheraga [33], is also based
on coarse-graining the PES into the catchment basins of local
minima. Here the moves between structures can be quite
unrelated to pathways on the true PES, since the landscape
is transformed in a way that removes transition state regions.
This method is described in section 5, and the corresponding
program GMIN can be downloaded from the internet along
with other utilities for exploring the potential energy landscape
[34].

2. Visualizing the PES using disconnectivity graphs

One of the most important themes in the present research is
the question of how Nature has encoded the target structures
for systems that are good ‘structure seekers’ in the potential
energy landscape [35, 36]. This question links protein folding,
crystallization, ‘magic number’ clusters in molecular beams
and self-assembly processes. In each case the probability of
finding the right structure in a random search is extremely
small, and this is the essence of Levinthal’s paradox from
the field of protein folding [37]. In fact, the PES can
effectively guide the system through the configuration space
if the local minima are connected in the right way, and the
resulting topology can be identified directly by constructing
a disconnectivity graph [38–40]. This approach can also be
generalized to discretized landscapes [41].

A connected database of local minima can be partitioned
into disjoint sets, or ‘superbasins’, at any given total energy,
E, where the members of each set can all be interconverted
by one or more rearrangements without exceeding E. This
basin analysis is performed at a series of energies, E1 < E2 <

E3 < · · ·, and each distinct superbasin is represented as a point,
or node, on the horizontal axis. The vertical axis corresponds
to the potential energy, and lines are drawn upwards starting
from the potential energy of each local minimum, which is
joined to the node for the superbasin in which it lies at the next
energy level. Lines are drawn between nodes at adjacent levels
if they correspond to the same superbasin or to superbasins that
merge together.

Disconnectivity graphs are connected, but contain no
cycles (they split into two parts if any edge is cut), and
they are therefore classified as tree graphs. Three archetypal
examples are shown in figure 1 [1, 39]. The ‘palm tree’ motif
corresponds to a well-defined global minimum and relatively
small downhill barriers, while the ‘willow tree’ pattern occurs
when the barriers are larger, as for C60 [39, 42]. Finally, the
‘banyan tree’ landscape results when the connectivity exhibits
a hierarchical pattern. In this case the hierarchy arises because

local minima with similar potential energies are separated by
barrier heights on two different energy scales (figure 1(c)).
Cutting certain edges in such a structure disconnects whole
sets of local minima in one go, in contrast to the palm tree and
willow tree patterns.

Of course, the above motifs are idealizations, and
quantitative calculations of thermodynamics and dynamics
from stationary point databases do not depend upon the
disconnectivity graph construction. Nevertheless, the
qualitative behaviour of important observables may often be
deduced from the form of the graph. In particular, the palm
tree motif is associated with efficient relaxation to the global
minimum over a wide range of temperature [1]. Such graphs
can be viewed as a set of kinetically convergent pathways
[43], which we may think of as a potential energy ‘funnel’, as
discussed below. Free energy disconnectivity graphs can also
be constructed by incorporating the entropy using appropriate
vibrational densities of states for each stationary point, and by
grouping sets of minima together [44–46].

A palm tree pattern is evident for the graph in figure 2,
which corresponds to structures formed from 12 rigid
pentagonal pyramids of height h and radius r [36]. This
model was constructed to provide a simple representation
of a virus capsid [47], and to determine minimal conditions
on the pentamer–pentamer potential for self-assembly to
occur spontaneously. Although each pentameric capsomer
in a real virus, such as satellite tobacco necrosis virus,
is actually composed of distinct protein subunits, there is
some experimental evidence that the intra-capsomer binding
is stronger than the interactions between capsomers [48,
49], providing a further level of simplification in the model.
Theoretical studies also suggest that a pentagonal face may
provide the best structure for nucleating capsid growth [50].

The formation of a closed icosahedral shell in figure 2
is entirely encoded within the six-site capsomer–capsomer
potential [36]. Without a repulsive site at the apex of the
pyramid, the pentamers would simply aggregate with their
faces aligned. However, self-assembly into an icosahedral
shell is predicted to be favourable over a relatively wide range
of h, so long as the building blocks are not too flat and not too
spiky [36]. It is the palm tree form of the disconnectivity graph
that ensures this property, since the global potential energy
minimum is also the global free energy minimum over a wide
range of temperature where the system has sufficient thermal
energy to overcome the potential energy barriers involved
in relaxation from higher energy. By choosing an order
parameter that reflects the distance from the global minimum,
the potential energy ‘funnel’ may be projected onto a free
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Figure 2. Disconnectivity graph for 12 pentagonal pyramids with
h = 0.5 × r . To simplify the graph, only the lowest 2000 local
minima are shown, although all the minima were included in each
superbasin analysis.

energy funnel, providing a link with theories based upon the
random energy model and minimal frustration [51–55]. The
palm tree form is also likely to result in a large value for
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Figure 3. The disconnectivity graph for ala8 calculated with the AMBER95 potential and a distance-dependent dielectric. The energy is in
kcal mol−1, and branches leading to minima with α and β character are coloured red and blue, respectively. On the left the occupation
probability is plotted as a function of time starting from a high temperature equilibrium distribution.

Tf /Tg , where Tf is the ‘folding’ temperature, below which
the potential energy and free energy global minima coincide,
and Tg is the ‘glass’ temperature, where relaxation slows
beyond some given time scale [56]. When Tf /Tg is large
the global free energy minimum will be kinetically accessible
over a wide range of temperature [57–59]. This situation
has been associated with cooperative folding transitions via a
calorimetric criterion [60]. The structure in figure 2 may also
provide a realization of the hierarchically ordered constraint
space proposed by Thorpe within the framework of constraint
theory [61–64].

The palm tree disconnectivity graph therefore provides
a visualization of how non-random searches may result in
protein folding, crystallization, self-assembly and ‘magic
number’ phenomena. It is also noteworthy that the
construction of virus capsids from identical building blocks
may optimize the use of genetic information [65] and utilize
the funnelling properties of the corresponding PES.

Surfaces that support more than one palm tree structure
also exhibit important characteristics [1]. For example, such
systems often display a separation of time scales for relaxation
to the global minimum, because trajectories may lead directly
into the corresponding funnel, or they may be trapped in
funnels containing competitive low-energy structures. Such
cases have been analysed in detail for atomic clusters [1], and
a biological example is presented in the following section.

3. Landscapes and dynamics of peptides

Polyalanine peptides, Ac-(ala)n-NHMe or alan, have been
considered in a number of experiments and simulation studies
[1, 66–68]. The disconnectivity graph for ala8 calculated
using the AMBER95 potential [69] and a distance-dependent
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Figure 4. The disconnectivity graphs for ala12 (left) and ala16 (right) calculated with the AMBER95 potential and a distance-dependent
dielectric. The energy is in kcal mol−1 relative to the global minimum.
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Figure 5. The disconnectivity graph for NATMA calculated using the AMBER95 force field (left) is compared with density functional
theory (DFT) results (right) for the trans/trans isomers [72]. The DFT energetics are distinguished using dashed lines and asterisks.

dielectric as a crude representation of solvent is shown in
figure 3 [70]. For this potential the dominant structure
at 300 K was found to be predominantly helical, and this
is probably an artifact of the distance-dependent dielectric.
However, the disconnectivity graph and the corresponding
relaxation dynamics shown in figure 3 serve to illustrate how

two competing funnels result in a separation of relaxation time
scales. A similar effect is seen in simplified lattice models of
homopolymer and copolymer collapse, when suitable move
sets are chosen to represent the dynamics [24–26].

The disconnectivity graphs calculated for ala12 and ala16

with the same potential are virtually superimposable at low
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energy (figure 4) [71]. Helix formation was investigated by
master equation dynamics in these peptides and was found to
occur mainly from the ends [71], although these results are
again strongly dependent upon the potential.

For smaller peptides, such as N-acetyl tryptophan methyl
amide (NATMA), direct comparisons have been made between
simulations and the conformational preferences determined
spectroscopically [72]. Only three local minima with all
trans peptide bonds are observed experimentally: C5 minima
have extended structures, while C7eq minima exhibit seven-
membered, hydrogen-bonded rings, which resemble a γ -turn.
Barriers between the three shaded regions in figure 5 are
relatively large, while the barriers within each region are
smaller. Relaxation within each region is therefore relatively
efficient, but transitions between the regions are slower, so that
three minima are observed experimentally [72].

4. Discrete path sampling

The discrete path sampling approach [1, 30, 31] provides a
systematic way to construct databases of stationary points that
are appropriate for addressing dynamical properties. Here a
discrete path is defined as a connected sequence of minima
and the intervening transition state(s) between them, which
provides a coarse-grained analogue of schemes based upon
explicit dynamics [40, 75–88]. The final result is a database
of local minima and transition states, which can then be
subjected to kinetic analysis using master equation [18, 19]
or kinetic Monte Carlo techniques [20–23, 89] to extract
phenomenological rate constants [30, 31].

The most recent results for biomolecules involve
the calculation of folding and unfolding rates for the
neurotransmitter peptide met-enkephalin [73] and the
16-amino acid β hairpin-forming sequence from residues
41–56 of the B1 domain of protein G [74]. In each case
the CHARMM19 force field [90] was used in conjunction
with the EEF1 implicit solvation potential [91]. Results for
met-enkephalin are shown in figures 6 and 7. Folding from
extended conformations to a compact, low-energy II′-type
β-turn structure occurs on a time scale of around 0.1 µs,
while folding from a II-type β-turn structure has a calculated
rate constant of 3.1 × 107 s−1 [73].

For the GB1 hairpin two kinetic intermediates were
identified [74], in broad agreement with other studies [92–94];
the first is stable up to around 10−6 s and mainly consists of
loosely hydrogen-bonded structures (F and G in figure 8).
The second is dominant at around 10−5 s and consists of
more compact structures, with a smaller radius of gyration
for the hydrophobic core sidechains (C, D and E in figure 8).
The calculated folding time is about ten times larger than
experiment overall.

5. Basin-hopping global optimization

The basin-hopping global optimization approach [1, 32] is a
generalization of the Monte Carlo plus minimization method
of Li and Scheraga. The potential energy of a configuration X
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Figure 6. Free energy disconnectivity graph for met-enkephalin at
298 K. Each node represents a group of minima constructed as
described in [73]. The lowest 38 groups are shown, as these are
calculated to contain 90% of the population. The energy is in units
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Figure 7. Results of master equation dynamics calculations for
met-enkephalin at 298 K starting from a high temperature
distribution (800 K) [73].

is transformed from the spontaneous value V (X) to the value
obtained after minimizing the energy, starting from X:

Ṽ (X) = min{V (X)}. (2)

The transformed landscape Ṽ (X) consists of plateaux for
the catchment basins of all the local minima, thus removing
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Figure 8. Free energy disconnectivity graph for the GB1 hairpin at 298 K [74] (right). The panel at the top left shows the time dependence
of the occupation probability for various groups of minima, with a typical member of each set illustrated. The panel at the bottom left shows
the average time dependence of different components of the potential energy [74]. Etotal is the total potential energy, Eelec is the electrostatic
energy, Evdw is the van der Waals energy and Eeef1 is the EEF1 solvation potential.
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Figure 9. Disconnectivity graphs for the original (left) and Gō (right) BLN potentials.

all downhill barriers without changing the relative energies.
Transitions between catchment basins can occur at any point
along a boundary, while the occupation probabilities for
different morphologies are broadened [95]. The basin-hopping
approach has recently been applied to the BLN off-lattice
bead model of Honeycutt and Thirumalai [96]. The original

sequence of beads was B9N3(LB)4N3B9N3(LB)5L, where
B = hydrophobic, L = hydrophilic and N = neutral. The
corresponding global minimum is a four-stranded β-barrel,
which exhibits frustration in terms of alternative, low-lying
β-barrel minima (figure 9). This frustration is relieved
in the corresponding Gō model, which retains only the
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attractive interactions present in the global minimum. The
corresponding disconnectivity graph exhibits a palm tree
form with a single potential energy funnel (figure 9) [97].
Conformational flow diagrams for native and Gō-like lattice
models exhibit similar effects [26]. Introducing salt bridges
into the potential [98] produces disconnectivity graphs with
intermediate character [99]. The average number of basin-
hopping steps required to locate the global minimum is largest
for the original frustrated structure, smallest for the Gō model,
and varies between these two limits for sequences with salt
bridges, depending upon their location.

6. Conclusion

This brief overview is intended to show how a coarse-
grained approach based on stationary points of the underlying
potential energy surface (PES) can provide useful insight
into biomolecular systems [1]. The methodology relies upon
efficient geometry optimization techniques for locating and
connecting the stationary points. Thermodynamic properties
can then be calculated from a suitable sample of local minima
using the superposition approach. The discrete path sampling
method can be used to construct databases that include
connectivity between local minima in terms of transition states
of the PES. Dynamics on the experimental time scale may
then become accessible if statistical rate theory is used to
calculate the rate constants for transitions between connected
local minima. Alternatively, to locate global minima the basin-
hopping approach can be used, where Monte Carlo moves
between local minima are accepted or rejected according to a
Metropolis criterion. This method provides an algorithm that
is readily transferable between very different systems.
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[37] Levinthal C 1969 Mössbauer spectroscopy biological systems

Proc. Meeting (Allerton House, Monticello, IL, 1969)
ed P DeBrunner, J Tsibris and E Munck (Champaign, IL:
University of Illinois Press) p 22

[38] Becker O M and Karplus M 1997 J. Chem. Phys. 106 1495
[39] Wales D J, Miller M A and Walsh T R 1998 Nature 394 758
[40] Czerminski R and Elber R 1990 J. Chem. Phys. 92 5580
[41] Flamm C, Hofacker I L, Stadler P F and Wolfinger M T 2002

Z. Phys. Chem. 216 155 (The third author of reference [7] in
this paper should be D J Wales)

[42] Kumeda Y and Wales D J 2003 Chem. Phys. Lett. 374 125
[43] Leopold P, Montal M and Onuchic J 1992 Proc. Natl Acad.

Sci. USA 89 8721
[44] Krivov S V and Karplus M 2002 J. Chem. Phys. 117 10894
[45] Evans D A and Wales D J 2003 J. Chem. Phys. 118 3891
[46] Komatsuzaki T, Hoshino K, Matsunaga Y, Rylance G J,

Johnston R L and Wales D J 2005 J. Chem. Phys. 122
084714

[47] Zlotnick A 2004 Proc. Natl Acad. Sci. USA 101 15549
[48] Eiserling F A and Dickson R C 1972 Annu. Rev. Biochem. 41

467
[49] Davis B D, Dulbecco R, Eisen H N and Ginsberg H S 1980

Microbiology 3rd edn (New York: Harper and Row)
[50] Hespenheide B M, Jacobs D J and Thorpe M F 2004 J. Phys.

Condens. Matter 16 S5055
[51] Frauenfelder H, Sligar S G and Wolynes P G 1991 Science 254

1598
[52] Bryngelson J D, Onuchic J N, Socci N D and Wolynes P G

1995 Proteins: Struct. Funct. Gen. 21 167
[53] Onuchic J N, Luthey-Schulten Z and Wolynes P G 1997

Annu. Rev. Phys. Chem. 48 545
[54] Wolynes P G, Onuchic J N and Thirumalai D 1995 Science

267 1619
[55] Socci N D, Onuchic J N and Wolynes P G 1998 Proteins:

Struct. Funct. Gen. 32 136
[56] Socci N D, Onuchic J N and Wolynes P G 1996 J. Chem. Phys.

104 5860
[57] Bryngelson J D and Wolynes P G 1987 Proc. Natl Acad. Sci.

USA 84 7524
[58] Goldstein R A, Luthey-Schulten Z and Wolynes P G 1992

Proc. Natl Acad. Sci. USA 89 4918
[59] Karplus M and Sali A 1995 Curr. Opin. Struct. Biol. 5 58
[60] Chan H S, Shimizu S and Kaya H 2004 Methods Enzymol. 380

350
[61] Phillips J C 1979 J. Non-Cryst. Solids 34 153
[62] Phillips J C and Thorpe M F 1985 Solid State Commun. 53 699
[63] Jacobs D J, Rader A J, Kuhn L A and Thorpe M F 2001

Proteins: Struct. Funct. Genet. 44 150

S92



Energy landscapes and properties of biomolecules

[64] Phillips J C 2004 J. Phys.: Condens. Matter 16 S5065
[65] Crick F H C and Watson J D 1956 Nature 177 473
[66] Young W S and Brooks C L 1996 J. Mol. Biol. 259 560
[67] Levy Y and Becker O M 1998 Phys. Rev. Lett. 81 1126
[68] Levy Y, Jortner J and Becker O M 2001 Proc. Natl Acad. Sci.

USA 98 2188
[69] Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K W Jr,

Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W and
Kollman P A 1995 J. Am. Chem. Soc. 117 5179

[70] Mortenson P N and Wales D J 2001 J. Chem. Phys. 114
6443

[71] Mortenson P N, Evans D A and Wales D J 2002 J. Chem.
Phys. 117 1363

[72] Dian B C, Longarte A, Mercier S, Evans D A, Wales D J and
Zwier T S 2002 J. Chem. Phys. 117 10688

[73] Evans D A and Wales D J 2003 J. Chem. Phys. 119 9947
[74] Evans D A and Wales D J 2004 J. Chem. Phys. 121 1080
[75] Huo S and Straub J E 1997 J. Chem. Phys. 107 5000
[76] Voter A F 1997 Phys. Rev. Lett. 78 3908
[77] Huo S and Straub J E 1999 Proteins 36 249
[78] Dellago C, Bolhuis P G and Chandler D 1999 J. Chem. Phys.

110 6617
[79] Elber R O R and Meller J 1999 J. Phys. Chem. B 103 899
[80] Sørensen M R and Voter A F 2000 J. Chem. Phys. 112 9599
[81] Passerone D and Parrinello M 2001 Phys. Rev. Lett. 87

108302
[82] Dellago C, Bolhuis P and Geissler P L 2002 Adv. Chem. Phys.

123 1

[83] Bolhuis P G, Chandler D, Dellago C and Geissler P L 2002
Annu. Rev. Phys. Chem. 53 291

[84] Krivov S V, Chekmarev S F and Karplus M 2002 Phys. Rev.
Lett. 88 038101

[85] Elber R, Ghosh A and Cardenas A 2002 Accounts Chem. Res.
35 396

[86] Straub J E, Guevara J, Huo S and Lee J P 2002 Accounts
Chem. Res. 35 473

[87] Pratt L R 1986 J. Chem. Phys. 85 5045
[88] Elber R and Karplus M 1987 Chem. Phys. Lett. 139 375
[89] Gillespie D T 1976 J. Comput. Phys. 22 403
[90] Brooks B R, Bruccoleri R E, Olafson B D, States D J,

Swaminathan S and Karplus M 1983 J. Comput. Chem.
4 187

[91] Lazaridis T and Karplus M 1999 Proteins: Struct. Funct.
Genet. 35 133

[92] Wei G, Derreumaux P and Mousseau N 2003 J. Chem. Phys.
119 6403

[93] Bolhuis P G 2003 Proc. Natl Acad. Sci. USA 100 12129
[94] Krivov S V and Karplus M 2004 Proc. Natl Acad. Sci. USA

101 14766
[95] Doye J P K and Wales D J 1998 Phys. Rev. Lett. 80 1357
[96] Honeycutt J D and Thirumalai D 1990 Proc. Natl Acad. Sci.

USA 87 3526
[97] Miller M A and Wales D J 1999 J. Chem. Phys. 111 6610
[98] Stoycheva A D, Onuchic J N and Brooks C L 2003 J. Chem.

Phys. 119 5722
[99] Wales D J and Dewsbury P E J 2004 J. Chem. Phys. 121 10284

S93


	1. Introduction
	2. Visualizing the PES using disconnectivity graphs
	3. Landscapes and dynamics of peptides
	4. Discrete path sampling
	5. Basin-hopping global optimization
	6. Conclusion
	References

