
THE JOURNAL OF CHEMICAL PHYSICS 124, 234110 �2006�
Graph transformation method for calculating waiting times
in Markov chains

Semen A. Trygubenkoa� and David J. Walesb�

University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW,
United Kingdom

�Received 6 February 2006; accepted 31 March 2006; published online 21 June 2006�

We describe an exact approach for calculating transition probabilities and waiting times in
finite-state discrete-time Markov processes. All the states and the rules for transitions between them
must be known in advance. We can then calculate averages over a given ensemble of paths for both
additive and multiplicative properties in a nonstochastic and noniterative fashion. In particular, we
can calculate the mean first-passage time between arbitrary groups of stationary points for discrete
path sampling databases, and hence extract phenomenological rate constants. We present a number
of examples to demonstrate the efficiency and robustness of this approach. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2198806�
I. INTRODUCTION

Stochastic processes are widely used to treat phenomena
with random factors and noise. Markov processes are an im-
portant class of stochastic processes for which future transi-
tions do not depend upon how the current state was reached.
Markov processes restricted to a discrete, finite, or countably
infinite state space are called Markov chains.1–3 Many inter-
esting problems of chemical kinetics concern the analysis of
finite-state samples of otherwise infinite state space.4

When analyzing the kinetic databases obtained from dis-
crete path sampling �DPS� studies,5 it can be difficult to ex-
tract the phenomenological rate constants for processes that
occur over very long time scales.4 DPS databases are com-
posed of local minima of the potential energy surface �PES�
and the transition states that connect them. While minima
correspond to mechanically stable structures, the transition
states specify how these structures interconvert and can be
used to calculate the corresponding rates. Whenever the po-
tential energy barrier for the event of interest is large in
comparison with kBT the event becomes rare, where T is the
temperature and kB is Boltzmann’s constant.

The most important tools previously employed to extract
kinetic information from a DPS stationary point database are
the master equation,6 kinetic Monte Carlo7,8 �KMC�, and ma-
trix multiplication �MM� methods.5 The system of linear
master equations in its matrix formulation can be solved nu-
merically to yield the time evolution of the occupation prob-
abilities starting from an arbitrary initial distribution. This
approach works well only for small problems, as the diago-
nalization of the transition matrix P scales as the cube of the
number of states.4 In addition, numerical problems arise
when the magnitude of the eigenvalues corresponding to the
slowest relaxation mode approaches the precision of the zero
eigenvalue corresponding to equilibrium.9 The KMC ap-
proach is a stochastic technique that is commonly used to

a�Electronic mail: sat39@cam.ac.uk
b�
Electronic mail: dw34@cam.ac.uk

0021-9606/2006/124�23�/234110/16/$23.00 124, 2341

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
simulate the dynamics of various physical and chemical sys-
tems, examples being the formation of crystal structures,10

nanoparticle growth,11 and diffusion.12 The MM approach
provides a way to sum contributions to phenomenological
two-state rate constants from pathways that contain progres-
sively more steps. It is based upon a steady-state approxima-
tion, and provides the corresponding solution to the linear
master equation.6,13 The MM approach has been used to ana-
lyze DPS databases in a number of systems ranging from
Lennard-Jones clusters5,14 to biomolecules.15,16

Both the standard KMC and MM formulations provide
rates at a computational cost that generally grows exponen-
tially as the temperature is decreased. In this contribution we
describe alternative methods that are deterministic and for-
mally exact, where the computational requirements are inde-
pendent of the temperature and the time scale on which the
process of interest takes place.

A. Graph theory representation of a finite-state
Markov chain

To fully define a Markov chain it is necessary to specify
all the possible states of the system and the rules for transi-
tions between them. Graph theoretical representations of
finite-state Markov chains are widely used.1,17–19 Here we
adopt a digraph20,21 representation, where nodes represent
the states and edges represent the transitions with nonzero
probabilities. The edge ei,j describes a transition from node j
to node i and has a probability Pi,j associated with it, which
is commonly known as a routing or branching probability. A
node can be connected to any number of other nodes. Two
nodes of a graph are adjacent if there is an edge between
them.22

For digraphs all connections of a node are classified as
incoming or outgoing. The total number of incoming connec-
tions is the in-degree of a node, while the total number of
outgoing connections is the out-degree. In a symmetric
digraph the in-degree and out-degree are the same for every

21
node. AdjIn�i� is the set of indices of all nodes that are

© 2006 American Institute of Physics10-1

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2198806
http://dx.doi.org/10.1063/1.2198806
http://dx.doi.org/10.1063/1.2198806

234110-2 S. A. Trygubenko and D. J. Wales J. Chem. Phys. 124, 234110 �2006�
connected to node i via incoming edges that finish at node i.
Similarly, AdjOut�i� is the set of indices of all the nodes that
are connected to node i via outgoing edges from node i. The
degree of a graph is the maximum degree of all of its nodes.
The expectation value for the degree of an undirected graph
is the average number of connections per node.

For any node i the transition probabilities Pj,i add up to
unity,

�
j

Pj,i = 1, �1�

where the sum is over all j�AdjOut�i�. Unless specified
otherwise all sums are taken over the set of indices of adja-
cent nodes or, since the branching probability is zero for
nonadjacent nodes, over the set of all nodes.

In a computer program dense graphs are usually stored
in the form of adjacency matrices.21 For sparse graphs20 a
more compact but less efficient adjacency-lists-based data
structure exists.21 To store a graph representation of a Mar-
kov chain, in addition to connectivity information �available
from the adjacency matrix�, the branching probabilities
must be stored. Hence for dense graphs the most convenient
approach is to store a transition probability matrix1 with
transition probabilities for nonexistent edges set to zero. For
sparse graphs, both the adjacency list and a list of corre-
sponding branching probabilities must be stored.

B. The kinetic Monte Carlo method

The KMC method can be used to generate a memoryless
�Markovian� random walk and hence a set of trajectories
connecting initial and final states in a DPS database. Many
trajectories are necessary to collect appropriate statistics.
Examples of pathway averages that are usually obtained
with KMC are the mean path length and the mean first-
passage time. Here the KMC trajectory length is the number
of states �local minima of the PES in the current context�
that the walker encounters before reaching the final state.
The first-passage time is defined as the time that elapses
before the walker reaches the final state. For a given
KMC trajectory the first-passage time is calculated as the
sum of the mean waiting times in each of the states encoun-
tered.

An efficient way to propagate KMC trajectories was sug-
gested by Bortz, Kalos, and Lebowitz �BKL�.7 According to
the BKL algorithm, a step is chosen in such a way that the
ratios between transition probabilities of different events are
preserved, but rejections are eliminated. Figure 1 explains
this approach for a simple discrete-time Markov chain. The
evolution of an ordinary KMC trajectory is monitored by the
“time” parameter n�W, which actually corresponds to the
number of steps.1 The random walker is in state 1 at time
n=0. The KMC trajectory is terminated whenever an absorb-
ing state is encountered. As P1,1 approaches unity transitions
out of state 1 become rare. To ensure that every time a ran-
dom number is generated �one of the most time consuming
steps in a KMC calculation� a move is made to a neighboring
state, we average over the transitions from state 1 to itself to

obtain the Markov chain depicted in Fig. 1�b�. Transitions

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
from state 1 to itself can be modeled by a Bernoulli process23

with the probability of success equal to P1,1. The average
time for escape from state 1 is obtained as

�1 = �1 − P1,1��
n=0

�

�n + 1��P1,1�n =
1

�1 − P1,1�
, �2�

which can be used as a measure of the efficiency of
trapping.24 In the BKL scheme, transition probabilities out of
state 1 are renormalized as

P�,1� =
P�,1

1 − P1,1
, P�,1� =

P�,1

1 − P1,1
. �3�

Similar ideas underlie the accelerated Monte Carlo algorithm
suggested by Novotny.25 Both the BKL and Novotny meth-
ods can be many orders of magnitude faster than the standard
KMC method when kinetic traps are present.

In chemical kinetics transitions out of a state are usually
described using a Poisson process, which can be considered a
continuous-time analog of Bernoulli trials. The transition
probabilities are determined from the rates of the underlying
transitions as

Pj,i =
kj,i

��k�,i
, �4�

where ki,j is the rate constant for transitions from j to i, etc.
There may be several escape routes from a given state. Tran-
sitions from any state to directly connected states are treated
as competing independent Poisson processes, which together
generate a new Poisson distribution.26 n independent Poisson
processes with rates k1 ,k2 ,k3 , . . . ,kn combine to produce a
Poisson process with rate k=�i=1

n ki. The waiting time for a
transition to occur to any connected state is then exponen-
tially distributed as k exp�−kt�.27

Given the exponential distribution of waiting times the
mean waiting time in state i before escape, �i, is 1 /� jkj,i, and
the variance of the waiting time is simply �i

2. When the av-

FIG. 1. BKL algorithm for propagating a KMC trajectory applied to a three-
state Markov chain. �a� The transition state diagram is shown where states
and transitions are represented by circles and directed arrows, respectively.
The Markov chain is parametrized by transition probabilities P�,1, P�,1, and
P1,1. Absorbing states � and � are shaded. If P1,1 is close to unity the KMC
trajectory is likely to revisit state 1 many times before going to � or �. �b�
state 1 is replaced with state 1�. The new Markov chain is parametrized by
transition probabilities P�,1�, P�,1� and the average time for escape from
state 1 is �1. Transitions from state 1� to itself are forbidden. Every time
state 1� is visited the simulation “clock” is incremented by �1.
erage of the distribution of times is the property of interest,

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-3 Waiting times in a Markov process J. Chem. Phys. 124, 234110 �2006�
and not the distribution itself, it is sufficient to increment the
simulation time by the mean waiting time rather than by a
value drawn from the appropriate distribution.28 This modi-
fication to the original KMC formulation29,30 reduces the cost
of the method and accelerates the convergence of KMC av-
erages without affecting the results.

C. Discrete path sampling

The result of a DPS simulation is a database of local
minima and transition states from the PES.4,5,14 To extract
thermodynamic and kinetic properties from this database we
require partition functions for the individual minima and rate
constants, k�,�, for the elementary transitions between adja-
cent minima � and �. We usually employ harmonic densities
of states and statistical rate theory to obtain these quantities,
but these details are not important here. To analyze the global
kinetics we further assume Markovian transitions between
adjacent local minima, which produce a set of linear �master�
equations that governs the evolution of the occupation prob-
abilities towards equilibrium6,13 as follows:

dP��t�
dt

= �
�

k�,�P��t� − P��t��
�

k�,�, �5�

where P��t� is the occupation probability of minimum � at
time t.

All the minima are classified into sets A, B, and I, where
A and B are the two states of interest and I corresponds to
“intervening” minima. When local equilibrium is assumed
within the A and B sets, we can write

Pa�t� =
Pa

eqPA�t�
PA

eq and Pb�t� =
Pb

eqPB�t�
PB

eq , �6�

where PA�t�=�a�APa�t� and PB�t�=�b�BPb�t�. If the steady-
state approximation is applied to all the intervening states i
� I, so that

dPi�t�
dt

= 0, �7�

then Eq. �5� can be written as4

dPA�t�
dt

= kA,BPB�t� − kB,APA�t� ,

�8�
dPB�t�

dt
= kB,APA�t� − kA,BPB�t� .

The rate constants kA,B and kB,A for forward and backward
transitions between states A and B are the sums over all
possible paths within the set of intervening minima of the
products of the branching probabilities corresponding to the

elementary transitions for each path:

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
kA,B
SS = �

a←b

� ka,i1

��1
k�1,i1

ki1,i2

��2
k�2,i2

¯

kin−1,in

��n
k�n,in

kin,bPb
eq

PB
eq

= �
a←b

�
Pa,i1

Pi1,i2
¯ Pin−1,in

kin,bPb
eq

PB
eq , �9�

and similarly for kB,A.5 The superscript “SS” specifies that
the DPS rate constant formula was derived employing the
steady-state approximation, as in the previous versions of the
DPS method.5,14 The sum is over all paths that begin from a
state b�B and end at a state a�A, and the prime indicates
that paths are not allowed to revisit states in B. In previous
contributions5,14–16 this sum was evaluated using a weighted
adjacency matrix multiplication method. The contributions
of individual discrete paths to the total rate constants were
also calculated in this way. However, analytic results from
the theory of a one-dimensional random walk31–33 are now
employed instead. It is also possible to evaluate rates without
invoking the steady-state approximation,34 as discussed in
the following sections.

D. KMC and steady-state averages

We now show that the evaluation of the steady-state sum
in Eq. �9� and the calculation of KMC averages are two
closely related problems.

For KMC simulations we define sources and sinks that
coincide with the set of initial states B and final states A,
respectively. Every cycle of KMC simulation involves the
generation of a single KMC trajectory connecting a node b
�B and a node a�A. A source node b is chosen from set B
with probability Wb= Pb

eq/ PB
eq.

We can formulate the calculation of the mean first-
passage time from B to A in graph theoretical terms as fol-
lows. Let the digraph consisting of nodes for all local
minima and edges for each transition state be G. The digraph
consisting of all nodes except those belonging to region A is
denoted by G. We assume that there are no isolated nodes in
G, so that all the nodes in A can be reached from every node
in G, in one or more steps. Suppose we start a KMC simu-
lation from a particular node ��G. Let P��n� be the ex-
pected occupation probability of node � after n KMC steps,
with initial conditions P��0�=1 and P����0�=0. We further
define an escape probability for each ��G as the sum of
branching probabilities to nodes in A, i.e.,

E�
G = �

a�A

Pa,�. �10�

KMC trajectories terminate when they arrive at an A mini-
mum, and the expected probability transfer to the A region at
the nth KMC step is ���GE�

GP��n�. If there is at least one
escape route from G to A with a nonzero branching probabil-
ity, then eventually all the occupation probabilities in G must

tend to zero and

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-4 S. A. Trygubenko and D. J. Wales J. Chem. Phys. 124, 234110 �2006�
��
G = �

n=0

�

�
��G

E�
GP��n� = 1 �11�

for any ��G. We now rewrite P��n� as a sum over all
n-step paths that start from � and end at � without leaving G.
Each path contributes to P��n� according to the appropriate
product of n branching probabilities, so that

��
G = �

��G

E�
G�

n=0

�

P��n�

= �
��G

E�
G�

n=0

�

�
��n�

P�,in−1
Pin−1,in−2

¯ Pi2,i1
Pi1,�

= �
��G

E�
GS�,�

G = 1, �12�

where ��n� denotes the set of n-step paths that start from �
and end at � without leaving G, and the last line defines the
pathway sum S�,�

G .
It is clear from the last line of Eq. �12� that for fixed �

the quantities E�
GS�,�

G define a probability distribution. How-
ever, the pathway sums S�,�

G are not probabilities, and may
be greater than unity. In particular, S�,�

G �1 because the path
of zero length is included, which contributes one to the sum.
Furthermore, the normalization condition on the last line of
Eq. �12� places no restriction on S�,�

G terms for which E�
G

vanishes.
We can also define a probability distribution for indi-

vidual pathways. Let W� be the product of branching prob-
abilities associated with a path � so that

S�,�
G = �

n=0

�

�
����n�

W� � �
���←�

W�, �13�

where �←� is the set of all appropriate paths from � to � of
any length that can visit and revisit any node in G. If we
focus upon paths starting from minima in region B

�
b�B

Pb
eq

PB
eq �

��G

E�
G �

���←b

W� = �
b�B

Pb
eq

PB
eq �

��GA

E�
G �

���←b

W� = 1,

�14�

where GA is the set of nodes in G that are adjacent to A
minima in the complete graph G, since E�

G vanishes for all
other nodes. We can rewrite this sum as

�
��GA←B

Pb
eq

PB
eqE�

GW� = �
��A←B

Pb
eq

PB
eqW� = �

��A←B

P� = 1, �15�

which defines the nonzero pathway probabilities P� for all
paths that start from any node in set B and finish at any node
in set A. The paths ��A←B can revisit any minima in the G
set, but include just one A minimum at the terminus. Note
that W� and P� can be used interchangeably if there is only
one state in set B.

The average of some property, Q�, defined for each

KMC trajectory � can be calculated from the P� as

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
�Q�� = �
��A←B

P�Q�. �16�

Of course, KMC simulations avoid this complete enumera-
tion by generating trajectories with probabilities proportional
to P�, so that a simple running average can be used to cal-
culate �Q��. In the following sections we will develop alter-
native approaches based on evaluating the complete sum,
which become increasingly efficient at low temperature. We
emphasize that these methods are only applicable to prob-
lems with a finite number of states, which are assumed to be
known in advance.

The evaluation of the sum based on the steady-state ap-
proximation defined in Eq. �9� can also be rewritten in terms
of pathway probabilities as follows:

kA,B
DPS = �

n=0

�

�
��n�

�
Pa,i1

Pi1,i2
¯ Pin−1,in

kin,bPb
eq

PB
eq ,

=�
n=0

�

�
��n�

�
Pa,i1

Pi1,i2
¯ Pin−1,in

Pin,b�b
−1 Pb

eq

PB
eq

= �
��A←B

�
P��b

−1, �17�

where the prime on the summation indicates that the paths
are not allowed to revisit the B region. We have also used the
fact that kin,b= Pin,b /�b.

A digraph representation of the restricted set of pathways
defined in Eq. �17� can be created if we allow sets of sources
and sinks to overlap. In that case all the nodes A�B are
defined to be sinks and all the nodes in B are sources, i.e.,
every node in set B is both a source and a sink. The required
sum then includes all the pathways that finish at sinks of type
A, but not those that finish at sinks of type B. This situation,
where sets of sources and sinks �partially� overlap, is dis-
cussed in detail in Sec. IV.

E. Mean escape times

Since the mean first-passage time between states B and
A, or the escape time from a subgraph, is of particular inter-
est, we first illustrate a means to derive formulas for these
quantities in terms of pathway probabilities.

The average time taken to traverse a path �
=�1 ,�2 ,�3 , . . . ,�l��� is calculated as t�=��1

+��2
+��3

, . . . ,��l���−1
, where �� is the mean waiting time for es-

cape from node �, as above, �k identifies the kth node along
path �, and l��� is the length of path �. The mean escape time
from a graph G if started from node � is then

T �
G = �

��A←�

P�t�. �18�

If we multiply every branching probability P�,�, that appears
in P� by exp�	���, then the mean escape time can be ob-

tained as

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-5 Waiting times in a Markov process J. Chem. Phys. 124, 234110 �2006�
T �
G = 	 d

d	
 �
��A←�

P�l���,�l���−1
e	�l���−1P�l���−1,�l���−2

e	�l���−2
¯ P�2,�1

e	��1��
	=0

= 	 d

d	
 �
��A←�

P�l���,�l���−1
P�l���−1,�l���−2

¯ P�2,�1
e	t���

	=0

= �
��A←�

P�t�. �19�
This approach is useful if we have analytic results for the
total probability ��

G, which may then be manipulated into
formulas for T �

G, and is standard practice in probability
theory.35,36 The quantity P�,�e	�� is similar to the “	 prob-
ability” described in Ref. 35. Analogous techniques are usu-
ally employed to obtain T �

G and higher moments of the first-
passage time distribution from analytic expressions for the
first-passage probability generating function �see, for ex-

ample, Refs. 31 and 32�. We now define P̃�,�= P�,�e	�� and
the related quantities as follows:

Ẽ�
G = �

a�A

P̃a,� = E�
Ge	��,

W̃� = P̃�l���,�l���−1
P̃�l���−1,�l���−2

¯ P̃�2,�1
= W�e

	t�,

P̃� = W̃�Pb
eq/PB

eq, �20�

S̃�,�
G = �

���←�

W̃�,

and �̃�
G = �

��G

Ẽ�
GS̃�,�

G .

Note that �Ẽ�
G�	=0=E�

G, etc., while the mean escape time can
now be written as

T �
G = 	d�̃�

G

d	
�

	=0
. �21�

In the remaining sections we show how to calculate the path-
way probabilities P� exactly, along with pathway averages,
such as the waiting time.

II. COMPLETE GRAPHS

In a complete digraph each pair of nodes is connected by
two oppositely directed edges.37 The complete graph with N
graph nodes is denoted KN, and has N nodes and N�N−1�
edges, remembering that we have two edges per connection.
Due to the complete connectivity we need only consider two
cases: when the starting and finishing nodes are the same and
when they are distinct. We employ complete graphs for the
purposes of generality. An arbitrary graph GN is a subgraph
of KN with transition probabilities for nonexistent edges set
to zero. All the results in this section are therefore equally

applicable to arbitrary graphs.

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
The S�,�
K3 can be derived analytically as follows:

S1,1
K3 = �

n=0

�
�W1,2,1 + W1,3,1 + W1,2,3,1

+ W1,3,2,1��
m=0

�

�W2,3,2�m�n

=
1 − W2,3,2

1 − W1,2,1 − W2,3,2 − W1,3,1 − W1,2,3,1 − W1,3,2,1
,

S2,1
K3 = �

n=0

�

�W2,3,2�n�P2,1 + W2,3,1�S1,1
K3

=
P2,1 + W2,3,1

1 − W1,2,1 − W2,3,2 − W1,3,1 − W1,2,3,1 − W1,3,2,1
,

�22�

where, as before, W1,2,1= P1,2P2,1, etc. The results for any
other possibility can be obtained by permuting the node in-
dices appropriately.

Pathway sums for larger complete graphs can be ob-
tained by recursion. For SN,N

KN any path leaving from and re-
turning to N can be broken down into a step out of N to any
i
N, all possible paths between i and j
N−1 within KN−1,
and finally a step back to N from j. All such paths can be
combined together in any order, so we have a multinomial
distribution as follows:38

SN,N
KN = �

n=0

�
�
i=1

N−1
�
j=1

N−1

�PN,jS j,i
KN−1Pi,N���n

=
1 − �
i=1

N−1

�
j=1

N−1

PN,jS j,i
KN−1Pi,N�−1

. �23�

To evaluate S1,N
KN we break down the sum into all paths that

depart from and return to N, followed by all paths that leave
node N and reach node 1 without returning to N. The first
contribution corresponds to a factor of SN,N

KN , and the second
produces a factor Pi,NS1,i

KN−1 for every i
N:

S1,N
KN = SN,N

KN �
i=1

N−1

S1,i
KN−1Pi,N, �24�

where S1,1
K1 is defined to be unity. Any other S�,�

KN can be

obtained by a permutation of node labels.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-6 S. A. Trygubenko and D. J. Wales J. Chem. Phys. 124, 234110 �2006�
Algorithm 1 provides an implementation of the above
formulas optimized for incomplete graphs. The running time
of Algorithm 1 depends strongly on the graph density. �A
digraph in which the number of edges is close to the maxi-
mum value of N�N−1� is termed a dense digraph.22� For KN

the algorithm runs in O�N2N� time, while for an arbitrary
graph it scales as O�d2N�, where d is the average degree of
the nodes. For chain graphs the algorithm runs in O�N� time
and has linear memory requirements. For complete graphs an
alternative implementation with O��N!�2� scaling is also pos-
sible.

Although the scaling of the above algorithm with N may
appear disastrous, it does in fact run faster than standard
KMC and MM approaches for graphs where the escape prob-
abilities are several orders of magnitude smaller than the
transition probabilities �Algorithm 1�. Otherwise, for any-
thing but moderately branched chain graphs, Algorithm 1 is
significantly more expensive. However, the graph-
transformation-based method presented in Sec. II A yields
both the pathway sums and the mean escape times for a
complete graph KN in O�N3� time, and is the fastest approach
that we have found.

Mean escape times for K3 are readily obtained from the
results in Eq. �22� by applying the method outlined in Sec.
I E as follows:

T1
K3 =

�1�1 − W2,3,2� + �2�P2,1 + W2,3,1� + �3�P3,1 + W3,2,1�
1 − W1,2,1 − W2,3,2 − W3,1,3 − W1,2,3,1 − W1,3,2,1

.

�25�

We have verified this result numerically for various values of
the parameters �i and P�,� and obtained quantitative agree-

FIG. 2. The computational cost of the kinetic Monte Carlo and matrix
multiplication methods as a function of escape probabilities for K3. M is the
number of matrix multiplications required to converge the value of the total
probability of getting from node 1 to nodes 1–3: the calculation was termi-
nated when the change in the total probability between iterations was less
than 10−3. The number of matrix multiplications M and the average trajec-
tory length �l� can be used as a measure of the computational cost of the
matrix multiplication and kinetic Monte Carlo approaches, respectively. The
computational requirements of the exact summation method are independent
of E. Note the log10 scale on the vertical axis.
ment. Figure 2 demonstrates how the advantage of exact

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
summation over KMC and MM becomes more pronounced
as the escape probabilities become smaller.

A. Mean escape time from KN

The problem of calculating the properties of a random
walk on irregular networks was addressed previously by
Goldhirsch and Gefen.35,36 They described a generating-
function-based method where an ensemble of pathways is
partitioned into “basic walks.” To the best of our knowledge,
only one39 out of the 30 papers31,32,36,39–65 that cite the work
of Goldhirsch and Gefen35 is an application, perhaps due to
the complexity of the method. Here we present a graph trans-
formation �GT� approach for calculating the pathway sums
and the mean escape times for KN. In general, it is applicable
to arbitrary digraphs, but the best performance is achieved
when the graph in question is dense. A sparse-optimized ver-
sion of the GT method will be discussed in Sec. III.

The GT approach is similar in spirit to the ideas that lie
behind the mean value analysis and aggregation/
disaggregation techniques commonly used in the perfor-
mance and reliability evaluation of queueing networks.1,66–68

It is also loosely related to dynamic graph algorithms,69–72

which are used when a property is calculated on a graph
subject to dynamic changes, such as deletions and insertions
of nodes and edges. The main idea is to progressively re-
move nodes from a graph while leaving the average proper-
ties of interest unchanged. For example, suppose we wish to
remove node x from graph G to obtain a new graph G�. Here
we assume that x is neither source nor sink. Before node x
can be removed the property of interest is averaged over all
the pathways that include the edges between nodes x and i
�Adj�x�. The averaging is performed separately for every
node i. We will use the waiting time as an example of such a
property and show that the mean first-passage time in the
original and transformed graphs is the same.

The theory is an extension of the results used to perform
jumps to second neighbors in previous KMC simulations.5

Consider KMC trajectories that arrive at node i, which is
adjacent to x. We wish to step directly from i to any vertex in
the set of nodes � that are adjacent to i or x, excluding these
two nodes themselves. To ensure that the mean first-passage
times from sources to sinks calculated in G and G� are the
same, we must define new branching probabilities, P�,i� from
i to all ���, along with a new waiting time for escape from
i, �i�. Here, �i� corresponds to the mean waiting time for
escape from i to any ���, while the modified branching
probabilities subsume all the possible recrossings involving
node x that could occur in G before a transition to a node in
�. Hence the new branching probabilities are34

P�,i� = �P�,xPx,i + P�,i��
m=0

�

�Pi,xPx,i�m

= �P�,xPx,i + P�,i�/�1 − Pi,xPx,i� . �26�

This formula can also be applied if either P�,i or P�,x van-

ishes.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-7 Waiting times in a Markov process J. Chem. Phys. 124, 234110 �2006�
It is easy to show that the new branching probabilities
are normalized as follows:

�
���

P�,xPx,i + P�,i

1 − Pi,xPx,i
=

�1 − Pi,x�Px,i + �1 − Px,i�
1 − Pi,xPx,i

= 1. �27�

To calculate �i� we use the method of Sec. I C as follows:

�i� = 	 d

d	
�
���

P�,xPx,ie
	��x+�i� + P�,ie

	�i

1 − Pi,xPx,ie
	��x+�i� �

	=0

=
�i + Px,i�x

1 − Pi,xPx,i
.

�28�

The modified branching probabilities and waiting times
could be used in a KMC simulation based on graph G�. Here
we continue to use the notation of Sec. I D, where sinks
correspond to nodes a�A and sources to nodes in b�B, and
G contains all the nodes in G expect for the A set, as before.
Since the modified branching probabilities P�,i� , in G� sub-
sume the sums over all paths from i to � that involve x, we
would expect the sink probability �a,b

G =���a←bW�, of trajec-
tories starting at b and ending at sink a, to be conserved.
However, since each trajectory exiting from ��� acquires a
time increment equal to the average value �i�, the mean first-

passage times to individual sinks, Ta,b
G =d��̃a,b� /d	, are not

conserved in G� �unless there is a single sink�. Nevertheless,
the overall mean first-passage time to A is conserved, i.e.,

Tb
G�=Tb

G. To prove these results formally consider the effect
of removing node x on trajectories reaching node i�Adj�x�
from a source node b. The sink probability for a particular
sink a is

�a,b
G = �

��a←b

W�

= �
�1�i←b

W�1 �
���

�P�,i + P�,xPx,i�

�
m=0

�

�Pi,xPx,i�m �
�2�a←�

W�2
+ �

�3���

W�3

= �
�3���

W�3
+ �

�1�i←b

W�1 �
���

P�,i� �
�2�a←�

W�2
, �29�

and similarly for any other node adjacent to x and any other
pathway that visits i other than by immediate recrossings of
the type i→x→ i. Here �� is the ensemble of all paths for
which probabilistic weights cannot be written in the form
defined by the last term of �29�. Hence the transformation
preserves the individual sink probabilities for any source.

Now consider how removing node x from each trajectory
not included in �� affects the mean first-passage time, T a,b

G

using the approach of Sec. I D as follows:

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
	 d

d	
�

�1�i←b

W̃�1 �
���

P̃�,i� �
�2�a←�

W̃�2�
	=0

= �
�1�i←b

	dW̃�1

d	
�

	=0
�
���

P�,i� �
�2�a←�

W�2

+ �
�1�i←b

W�1 �
���

	dP̃�,i�

d	
�

	=0
�

�2�a←�

W�2

+ �
�1�i←b

W�1 �
���

P�,i� �
�2�a←�

	dW̃�2

d	
�

	=0
, �30�

where the tildes indicate that every branching probability
P�,� is replaced by P�,�e���, as above. The first and last
terms are unchanged from graph G in this construction, but
the middle term,

�
�1�i←b

W�1 �
���

	dP̃�,i�

d	
�

	=0
�

�2�a←�

W�2

= �
�1�i←b

W�1 �
���

P�,xPx,i��i + �x� + P�,i��i + Pi,xPx,i�x�
�1 − Pi,xPx,i�2

 �
�2�a←�

W�2
, �31�

is different �unless there is only one sink�. However, if we
sum over sinks then �a�A��2�a←�W�2

=1 for all �, and we
can now simplify the sum over � as

�
���

P�,xPx,i��i + �x� + P�,i��i + Pi,xPx,i�x�
�1 − Pi,xPx,i�2

= �i� = �
���

P�,i� �i�. �32�

The same argument can be applied whenever a trajectory

reaches a node adjacent to x, so that Tb
G=Tb

G�, as required.
The above procedure extends the approach of Bortz

et al.7 to exclude not only the transitions from the current
state into itself but also transitions involving an adjacent
node x. Alternatively, this method could be viewed as a
coarse-graining of the Markov chain. Such coarse-graining is
acceptable if the property of interest is the average of the
distribution of times rather than the distribution of times it-
self. In our simulations the average is the only property of
interest. In cases when the distribution itself is sought, the
approach described here may still be useful and could be the
first step in the analysis of the distribution of escape times, as
it yields the exact average of the distribution.

The transformation is illustrated in Fig. 3 for the case of
a single source. Figure 3�a� displays the original graph and
its parametrization. During the first iteration of the algorithm
node 2 is removed to yield the graph depicted in Fig. 3�b�.
This change reduces the dimensionality of the original graph,
as the new graph contains one node and three edges fewer.
The result of the second, and final, iteration of the algorithm
is a graph that contains source and sink nodes only, with the
correct transition probabilities and mean waiting time

�Fig. 3�c��.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-8 S. A. Trygubenko and D. J. Wales J. Chem. Phys. 124, 234110 �2006�
We now describe algorithms to implement the above ap-

proach and calculate mean escape times from complete

graphs with multiple sources and sinks. We follow the nota-

tion of Sec. I D and consider a digraph GN consisting of NB

source nodes, NA sink nodes, and NI intervening nodes. GN

therefore contains the subgraph GNI+NB
.

The results of the transformation of a graph with a single

source b and NA sinks using Algorithm 2 are the mean escape

time T b
GNI+1 and NA pathway probabilities P�, ��A←b.

Solving a problem with NB sources is equivalent to solving
NB single source problems. For example, if there are two

FIG. 3. The graph transformation algorithm of Sec. II A at work. �a� A
digraph with six nodes and nine edges. The source node is node 1 �white�,
the sinks are nodes �, �, and � �shaded�, and the intermediate nodes are 2
and 3 �black�. The waiting times and transition probabilities that parametrize
the graph are given below the diagram. �b� Node 2 and all its incoming and
outgoing edges are deleted from the graph depicted in �a�. Two edges
�←1 and �←3 are added. The parameters for this new graph are denoted
by primes and expressed in terms of the parameters for the original graph.
�c� Node 3 is now disconnected as well. The resulting graph is composed of
source and sink nodes only. The total probability and waiting times coincide
with those of K3, as expected. The new parameters are denoted by a double
prime.
sources b1 and b2, we first solve a problem where only node

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
b1 is set to be the source to obtain Tb1

GNI+NB and the pathway

sums from b1 to every sink node a�A. The same procedure
is then followed for b2.

The form of the transition probability matrix P is illus-
trated below at three stages: first for the original graph, then
at the stage when all the intervening nodes have been re-
moved �line 16 in Algorithm 2�, and finally at the end of the
following procedure:

0 A ← I A ← B

0 I � I I ← B

0 B ← I B � B
� → 0 0 A ← B

0 0 0

0 0 B � B
�

→ 0 0 A ← B

0 0 0

0 0 0
� . �33�

Each matrix is split into blocks that specify the transitions
between the nodes of a particular type, as labeled. Upon
termination, every element in the top right block of matrix P
is nonzero.

Algorithm 2 uses the adjacency matrix representation of
graph GN, for which the average of the distribution of mean
first-passage times is to be obtained. For efficiency, when
constructing the transition probability matrix P we order the
nodes with the sink nodes first and the source nodes last.
Algorithm 2 is composed of two parts. The first part �lines
1–16� iteratively removes all the intermediate nodes from
graph GN to yield a graph that is composed of sink nodes and
source nodes only. The second part �lines 17–31� disconnects
the source nodes from each other to produce a graph with
NA+NB nodes and �NA+NB�2 directed edges connecting each
source with every sink. Finally, we evaluate the mean first-
passage time for each source using the transformed graph.

The computational complexity of lines 1–16 of Algo-
rithm 2 is O�NI

3+NI
2NB+NI

2NA+NINB
2 +NINBNA�. The second

part of Algorithm 2 �lines 17–31� scales as O�NB
3 +NB

2NA�.
The total complexity for the case of a single source and for
the case when there are no intermediate nodes is
O�NI

3+NI
2NA� and O�NB

3 +NB
2NA�, respectively. The storage

requirements of Algorithm 2 scale as O��NI+NB�2�.
We have implemented the algorithm in FORTRAN 95 and

timed it for complete graphs of different sizes. The results
presented in Fig. 4 confirm the overall cubic scaling. The
program is GPL licensed73 and available on-line.74 These and
other benchmarks presented in this work were obtained for a
single Intel® Pentium®4 3.00 GHz 512 kbytes cache pro-
cessor running under the DEBIAN GNU/LINUX operating
system.75 The code was compiled and optimized using the
Intel® FORTRAN compiler for LINUX.

Finally, we note that the GT method described above is a
more general version of the method we introduced in our
previous publication.76 It can be used to treat problems with
multiple sources, which may be interconnected, thereby al-
lowing us to calculate KMC rate constants exactly. Further-
more, as described in Sec. IV, it can easily be extended to
treat problems where sets of sources and sinks overlap, al-

lowing us to calculate the SS rate constants in Eq. �9�.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-9 Waiting times in a Markov process J. Chem. Phys. 124, 234110 �2006�
III. APPLICATIONS TO SPARSE RANDOM GRAPHS

Algorithm 2 could easily be adapted to use adjacency-
lists-based data structures,21 resulting in faster execution and
lower storage requirements for sparse graphs. We have
implemented74 a sparse-optimized version of Algorithm 2
because the graph representations of the Markov chains of
interest in the present work are sparse.20

The algorithm for detaching a single intervening node
from an arbitrary graph stored in a sparse-optimized format
is given in Algorithm 3. Having chosen the node to be re-
moved, �, all the neighbors ��Adj��� are analyzed in turn,
as follows. Lines 3–9 of Algorithm 3 find node � in the
adjacency list of node �. If � is not a sink, lines 11–34 are
executed to modify the adjacency list of node �: lines 13–14
delete node � from the adjacency list of �, while lines 15–30
make all the neighbors ��Adj��� � � of node � the neigh-
bors of �. The symbol � denotes the union minus the inter-
section of two sets, otherwise known as the symmetric dif-
ference. If the edge �→� already existed, only the
branching probability is changed �line 21�. Otherwise, a new
edge is created and the adjacency and branching probability
lists are modified accordingly �lines 26 and 27, respectively�.
Finally, the branching probabilities of node � are renormal-
ized �lines 31–33� and the waiting time for node � is in-
creased �line 34�.

Algorithm 3 is invoked iteratively for every node that is
neither a source nor a sink to yield a graph that is composed
of source nodes and sink nodes only. Then the procedure
described in Sec. II A for disconnection of source nodes
�lines 17–31 of Algorithm 2� is applied to obtain the mean
escape times for every source node. The sparse-optimized
version of the second part of Algorithm 2 is straightforward

FIG. 4. CPU time needed to transform a dense graph G2N using Algorithm
2 as a function of N. The graph G2N is composed of a KN subgraph and N
sink nodes. The data are shown for six different cases, including a single
source, and for sources comprising 20%, 40%, 60%, 90%, and 100% of the
nodes in KN, as labeled. The data for the cases 1 and N were fitted as
5.110−9N3 and 1.510−8N3, respectively �curves not shown�. For case 1
only DetachNode operations were performed, while for N only Disconnect
operations were used. Note the log10 scale on both axes.
and is therefore omitted here for brevity.

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
The running time of Algorithm 3 is O�dc�i�Adj�c�di�,
where dk is the degree of node k. For the case when all the
nodes in a graph have approximately the same degree d, the
complexity is O�d3�. Therefore, if there are N intermediate
nodes to be detached, and d is of the same order of magni-
tude as N, the cost of detaching N nodes is O�N4�. The
asymptotic bound is worse than that of Algorithm 2 because
of the searches through adjacency lists �lines 3–9 and 19–
24�. If d is sufficiently small, the algorithm based on adja-
cency lists is faster.

After each invocation of Algorithm 3 the number of
nodes is always decreased by 1. The number of edges, how-
ever, can increase or decrease depending on the in- and out-
degree of the node to be removed and the connectivity of its
neighbors. If node � is not directly connected to any of the
sinks, and the neighbors of node � are not connected to each
other directly, the total number of edges is increased by
d��3−d��. Therefore, the number of edges decreases �by 2�
only when d�� �1,2�, and the number of edges does not
change if the degree is 3. For d��3 the number of edges
increases by an amount that grows quadratically with d�. The
actual increase depends on how many connections already
existed between the neighbors of �.

The order in which the intermediate nodes are detached
does not change the final result and is unimportant if the
graph is complete. For sparse graphs, however, the order can
affect the running time significantly. If the degree distribu-
tion for successive graphs is sharp with the same average, d,
then the order in which the nodes are removed does not
affect the complexity, which is O�d3N�. If the distributions
are broad it is helpful to remove the nodes with smaller de-
grees first. A Fibonacci heap minimum-priority queue21,77

was successfully used to achieve this result. The overhead
for maintaining a heap is d� increase-key operations �of
O�log�N�� each� per execution of Algorithm 3. FORTRAN and
PYTHON implementations of Algorithm 3 are available
on-line.74

Random graphs provide an ideal testbed for the GT al-
gorithm by giving control over the graph density. A random
graph, RN, is obtained by starting with a set of N nodes and
adding edges between them at random.23 In this work we
used a random graph model where each edge is chosen in-
dependently with probability �d� / �N−1�, where �d� is the
target value for the average degree.

The complexity for removal of N nodes can then be ex-
pressed as

O
log�N� �
i��1,2,3,. . .,N�

dc�i�
2 �

j�Adj�c�i��
dj,c�i��� , �34�

where dc�i� is the degree of the node c�i� removed at iteration
i, Adj�c�i�� is its adjacency list, and dj,c�i� is the degree of the
jth neighbor of that node at iteration i. The computational
cost given in Eq. �34� is difficult to express in terms of the
parameters of the original graph, as the cost of every cycle
depends on the distribution of degrees, the evolution of
which, in turn, is dependent on the connectivity of the origi-
nal graph in a nontrivial manner �see Fig. 5�. The storage
requirements of a sparse-optimized version of the GT algo-

rithm scale linearly with the number of edges.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-10 S. A. Trygubenko and D. J. Wales J. Chem. Phys. 124, 234110 �2006�
To investigate the dependence of the cost of the GT
method on the number of nodes, N, we have tested it on a
series of random graphs RN for different values of N and
fixed average degree �d�. The results for three different val-

FIG. 5. Evolution of the distribution of degrees for random graphs of dif-
ferent expected degree, �d�=5,10,15, as labeled. This is a color-coded pro-
jection of the probability mass function P�d� �Refs. 1 and 81� of the distri-
bution of degrees as a function of the number of the detached intermediate
nodes, n. The straight line shows P�d ,n� for complete graph K1000. All four
graphs contain a single source, 999 intermediate nodes, and a single sink.
The transformation was performed using a sparse-optimized version of Al-
gorithm 2 with a Fibonacci-heap-based minimum-priority queue. It can be
seen that as the intermediate nodes are detached the density of the graph that
is being transformed grows. The expected degree of the initial graph deter-
mines how soon the maximum density will be reached.

FIG. 6. CPU time needed to transform a sparse random graph R2N using the
GT approach described in Sec. II A as a function of the number of interme-
diate nodes, N. R2N is composed of a single source node, N sink nodes, and
N−1 intervening nodes. For each value of N the data for three different
values of the expected degree, �d�=3,4 ,5, are shown, as labeled. The solid
lines are analytic fits of the form cN4, where c=2.310−11, 7.410−11,
1.510−10 for �d�=3,4 ,5, respectively. The CPU time is in s. Note the log10
scale on both axes.

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
ues of �d� are shown in Fig. 6. The motivation for choosing
�d� from the interval �3, 5� was the fact that most of our
stationary point databases have average connectivities for the
local minima that fall into this range.

It can be seen from Fig. 6 that for sparse random graphs
RN the cost scales as O�N4� with a small �d�-dependent pref-
actor. The dependence of the computational complexity on
�d� is illustrated in Fig. 7.

From Fig. 5 it is apparent that at some point during the
execution of the GT algorithm the graph reaches its maxi-
mum possible density. Once the graph is close to complete, it
is no longer efficient to employ a sparse-optimized algo-
rithm. The most efficient approach we have found for sparse
graphs is to use the sparse-optimized GT �SGT� algorithm
until the graph is dense enough, and then switch to the
dense-optimized GT �DGT� method, for which the
pseudocode is given in Algorithm 2. We will refer to this
approach as SDGT. The change of data structures constitutes
a negligible fraction of the total execution time. Figure 8
depicts the dependence of the CPU time as a function of the
switching parameter Rs. Whenever the ratio dc�i� /n�i�, where
n�i� is the number of nodes on a heap at iteration i, is greater
than Rs, the partially transformed graph is converted from the
adjacency list format into the adjacency matrix format, and
the transformation is continued using Algorithm 2. It can be
seen from Fig. 5 that for the case of random graphs with a
single sink, a single source, and 999 intermediate nodes the
optimal values of Rs lie in the interval �0.07, 0.1�.

IV. OVERLAPPING SETS OF SOURCES AND SINKS

We now return to the digraph representation of a Markov
chain that corresponds to the steady-state results discussed in
Sec. I D. A problem with overlapping sets of sources and
sinks can easily be converted into an equivalent problem

FIG. 7. CPU time needed to transform a sparse random graph R2N using the
GT approach as a function of the expected degree �d�. The data are shown
for three graphs with N=500, 750, and 1000, as labeled. R2N is composed of
a single source node, N sink nodes, and N−1 intermediate nodes.
where there is no overlap, and then the GT method discussed

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-11 Waiting times in a Markov process J. Chem. Phys. 124, 234110 �2006�
in Secs. II A and III can be applied as normal. Hence we can
evaluate the SS rate constants in Eq. �9� in a deterministic
manner.

As discussed above, solving a problem with n sources
reduces to solving n single-source problems. We can there-
fore explain how to deal with a problem of overlapping sets
of sinks and sources for a simple example where there is a
single source-sink i and, optionally, a number of sink nodes.

First, a new node i� is added to the set of sinks and its
adjacency lists are initialized to AdjOut�i��=� and
AdjIn�i��=AdjIn�i�. Then, for every node j�AdjOut�i� we
update its waiting time as � j =� j +�i and add node j to the set
of sources with probabilistic weight initialized to Pj,iWi,
where Wi is the original probabilistic weight of source i �the
probability of choosing source i from the set of sources�.
Afterwards, the node i is deleted.

V. APPLICATIONS TO LENNARD-JONES CLUSTERS

A. Oh^ Ih isomerization of LJ38

We have applied the GT method to study the temperature
dependence of the rate of interconversion between configu-
rations based on truncated octahedra �Oh� and icosahedral
�Ih� packing in a 38-atom Lennard-Jones cluster �LJ38�. The
PES sample was taken from a previous study5 and contained
1740 minima and 2072 transition states, not including
permutation-inversion isomers. The assignment was made in
Ref. 5 by solving a master equation numerically to find the
eigenvector that corresponds to the smallest magnitude non-
zero eigenvalue. As simple two-state dynamics are associ-
ated with exponential rise and decay of occupation probabili-
ties, there must exist a time scale on which all the
exponential contributions to the solution of the master equa-
tion decay to zero except for the slowest.4 The sign of the
components of the eigenvector corresponding to the slowest
mode was used to classify the minima as Ih or Oh in

5

FIG. 8. CPU time as a function of switching ratio Rs for random graphs of
different expected degrees, �d�=5,10,15, as labeled. All three graphs con-
tain a single source, 999 intermediate nodes, and a single sink. The trans-
formation was performed using the sparse-optimized version of Algorithm 2
until the the ratio dc�i� /n�i� became greater than Rs. Then a partially trans-
formed graph was converted into an adjacency matrix format and the trans-
formation was continued with Algorithm 2. The optimal value of Rs lies in
the interval �0.07,0.1�. Note the log10 scale on both axes.
character.

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
The above sample was pruned to remove disconnected
minima and create a digraph representation that contained
759 nodes with 43 sources, 5 sinks, and 2639 edges. The
minimal, average, and maximal degrees for this graph were
2, 3.8, and 84, respectively, and the graph density was 4.6
10−3. We have used the SDGT algorithm with the switch-
ing ratio set to 0.08 to transform this graph for several values
of temperature. In each of these calculations 622 out of 711
intermediate nodes were detached using SGT, and the re-
maining 89 intermediate nodes were detached using the GT
algorithm optimized for dense graphs �DGT�.

An Arrhenius plot depicting the dependence of the rate
constant on temperature is shown in Fig. 9�a�. The running
time for the SDGT algorithm was 1.810−2 s �this value
was obtained by averaging over ten runs and was the same
for each SDGT run in Fig. 9�a��. For comparison, the timings
obtained using the SGT and DGT algorithms for the same
problem were 2.010−2 and 89.010−2 s, respectively.
None of the 43 total escape probabilities �one for every
source� deviated from unity by more than 10−5 for tempera-
tures above T=0.07 �reduced units�. For lower temperatures
the probability was not conserved due to numerical impreci-
sion.

The data obtained using the SDGT method were com-
pared with the results from KMC simulation, which require
increasingly more CPU time as the temperature is lowered.
Figure 9 also shows the data for KMC simulations at tem-
peratures 0.14, 0.15, 0.16, 0.17, and 0.18. Each KMC simu-
lation consisted of 1000 separate KMC trajectories, from
which the averages were computed. The cost of each KMC
calculation is proportional to the average trajectory length,
which is depicted in Fig. 9�b� as a function of the inverse
temperature. The CPU timings for each of these calculations
were �in order of increasing temperature, averaged over five
randomly seeded KMC runs of 1000 trajectories each� 125,
40, 18, 12, and 7 s. It can be seen that using the GT method
we were able to obtain kinetic data for a wider range of
temperatures and with less computational expense.

For the temperatue range of �0.09, 0.18� Arrhenius plots
for this system were obtained previously using KMC and
master equation approaches, as well as the MM method.5,14

The results reported here are in quantitative agreement with
those from Ref. 14.

B. Internal diffusion in LJ55

We have applied the graph transformation method to
study the center-to-surface atom migration in 55-atom
Lennard-Jones cluster �LJ55�. The global potential energy
minimum for LJ55 is a Mackay icosahedron, which exhibits
special stability and “magic number” properties.78,79 Center-
to-surface and surface-to-center rates of migration of a
tagged atom for this system were considered in previous
work.14,34 In Ref. 14 the standard DPS procedure was applied
to create a stationary point database based on paths linking
the global minimum with the tagged atom occupying the

central position to the same structure with the tagged atom in

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

own i

234110-12 S. A. Trygubenko and D. J. Wales J. Chem. Phys. 124, 234110 �2006�
a surface site. �There are two inequivalent surface sites lying
on twofold and fivefold axes of rotation.� We have reused
this database in the present work.

The sample contained 9907 minima and 19 384 transi-
tion states. We excluded transition states corresponding to
degenerate rearrangements from consideration because they
do not affect the rates.14 For minima interconnected by more
than one transition state we added the rate constants to cal-
culate the branching probabilities. Four digraph representa-
tions were created with minimum degrees of 1, 2, 3, and 4
via iterative removal of the nodes with degrees that did not
satisfy the requirement. These digraphs will be referred to as
digraphs 1, 2, 3, and 4, respectively. The corresponding pa-
rameters are summarized in Table I. We quote CPU timings
for the DGT, SGT, and SDGT methods for each of these
graphs in the last three columns of Table I. Each digraph
contained two source nodes labeled 1 and 2, and a single
sink. The sink node corresponds to the global minimum with
the tagged atom in the center. It is noteworthy that the den-
sities of the graphs corresponding to both our examples �LJ38

and LJ55� are significantly lower than the values predicted for

FIG. 9. �a� Arrhenius plots for the LJ38 cluster. k is the rate constant correspo
represent the data obtained from 23 SDGT runs at temperatures T� �0.07,0.
shown using triangles correspond to temperatures T� �0.035,0.04, . . . ,0.06
quadruple precision enabled. In all SDGT runs the total escape probabilities
no more than 10−5. For this stationary point database the lowest temperatur
KMC trajectory length �data in direct correspondence with KMC results sh

TABLE I. Properties of four digraphs corresponding to the LJ55 PES sampl
of directed edges; dmin, �d�, and dmax are the minimum, average, and maxim
of edges to the maximum possible number of edges; and r and d are the grap
respectively, where the eccentricity of a node � is defined as the maximum d
The CPU time t necessary to transform each graph using the DGT, SGT, an
512 kbytes cache processor.

�V� �E� dmin �d� dmax � �10−4

9843 34 871 1 3.9 983 3.6
6603 28 392 2 4.8 983 6.5
2192 14 172 3 7.9 873 29.5

865 7 552 4 1.9 680 101.0
Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
a complete sample,80 which makes the use of sparse-
optimized methods even more advantageous. From Table I it
is clear that the SDGT approach is the fastest, as expected;
we will use SDGT for all the rate calculations in the rest of
this section.

For this example KMC calculations are unfeasible at
temperatures lower than about T=0.3 �reduced units
throughout�. Already for T=0.4 the average KMC trajectory
length is 7.5106 �value obtained by averaging over 100
trajectories�. In Ref. 14 it was therefore necessary to use the
steady-state approximation for the intervening minima to cal-
culate the rate constant at temperatures below 0.35. These
results were not fully converged and were revised in Ref. 34
using alternative formulations of the kinetics. Here we report
results that are in direct correspondence with the KMC rate
constants, for temperatures as low as 0.1.

Figure 10 presents Arrhenius plots for rate constants cal-
culated using the SDGT method. The data denoted with
circles are the results from seven SDGT calculations at tem-
peratures T� �0.3,0.35, . . . ,0.6� conducted for each of the
digraphs. The total escape probabilities, �1

G and �2
G, calcu-

to transitions from icosahedral-like to octahedral-like regions. Green circles
. . . ,0.18�. The data from five KMC runs are also shown �squares�. The data
nd were obtained using the SDGT2 method �discussed in Sec. V B� with
ulated for every source at the end of the calculation deviated from unity by
which data were reported in previous works was T=0.03. �b� The average
n �a��. A solid line is used to connect the data points to guide the eye.

an internal diffusion study. �V� is the number of nodes; �E� is the number
egrees, respectively; � is the graph density, defined as a ratio of the number
ius and diameter, defined as the maximum and minimum node eccentricity,

ce between � and any other node. �l� is the average distance between nodes.
GT methods is given in s for a single 32 bits Intel® Pentium®4 3.00 GHz

r �l� d tDGT tSGT tSDGT

10 5.71 20 2346.1 39.6 1.36
9 4.86 17 1016.1 38.9 1.33
4 3.63 8 46.9 5.9 0.49
4 3.07 7 3.1 0.8 0.12
nding
075,
5� a
calc

e for
e from
um d
h rad
istan
d SD

�

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-13 Waiting times in a Markov process J. Chem. Phys. 124, 234110 �2006�
lated for each of the two sources at the end of the calculation
deviated from unity by no more than 10−5. For higher tem-
peratures and smaller digraphs the deviation was lower, be-
ing on the order of 10−10 for digraph 4 at T=0.4.

At temperatures lower than 0.3 the total probability de-
viated by more than 10−5 due to numerical imprecision. This
problem was partially caused by the round-off errors in
evaluating the terms 1− P�,�P�,�, which increase when
P�,�P�,� approaches unity. These errors can propagate and
amplify as the evaluation proceeds. By writing

P�,� = 1 − �
���

P�,� � 1 − ��,�

and

P�,� = 1 − �
���

P�,� � 1 − ��,�, �35�

and then using

1 − P�,�P�,� = ��,� − ��,���,� + ��,� �36�

we were able to decrease 1−��
G by several orders of magni-

tude at the expense of doubling the computational cost. The
SDGT method with probability denominators evaluated in
this fashion will be referred to as SDGT1.

Terms of the form 1− P�,�P�,� approach zero when
nodes � and � become “effectively” �i.e., within available
precision� disconnected from the rest of the graph. If this
condition is encountered in the intermediate stages of the
calculation, it could also mean that a larger subgraph of the
original graph is effectively disconnected. The waiting time
for escape, if started from a node that belongs to this sub-
graph, tends to infinity. If the probability of getting to such a
node from any of the source nodes is close to zero, the final
answer may still fit into available precision, even though
some of the intermediate values cannot. Obtaining the final
answer in such cases can be problematic as division-by-zero
exceptions may occur.

Another way to alleviate numerical problems at low tem-

FIG. 10. Arrhenius plots for four digraphs of varying sizes �see Table I�
created from a stationary point database for the LJ55 cluster. k is the rate
constant corresponding to surface-to-center migration of a tagged atom. Cal-
culations were conducted at T� �0.3,0.35, . . . ,0.7� using the SDGT method
�circles� and T� �0.1,0.15, . . . ,0.25� using SDGT2Q �triangles�. For each of
the digraphs the calculations yielded essentially identical results, so data
points for only one of them are shown. The lines connecting the data points
are shown for each of the digraphs.
peratures is to stop round-off errors from propagation at

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
early stages by renormalizing the branching probabilities of
affected nodes ��Adj��� after node � is detached. The cor-
responding check that the updated probabilities of node �
add up to unity could be inserted after line 33 of Algorithm 3
�see Sec. VII�, and similarly for Algorithm 2. A version of
the SDGT method with this modification will be referred to
as SDGT2.

Both SDGT1 and SDGT2 have similarly scaling over-
heads relative to the SDGT method. We did not find any
evidence for the superiority of one scheme over another. For
example, the SDGT calculation performed for digraph 4 at
T=0.2 yielded T G=T 1

GW1+T W2=6.410−18, and precision
was lost as both �1

G and �2
G were less than 10−5. The SDGT1

calculation resulted in T G=8.710−22 and �1
G=�2

G=1.0428,
while the SDGT2 calculation produced T G=8.410−22 with
�1

G=�2
G=0.999 61. The CPU times required to transform this

graph using our implementations of the SDGT1 and SDGT2
methods were 0.76 and 0.77 s, respectively.

To calculate the rates at temperatures in the interval �0.1,
0.3� reliably we used an implementation of the SDGT2
method compiled with quadruple precision �SDGT2Q� �note
that the architecture is the same as in other benchmarks, i.e.,
with 32 bits wide registers�. The points denoted by triangles
in Fig. 10 are the results from four SDGT2Q calculations at
temperatures T� �0.10,0.35, . . . ,0.75�. These results are in
agreement with those previously reported for this system.76

Using the SDGT2Q formulation we were also able to
reach lower temperatures for the LJ38 example presented in
the previous section. The corresponding data are shown in
Fig. 9 �triangles�.

VI. CONCLUSIONS

The most important result of this work is probably the
graph transformation �GT� method. The method works with
a digraph representation of a Markov chain and can be used
to calculate the first moment of a distribution of the first-
passage times, as well as the total transition probabilities for
an arbitrary digraph with sets of sources and sinks that can
overlap. The calculation is performed in a noniterative and
nonstochastic manner, and the number of operations is inde-
pendent of the simulation temperature.

We have presented three implementations of the GT al-
gorithm: sparse-optimized �SGT�, dense-optimized �DGT�,
and hybrid �SDGT�, which is a combination of the first two.
The SGT method uses a Fibonacci heap minimum-priority
queue to determine the order in which the intermediate nodes
are detached to achieve slower growth of the graph density
and, consequently, better performance. SDGT is identical to
DGT if the graph is dense. For sparse graphs SDGT performs
better than SGT because it switches to DGT when the den-
sity of a graph being transformed approaches the maximum.
We find that the SDGT method performs well both for sparse
and dense graphs. The worst case asymptotic scaling of
SDGT is cubic.

We have also suggested two versions of the SDGT

method that can be used in calculations where a greater de-

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-14 S. A. Trygubenko and D. J. Wales J. Chem. Phys. 124, 234110 �2006�
gree of precision is required. The code that implements the
SGT, DGT, SDGT, SDGT1, and SDGT2 methods is avail-
able for download.74

The connection between the steady-state �SS� kinetic
formulation and KMC approaches was discussed in terms of
digraph representations of Markov chains. We showed
that rate constants obtained using both the KMC or SS
methods can be computed using graph transformation.
We have presented applications to the isomerization of the
LJ38 cluster and internal diffusion in the LJ55 cluster. Using
the GT method we were able to calculate rate constants
at lower temperatures and with less computational
expense.

We also obtained analytic expressions for the total tran-
sition probabilities in arbitrary digraphs in terms of combi-
natorial sums over pathway ensembles. It is hoped that these
results will help in further work, for example, obtaining
higher moments of the distribution of the first-passage times
for arbitrary Markov chains.

VII. ALGORITHMS

ALGORITHM 1. Calculate the pathway sum Sa,b
GN for an

arbitrary digraph GN.
Require: 1
N and a ,b� �0,1 ,2 , . . . ,N−1�. W is a

Boolean array of size N, with every element initially set to
True. NW is the number of True elements in array W �initial-
ized to N�. P�i , j� is the probability of branching from node j
to node i. AdjIn�i� and AdjOut�i� are the lists of indices of
all nodes connected to node i via incoming and outgoing
edges, respectively.

Recursive function F�� ,� ,W ,NW�
1: W���←False; NW←NW−1
2: if �=� and NW=0 then
3: �←1
4: else
5: �←0.0
6: for all i�AdjOut��� do
7: for all j�AdjIn��� do
8: if W�i� and W�j� then
9: �←�+ P�� , j�F�j , i ,W ,NW�P�i ,��
10: end if
11: end for
12: end for
13: �←1/ �1−��
14: if ��� then
15: �←0.0
16: for all i�AdjOut��� do
17: if W�i� then
18: �←�+F�� , i ,W ,NW�P�i ,��
19: end if
20: end for
21: �←��
22: end if
23: end if
24: W���←True; NW←NW+1

25: return �

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
ALGORITHM 2. Calculate the total transition probabili-
ties ��,�

GN and the mean escape times T�
GN in a dense graph GN.

Require: Nodes are numbered 0,1 ,2 , . . . ,N−1. Sink
nodes are indexed first, source nodes last. i is the index of the
first intermediate node, s is the index of the first source node.
If there are no intermediate nodes, then i=s; otherwise i
s.
1
N and i ,s� �0,1 ,2 , . . . ,N−1�. ���� is the waiting time
for node �, �� �i , i+1, i+2, . . . ,N−1�. P�i , j� is the prob-
ability of branching from node j to node i.

1: for all �� �i , i+1, i+2, . . . ,s−1� do
2: for all �� ��+1,�+2, . . . ,N−1� do
3: if P�� ,���0 then
4: ����←�����+����P��,���/

�1−P��,��P��,���
5: for all �� �0,1 ,2 , . . . ,N−1� do
6: if ��� and ��� then
7: P��,��←�P��,��+P��,��P��,���/

�1−P��,��P��,���
8: end if
9: end for
10: P�� ,��←0.0
11: end if
12: end for
13: for all �� �0,1 ,2 , . . . ,N−1� do
14: P�� ,��←0.0
15: end for
16: end for
17: for all �� �s ,s+1,s+2, . . . ,N−1� do
18: for all �� �s ,s+1,s+2, . . . ,N−1� do
19: if ��� and P�� ,���0 then
20: P�,�←P�� ,��; P�,�←P�� ,��; T←����
21: ����← �����+����P�,�� / �1− P�,�P�,��
22: ����← �����+TP�,�� / �1− P�,�P�,��
23: for all �� �0,1 ,2 , . . . , i−1�

��s ,s+1,s+2, . . . ,N−1� do
24: T←P�� ,��
25: P�� ,��← �P�� ,��+ P�� ,��P�,��/

�1− P�,�P�,��
26: P�� ,��← �P�� ,��+TP�,�� / �1− P�,�P�,��
27: end for
28: P�� ,��←0.0; P�� ,��←0.0
29: end if
30: end for
31: end for

ALGORITHM 3. Detach node � from an arbitrary graph
GN.

Require: 1
N and �� �0,1 ,2 , . . . ,N−1�. ��i� is the
waiting time for node i. Adj�i� is the ordered list of indices of
all nodes connected to node i via outgoing edges. �Adj�i�� is
the cardinality of Adj�i�. Adj�i��j� is the index of the jth
neighbor of node i. P�i� is the ordered list of probabilities of
leaving node i via outgoing edges, �P�i� � = �Adj�i��. P�i��j� is
the probability of branching from node i to node Adj�i��j�.

1: for all ��� �0,1 ,2 , . . . , �Adj��� �−1� do
2: �←Adj�������
3: ��←−1
4: for all i� �0,1 ,2 , . . . , �Adj��� �−1� do

5: if Adj����i�=� then

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-15 Waiting times in a Markov process J. Chem. Phys. 124, 234110 �2006�
6: ��← i
7: break
8: end if
9: end for
10: if not ��=−1 then
11: P�,�←1/ �1− P�������P��������
12: P�,�←P�������
13: Adj���← �Adj����0� ,Adj����1� , . . . ,

Adj������−1� ,Adj������+1� , . . . �
14: P���← �P����0� , P����1� , . . . ,

P������−1� , P������+1� , . . . �
15: for all ��� �0,1 ,2 , . . . , �Adj��� �−1� do
16: �←Adj�������
17: if not �=� then
18: if exists edge �→� then
19: for all i� �0,1 ,2 , . . . , �Adj��� �−1� do
20: if Adj����i�=� then
21: P����i�←P����i�+ P�,�P�������
22: break
23: end if
24: end for
25: else
26: Adj���← �� ,Adj����0�,

Adj����1� ,Adj����2� , . . . �
27: P���← �P�,�P������� , P����0�,

P����1� , P����2� , . . . �
28: end if
29: end if
30: end for
31: for all i� �0,1 ,2 , . . . , �P��� �−1� do
32: P����i�←P����i�P�,�

33: end for
34: ��← ���+ P�,����P�,�

35: end if
36: end for

ACKNOWLEDGMENTS

One of the authors �S.A.T.� is grateful to Cambridge
Commonwealth Trust/Cambridge Overseas Trust and Darwin
College for the financial support. The authors would like to
thank Tim James, Dwaipayan Chakrabarti, and Dr. David J.
C. MacKay for comments on the manuscript.

1 G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks
and Markov Chains �Wiley, New York, 1998�.

2 G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes
�Oxford University Press, Oxford, 2005�.

3 G. R. Grimmett and D. R. Stirzaker, One Thousand Exercises in Prob-
ability �Oxford University Press, Oxford, 2005�.

4 D. J. Wales, Energy Landscapes: Applications to Clusters, Biomolecules
and Glasses �Cambridge University Press, Cambridge, 2003�.

5 D. J. Wales, Mol. Phys. 100, 3285 �2002�.
6 N. G. van Kampen, Stochastic Processes in Physics and Chemistry
�Elsevier, Amsterdam, 1981�.

7 A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17, 10
�1975�.

8 K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95, 1090
�1991�.

9 M. A. Miller, Ph.D. thesis Energy Landscapes and Dynamics of Model
Clusters, University of Cambridge, March 1999.

10 M. Block, R. Kunert, E. Schöll, T. Boeck, and T. Teubner, New J. Phys.

6, 166 �2004�.

Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
11 D. Mukherjee, C. G. Sonwane, and M. R. Zachariah, J. Chem. Phys. 119,
3391 �2003�.

12 F. M. Bulnes, V. D. Pereyra, and J. L. Riccardo, Phys. Rev. E 58, 86
�1998�.

13 R. E. Kunz, Dynamics of First-Order Phase Transitions �Deutsch, Thun,
1995�.

14 D. J. Wales, Mol. Phys. 102, 883 �2004�.
15 D. A. Evans and D. J. Wales, J. Chem. Phys. 121, 1080 �2004�.
16 D. A. Evans and D. J. Wales, J. Chem. Phys. 119, 9947 �2003�.
17 M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, and J.-C. Latombe, in

RECOMB ’02: Proceedings of the Sixth Annual International Conference
on Computational Biology �ACM, New York, NY, 2002�, pp. 12–21.

18 M. S. Apaydin, C. E. Guestrin, C. Varma, D. L. Brutlag, and J.-C.
Latombe, Bioinformatics 18, S18 �2002�.

19 N. Singhal, C. D. Snow, and V. S. Pande, J. Chem. Phys. 121, 415
�2004�.

20 G. Chartrand, Introductory Graph Theory �Dover, New York, 1977�.
21 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 2nd ed. �MIT, Cambridge, MA, 2001�.
22 NIST, Dictionary of Algorithms and Data Structures, http://

www.nist.gov/dads/
23 Wikipedia, the Free Encyclopedia, http://www.wikipedia.org/
24 A. Bar-Haim and J. Klafter, J. Chem. Phys. 109, 5187 �1998�.
25 M. A. Novotny, Phys. Rev. Lett. 74, 1 �1995�.
26 M. G. Bulmer, Principles of Statistics �Dover, New York, 1979�.
27 B. E. Trumbo, Relationship Between the Poisson and Exponential Distri-

butions, http://www.sci.csuhayward.edu/statistics/Resources/Essays/
PoisExp.htm

28 T. F. Middleton, Ph.D. thesis, Energy Landscapes of Model Glasses, Uni-
versity of Cambridge, March 2003.

29 D. A. Reed and G. Ehrlich, Surf. Sci. 105, 603 �1981�.
30 A. F. Voter, Radiation Effects in Solids �Springer-Verlag, New York,

2005�, pp. 1–22.
31 M. Raykin, J. Phys. A 26, 449 �1992�.
32 K. P. N. Murthy and K. W. Kehr, Phys. Rev. A 40, 2082 �1989�.
33 S. A. Trygubenko, Ph.D. thesis, University of Cambridge, January 2006.
34 S. A. Trygubenko and D. J. Wales, Mol. Phys. 104, 1497 �2006�.
35 I. Goldhirsch and Y. Gefen, Phys. Rev. A 33, 2583 �1986�.
36 I. Goldhirsch and Y. Gefen, Phys. Rev. A 35, 1317 �1987�.
37 E. W. Weisstein, Complete Graph, MathWorld—A Wolfram Web Re-

source, http://mathworld.wolfram.com/CompleteGraph.html
38 S. Goldberg, Probability: An Introduction �Dover, New York, 1960�.
39 B. Kahng and S. Redner, J. Phys. A 22, 887 �1989�.
40 D. Zheng, Y. Liu, and Z. D. Wang, J. Phys. A 28, L409 �1995�.
41 S. K. Kim and H. H. Lee, J. Appl. Phys. 78, 3809 �1995�.
42 P. C. Bressloff, V. M. Dwyer, and M. J. Kearney, J. Phys. A 29, 1881

�1996�.
43 S. Revathi, V. Balakrishnan, S. Lakshmibala, and K. P. N. Murthy, Phys.

Rev. E 54, 2298 �1996�.
44 K. Kim, J. S. Choi, and Y. S. Kong, J. Phys. Soc. Jpn. 67, 1583 �1998�.
45 K. Kim, G. H. Kim, and Y. S. Kong, Fractals 8, 181 �2000�.
46 J. Asikainen, J. Heinonen, and T. Ala-Nissila, Phys. Rev. E 66, 066706

�2002�.
47 P. A. Pury and M. O. Cáceres, J. Phys. A 36, 2695 �2003�.
48 M. Slutsky, M. Kardar, and L. A. Mirny, Phys. Rev. E 69, 061903

�2004�.
49 M. Slutsky and L. A. Mirny, Biophys. J. 87, 4021 �2004�.
50 D. ben Avraham, S. Redner, and Z. Cheng, J. Stat. Phys. 56, 437 �1989�.
51 Y. Gefen and I. Goldhirsch, Physica D 38, 119 �1989�.
52 O. Matan and S. Havlin, Phys. Rev. A 40, 6573 �1989�.
53 H. Haucke, S. Washburn, A. D. Benoit, C. P. Umbach, and R. A. Webb,

Phys. Rev. B 41, 12454 �1990�.
54 S. Revathi and V. Balakrishnan, J. Phys. A 26, 467 �1993�.
55 S. H. Noskowicz and I. Goldhirsch, Phys. Rev. A 42, 2047 �1990�.
56 S. Revathi and V. Balakrishnan, Phys. Rev. E 47, 916 �1993�.
57 V. Balakrishnan and C. Vandenbroeck, Physica A 217, 1 �1995�.
58 A. R. Kerstein and R. B. Pandey, Phys. Rev. A 35, 3575 �1987�.
59 Y. Gefen and I. Goldhirsch, Phys. Rev. B 35, 8639 �1987�.
60 Y. Gefen and I. Goldhirsch, J. Phys. A 18, L1037 �1985�.
61 J. W. Haus and K. W. Kehr, Phys. Rep. 150, 263 �1987�.
62 I. G. S. H. Noskowicz, J. Stat. Phys. 48, 255 �1987�.
63 R. Landauer and M. Buttiker, Phys. Rev. B 36, 6255 �1987�.
64 R. Tao, J. Phys. A 20, 6151 �1987�.
65
 J. Koplik, S. Redner, and D. Wilkinson, Phys. Rev. A 37, 2619 �1988�.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

234110-16 S. A. Trygubenko and D. J. Wales J. Chem. Phys. 124, 234110 �2006�
66 N. M. van Dijk, Queueing Networks and Product Forms �Wiley, New
York, 1993�.

67 E. Gelenbe and G. Pujolle, Introduction to Queueing Networks �Wiley,
New York, 1998�.

68 A. E. Conway and N. D. Georganas, Queueing Networks: Exact Compu-
tational Algorithms �MIT, Cambridge, MA, 1989�.

69 D. Eppstein, Z. Galil, and G. F. Italiano, in Algorithms and Theory of
Computation Handbook, edited by M. J. Atallah �CRC, Boca Raton, FL,
1999�, Chap. 8.

70 B. V. Cherkassky, A. V. Goldberg, and T. Radzik, in SODA ’94: Proceed-
ings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
�Society for Industrial and Applied Mathematics, Philadelphia, PA,
1994�, pp. 516–525.
Downloaded 15 Feb 2007 to 131.111.115.149. Redistribution subject to
71 G. Ramalingam and T. Reps, J. Algorithms 21, 267 �1996�.
72 G. Ramalingam and T. Reps, Theor. Comput. Sci. 158, 233 �1996�.
73 GNU General Public License, http://www.gnu.org/copyleft/gpl.html
74 S. A. Trygubenko, Graph Transformation Program, http://

www.trygub.com/gt/
75 DEBIAN—The Universal Operating System, http://www.debian.org/
76 S. A. Trygubenko and D. J. Wales, J. Chem. Phys. 120, 2082 �2004�.
77 M. L. Fredman, and R. E. Tarjan, J. ACM 34, 596 �1987�.
78 P. Labastie and R. L. Whetten, Phys. Rev. Lett. 65, 1567 �1990�.
79 R. S. Berry, T. L. Beck, H. L. Davis, and J. Jellinek, Adv. Chem. Phys.

70B, 75 �1988�.
80 J. P. K. Doye and C. P. Massen, J. Chem. Phys. 122, 084105 �2005�.
81 J. Pitman, Probability �Springer-Verlag, New York, 1993�.
 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

