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In recent experiments on sodium chloride clusters structural transitions between nanocrystals with
different cuboidal shapes were detected. Here we present results for the thermodynamics and
dynamics of one of these clustgi$aCl)3sCl~. As the time scales for the structural transitions can

be much longer than those accessible by conventional dynamics simulations, we use a master
equation to describe the probability flow within a large sample of potential energy minima. We
characterize the processes contributing to probability flow between the different nanocrystals, and
obtain rate constants and activation energies for comparison with the experimental valUE399©
American Institute of Physic§S0021-96069)70247-3

I. INTRODUCTION icosahedral states act as a trap preventing relaxation to the
Marks decahedrélglobal minimum. A similar competition

Understanding the relationship between the potential enbetween face-centered-cubic or decahedral and icosahedral
ergy surfacePES, or energy landscape, and the dynamicsstructures has recently been observed for metal cluSters.
of a complex system is a major research effort in the chemi-  For these clusters unbiased global optimization is diffi-
cal physics community. One particular focus has been theult because the icosahedral states act as an effective trap.
dynamics of relaxation from an out-of-equilibrium starting More generally, kinetic traps are one of the major problems
configuration down the energy landscape to the state of lowfor a global optimization algorithm. Therefore, much re-
est free energy, which is often also the global minimum ofsearch has focussed on decreasing the “lifetime” of such
the PES: traps. For example, some methods simulate a non-Boltzmann

The possible relaxation processes involved can bensemble that involves increased fluctuations, thus making
roughly divided into two types. The first is relaxation from a barrier crossing more likel§® Other algorithms transform
high-energy disordered state to a low-energy ordered statéhe energy landscape in a way that increases the temperature
and examples include the folding of a protein from the destange where the global minimum is populated, thus allowing
natured state to the native structure, and the formation of ane to choose conditions where the free energy barriers rela-
crystal from the liquid. tive to the thermal energy are low&!!

The second kind of relaxation process, which is the fo-  Recently, clear examples of trapping associated with
cus of the work here, is relaxation from a low-energy, butstructural transitions have emerged from experiments on
metastable, state to the most stable state. This second situdaCl clusters. These clusters have only one energetically
tion often arises from the first; the initial relaxation from a favorable morphology; the magic numbers that appear in
disordered state can lead to the population of a number ahass spectra correspond to cuboidal fragments of the bulk
low-energy kinetically accessible configurations. The timecrystal (rocksalj lattice!*~'# hence the term nanocrystals.
scales for this second relaxation process can be particulariypdirect structural information comes from the experiments
long because of the large free energy barriers that can sepaf Jarrold and co-workers which probe the mobility of size-
rate the states. selected cluster ions. For most (Na@Dl~ with N>30,

Some proteins provide an instance of this second type ahultiple isomers were detected which were assigned as
relaxation. Often, as well as a rapid direct path from thenanocrystals with different cuboidal shapg@sThe popula-
denatured state to the native structure, there is also a slowéons in the different isomers were not initially equilibrated,
path which passes through a low-energy kinetic s but slowly evolved, allowing rates and activation energies
this trapping is a potential problem for protein function, thefor the structural transitions between the nanocrystals to be
cell has developed its own biochemical machinery to circumobtained:®
vent it. For example, it has been suggested that the chapero- In a previous paper we identified the mechanisms of
nin, GroEL, aids protein folding by unfolding those protein these structural transitions by extensively searching the low-
molecules which get stuck in a trapped sthte. energy regions of the PES of one of these clusters,

There are also a growing number of examples of thifNaCl3sCl~, in order to obtain paths linking the different
second type of relaxation involving clusters. For Lennard—cuboidal morphologies’ The key process in these transi-
Joneg(LJ) clusters there are a number of sizes for which thetions is a highly cooperative rearrangement in which two
global minimum is nonicosahedralFor example, the Iy  parts of the nanocrystal slip past one another oflL®0
global minimum is a face-centered-cubic truncated octaheplane in a(110) direction.
dron, but relaxation down the PES almost always leads to a Here we continue our examination of the structural tran-
low-energy icosahedral minimum. Similarly, for gJthe  sitions by investigating the dynamics of (NagCl~. Given
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the long time scales for which the clusters reside in metathis search to probe the low-energy regions of the PES either

stable forms, it is not feasible to probe the transitions withby using a Metropolis criteridtt to decide whether to accept

conventional dynamics simulations. Instead, we use a masterstep to a new minimufi2*or by systematically perform-

equation that describes the probability flow between theng transition state searches from the lower energy minima in

minima on the PES. This method enables one to consider thtae samplé>2® Thus, although our samples of stationary

dynamics that result from a large network of pathways andoints only constitute a tiny fraction of the total number on

has the advantage that we can relate the dynamics to ttiee PES, we have a good representation of the low-energy

topography of the PES. In this paper we are particularly conregions that are relevant to the structural transitions of

cerned with obtaining activation energies for the structuralNaCl);5Cl™.

transitions: First, in order to compare with experiment, and

second, to understand how the activation energy for a pro-

cess that involvgs a series_ of rearrangements and a large Thermodynamics

number of possible paths is related to the features of the

energy landscape. In Sec. Il we outline our methods, and We used two methods to probe the thermodynamics:

then in Sec. Ill, after a brief examination of the topographyfirst, conventional Monte Carlo simulations and second, the

of the PES and the thermodynamics, we present our resul/Perposition method. The latter is a technique to obtain the

for the dynamics of the structural transitions. thermodynamics of a system from a sample of minfrhiis
based on the idea that all of configuration space can be di-
vided up into the basins of attraction surrounding each

Il. METHODS minimum?® The density of states or partition function can

A. Potential then be written as a sum over all the minima on the PES,

The potential that we use to describe the sodium chlorig$9 4= ¥i4i» WhereZ; is the partition function of minimum

) . X A i
clusters is the Tosi—Fumi parameterization of the Coulomb
plus Born—Mayer fornt®

E:E (%_FAijerij /P)’

i<j \ T

The limitations of the superposition method are that the
Z; are not known exactly and that, for all but the smallest
systems, the total number of minima on the PES is too large
for us to characterize them all. However, the harmonic ex-
pression forZ; leads to a reasonable description of the
whereq; is the charge on iom, rj; is the distance between thermodynamicd’ Furthermore, anharmonic forms are
ions i and j, and A;; and p are parameter$. Although  available which allow the thermodynamics of larger clusters
simple, this potential provides a reasonable description of thgy pe reproduced accuratéfy.

interactions. For example, in a previous study we compared The incompleteness of the sample can be overcome by
the global minima ofNaCl\CI™ (N=35) for this potential \yeighting the contributions from the minima in a represen-
with those for a more complex potential derived by Welchtative samplé® However, this approach is not necessary in
et al. which also includes terms due to polarizatf3rMost  the present study since we are interested in low temperature
of the global minima were the same for both potenttals. pehavior where the number of thermodynamically relevant
Given some of the other approximations we use in this studyminima is still relatively small. Furthermore, in this tempera-
the small advantages gained by using the Welch potential dgyre regime the superposition method has the advantage that
not warrant the considerable additional computational exit is unaffected by the presence of large free energy barriers
pense. between low-energy minima which can hinder the determi-

We should also note that a well-known problem assocination of equilibrium thermodynamic properties by conven-
ated with the above family of potentials for the alkali halidestional simulation.

is that they never prediCt the CsCI structure to be the most Here we use the harmonic form of the Superposition

stable. This problem arises because the potentials do not ahethod, because we later use the harmonic approximation to
low the properties of an ion to be dependent on the locaerive rate constantseliable anharmonic expressions for the

ionic enViI‘onmenﬁo This deficiency should not greatly af- rate constants are not so read”y ava”abréhe partition
fect the relative energies of the low-lyinNaClssCl™  function is then

minima because they all have the same rocksalt structure, but

it may affect the barriers for rearrangements where some _E nie 5

ions experience a different local environment at the transi- Z= T (Bhv)< @)

tion state. _

where 8=1/kT, E; is the energy of minimum, v; is the

geometric mean vibrational frequencyipfk=3N—6 is the

number of vibrational degrees of freedom amds the num-
The samples of 3518 minima and 4893 transition stateer of permutational isomers of n; is given by N!/h;,

that we use here were obtained in our previous study on thehere h; is the order of the point group daf From this

mechanisms of the structural transitions ffaClssCl—.1"  expression thermodynamic quantities such as the heat capac-

This sampling was performed by repeatedly stepping acrossy, C,, can be obtained by the application of standard ther-

the PES from minimum to minimum via transition states,modynamic formulad’ The superposition method also al-

thus giving a connected set of stationary points. We biasetbws us to examine the contributions of particular regions of

B. Searching the potential energy surface
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configuration space to the the thermodynamics. For example, A L
the probability that the system is in regiénis given by e —_——
|
Z; H
PA=2 > vl ‘ : |

ieA

—H

where the sum runs over those minima that are part of region s R
A D + JJ

D. Dynamics e

e}

The master equation approdtis increasingly being o
used to describe the interminimum dynamics on a multidi- .
mensional PES with applications to, for example, =
s38-40 and idealized model 1

clusters®~3® glasses®*’ proteins’
landscape$.This approach allows the dynamics to be inves-
tigated even when, as faiNaCl);sCl~, there are a large l i
number of pathways that are potentially relevant to the dy-

namics. The master equation is defined in termsP(if) FIG. 1. The lowest-energy>85x3 (A), 6X4x3 (D) and 8<3X3 (I) nanoc-

={P;(t)}, the vector whose components are the ensembl@ystals and the two lowest-energy<8x4 nanocrystalsL and O. The

average probabilities that the system is associated with eacldium ions are represented by the smaller, darker circles and the chloride
minimum at timet ions by the larger, lighter circles. The letter gives the energetic rank of the
’ minimum when labeled alphabetically.

dPi(t) Nmin
ar =2 KiPiO ki Pv)], 3

rectly to the probability flow between different regions of the
PES. After pruning, our samples have 1624 minima and
2639 transition states. To test the effect of this pruning, we

wherek; is the rate constant for transitions from minimgm
to minimumi. Defining the matrix

Nmi performed some calculations using both the full and the
Wij=kij— 8 2 Kmi (4)  pruned samples. The effect on the dynamics of the structural
m=1 transitions was negligible.
allows Eg. (3) to be written in matrix form,dP(t)/dt As the temperature of a system is decreased the spread
=WP(t). of eigenvalues can increase rapidly. When the ratio of the

If the transition matrixW cannot be decomposed into largest to smallest eigenvalues is of the order of the machine
block form, it has a single zero eigenvalue whose correprecision of the computer, the accuracy of the extreme eigen-
sponding eigenvector is the equilibrium probability distribu- values can become degraded by rounding errors. We encoun-
tion, P9 As a physically reasonable definition for the ratetered these problems below 275 K. If the samples are not
constants must obey detailed balance at equilibrium, i.epruned, these numerical difficulties are more pronouriced.
W;; Pf=W;; P79, the solution of the master equation can be ~ We model the rate constants, which are needed as input
expanded in terms of a complete set of eigenfunctions of theo Eq. (3), using RRKM theor§! in the harmonic approxi-
symmetric matrix\W, defined b%Wij=(Pfq/P?CDl/2\Nij _The mation. Therefore, the rate constant for a transition from

solution is minimum i to minimum j via a particular transition state
N e (denoted by t) is given by
m|n~ . min —. Pm(o) o
Pi(0)=\PT 2 ufeM 3 Uy —==|, (5) h o
=1 m=1 P exp — (Ef, —E)/KT). (6)

HT)= — —
kii(T)_ hi (=1
Whereui(” is component of the jth eigenvector otV andA o _
is the jth eigenvalue. For other cluster systems, harmonic RRKM rates have been

The eigenvalues oV andW are identical and the eigen- found to be in reasonable agreement with the exact fates.

vectors are related by’=u{")\/P® Except for the zero
eigenvalue, alik; are negative. Therefore, &s-> the con-

S . (Ijjl. RESULTS
tribution of these modes decays exponentially to zero an
pP_, ped A. Topography of the (NaCl)3;sCl~ PES
To apply Eq.(5) we must first diagonalizé/. The com- In our previous study ofNaCl);sCl~ we found that the

puter time required for this procedure scales as the cube @éw-energy minima all had rocksalt structures. The different
the size of the matrix and the memory requirements scale aginima have four basic shapes; an incomplete5%3

the square. Therefore, it is advantageous for the m¥lftito  cuboid, a 6<4x3 cuboid with a single vacancy, ax@x3

be as small as possible. For this reason we recursively resuboid with a single vacancy, and an incomplete4Xx4
moved those minima that are only connected to one othetuboid. The lowest-energy minimum for each of these forms
minimum; these “dead-end” minima do not contribute di- is shown in Fig. 1.
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In the experiments otiNaCl)3sCI~ by Jarrold and co-  -2642E/eV
workers the three peaks that were resolved in the arrival time

distribution were assigned on the basis of calculated mobili-2643 /
ties as 55x3, 5xX4x4 and 8<3x3 nanocrystal$>®How-  ,,
ever, when the 84X 3 nanocrystal is also considered, better

agreement between the calculated and observed mobilitie-264.5 /
can be obtained by assigning the three experimental peaks t /
the 6x4x3, 5X5x3 and 8<3X3 nanocrystals in order of 2646 //
increasing drift time-"* This reassignment is also in better ¢! |l

agreement with the thermodynamics since the clusters con //
vert to (what is now assigned pghe 55X 3 nanocrystal as  -264.8 /

9

)

time progresse¥, indicating that this structure has the lowest

free energy. In our calculations &x5Xx3 isomer is the glo-

bal potential energy minimum, and théx5X3 nanocrystal 5.0

is always more stable than the other nanocrystsd® Sec.

B). -265.1
Disconnectivity graphs provide a way of visualizing an

energy landscape that is particularly useful for obtaining in- 2%

sight into dynamics, and have previously been applied to a,¢s3

number of protein model®*4=4" and clusterg®48-°0 The

graphs are constructed by performing a “superbasin” analy--2654 TR s

sis at a series of energies. This analysis involves grouping, 655 o

minima into disjoint sets, called superbasins, whose mem-~ L N MI\P 5x4x4

bers are connected by pathways that never exceed the spetsgs.s Sx4x4 % K J 8;“3
fied energy. At each energy a superbasin is represented by F b EG

node, and lines join nodes in one level to their daughter265.7 6x4x3

nodes in the level below. Every line terminates at a Iocal_2658 BCa

minimum. The graphs therefore present a visual representa- 3%5x3

tion of the hierarchy of barriers between minima. FIG. 2. Disconnectivity graph fo(NaCl;<Cl~. Only branches leading to

The disconnectivity graph fofNaCl);sCl~ is shown in the lowest 200 minima are shown. The branches for the 20 lowest-energy

Fig. 2. The barriers between minima with the same cuboid minima are labeled alphabetically in order of their energy. Some of th_e
. unnels and subfunnels have also been labeled by their associated cuboidal

form are generally lower than those between minima thagpape.
have different shapes. Therefore, the disconnectivity graph
splits into funnels corresponding to each cuboidal morphol-
ogy. (A funnel is a set of downhill pathways that converge ride clusters indicate that this relaxation is particularly rapid
on a single low-energy minimum or a set of closely-relatedfor alkali halides because of the low barrigrslative to the
low-energy minima&™>*In a disconnectivity graph an ideal energy difference between the minimdor downhill
funnel is represented by a single tall stem with lines branchpathways>>* However, there is a separation of time scales
ing directly from it, indicating the progressive exclusion of
minima as the energy is decrea$8dThe separation is least
clear for the 5 4x4 minima because of the large number of TABLE I. Activation energiesE,, and prefactorsA, for the interfunnel

different ways that the nine vacant sites can be arranged Féq,te constants obtained from the fits in Fig. 8. The activation energies are
**.compared taAE, the difference in energy between the highest-energy tran-

example, these vacancies are _O_rgamz_ed very d'f_feremly ISition state on the lowest-energy path directly between the two nanocrystals
the two lowest-energy %4x4 minima(Fig. 1), and in fact  and the lowest-energy minimum of the starting nanocry&taff. 17, and

the barrier between minimum O and the low-energy& 3 experime'n'tal values for some of the_ proces$esf. 16. As probability flow

isomers is lower than the barrier between O and minimum LUt Of minimum L leads to population of both the<@x3 and 5<5x3
. . . panocrystals we givAE for both pathways.

Therefore, the minima associated with O form a subfunnel e 9 P Y

that splits off from the &4X3 funnel, rather than being Barrier/eV

directly connected to the main& x4 funnel.

. . . From To E AE Expt. Alst
The disconnectivity graph shows that the barriers be- :
3
tween the X5x3, 6x4x3 and 5<4x4 nanocrystals are of gxgxz gxixg 8-;71(6) g-gzg 0.580.05 12-4; ig3
. . . .. X5X X4X . . .
similar magnitude, wh|I(_a the>83X3 minima are separated Bx3%3 B Ex3 1055 1055 05F005 10510
from the rest by a considerably larger barrier. The values of g, 5.3 8x3%3 1220 1.211 3.7% 101
some of the barrier heights are given in Table I. 5XA4X4 L 6X4X%3 0.651 0.668 8.48 103
The disconnectivity graph is also helpful for interpreting 5x4x4 L  5X5X3 0.618
_ . . . 4
the (NaCl)5sCl~ dynamics observed in experiments® In gxgxg 2Xi><j'l: 0.822 8)582130 3.9810"
. o . . . X5X X4X .
thg for'mgt'lc.)n process it is likely that a high-energy configu- Ex4x4 O Bx4x3 0.568 0.560 4.97101
ration is initially generated. The cluster then relaxes to one of gy 43 5x4x5 0 0.738 0.738 2 32104

the low-energy nanocrystals. Simulations for potassium chlo
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FIG. 3. The temperature dependence(af the total energy andb) the  F|G. 4. Thermodynamic properties (MaCl)ssCl~ computed using the har-
radius of gyrationR,, for four series of MC runs starting in the lowest- monic superposition method with the pruned sample of mini@aEqui-
energy minima of the 85x3 (diamond$, 6x4x3 (plus signg, 8xX3x3 librium occupation probabilities of the nanocrystals, as labefbylHeat
(squarel and 5<4x4 (crossep nanocrystals. Each point is the average capacity.

value in a 16 cycle Monte Carlo run, where each run was initiated from the

final geometry in the previous lower temperature run. The error bafls) in

represent the standard deviation of fRg probability distributions. These free energy barriers prevent an easy determination
of the relative stabilities of the different nanocrystals by con-

between this initial relaxation and the conversion of theventional simulations. Therefore, we use the superposition

metastable nanocrystals to the one with the lowest free e:ﬁetmd to examine this question. First we assign the fifty

ergy, because the large barriers between the different cuboi west-fenergy minima to one of the cub_0|dal forms by visual .
make them efficient traps. inspection of each structure. Then, using these sets as defi-

nitions of the nanocrystals in E), we calculate the equi-
librium probabilities of the cluster being in the different
cuboidal morphologies as a function of temperature. It can
Some thermodynamic properties ®NaCl);sCl~ are  be seen from Fig. @ that the 55X 3 nanocrystal is most
shown in Figs. 3 and 4. The caloric curve shows a featuretable up until melting. The %4X3 nanocrystal also has a
at ~700 K which indicates meltingFig. 3@)]; the melting  significant probability of being occupied. However, the prob-
temperature is depressed relative to the bulk due to thabilities for the 8<3X3 and 5<4X4 nanocrystals are always
cluster’'s finite size. The effects of the barriers betweersmall. The onset of the melting transition is indicated by the
nanocrystals are apparent in the MC simulations. The radiusse of p,.¢;in Fig. 4@ and by the peak in the heat capacity
of gyration, Ry, provides a means of differentiating the [Fig. 4(b)]. However, this transition is much too broad and
nanocrystals. It can be seen from the plotRyffor simula-  the heat capacity peak occurs at too high a temperature be-
tions started in the lowest-energy minima of the four cuboi-cause the incompleteness of our sample of minima leads to
dal forms that each simulation is stuck in the starting strucan underestimation of the partition function for the liquidlike
ture [(Fig. 3(b)] up to temperatures close to melting, minima. Given these expected failings of the superposition
implying that there are large free energy barriers between thmethod at high temperature when the partition functions of
nanocrystals. the minima are not reweighted, we restrict our dynamics cal-

B. Thermodynamics of (NaCl);5Cl™



J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Structural transitions in NaCl clusters 11075

(a) (b)
104 6x4x3 109 . 8X3%3

5x5x3 5x5x3

0.8 0.8

=
EN
"
o
o

probability
probability

=
A
L
I
&

0.24 0.2

SKAKA ot
107 10% 10 ! 0.0001 0.001 0.01 0.0001 0.001 0.01 tion probabilites of the different
time /s time/s
© @ nanocrystals aff=400 K when the
104 5x4x4 104 5X4x4 cluster is initially in minimum(a) D,

- (1, (o L, and(d) O.

00 FIG. 5. Time evolution of the occupa-

5x5x3 6x4x3 5x5x3

0.8+ 0.8+

I3
Y
14
o

probability
probability

=)
a
(=]
a

0.2 4 0.2

0.0 dmmmm T e " (Y R —— ; . .
10° 10 167 10° 10° 00001  0.001 0.01 10° 10°¢ 10”7 100 10° 00001 0001  0.01
time /s time/s

culations to temperatures below 600 K. Furthermore, by perlowest-energy pathway that was found between the two
forming calculations for smaller samples of minima, we nanocrystals; it passes through some intermediatd >4
checked that the thermodynamics for this temperature rangainima?’
has converged with respect to sample size. The relaxation to equilibrium is much slower when the
Although the probabilities of being in the different mor- cluster starts from the lowest-energy 8x3 minimum. This
phologies show little variation at low temperature, there arg@s a result of the large barrier to escape from this furiRij.
significant changes in the occupation probabilities of specifiQ). The probability flow out of the 83x3 funnel leads to a
minima. For example, the small low temperature peak in th&jmultaneous rise in the occupation probabilities of both the
heat capacity is a result of a redistribution of probability 5x5x3 and 6x4x3 nanocrystals towards their equilibrium
amongst the low-energy>$%Xx3 minima; the third lowest- yajyes, even though the lowest-energy pathway out of the
energy minimum becomes most populated. It is also interesgx 3x 3 funnel directly connects it to the low-energy8x3
ing to note that the second lowest-energy4<4 minimum  minima. This occurs because the time scale for interconver-
(O) becomes more stable than the lowest-energ¥t84  gjon of these latter two nanocrystals is much shorter than that
minimum (L) for temperatures above approximately 220 K. ¢, escape from the 83x3 funnel. However, we do find

Both these changes are driven by differences in vibrational,ijence that the cluster first passes through theh63

entropy. minima if we examine the probabilities on a log-scale. At
times shorter than that required for local equilibrium be-
tween the X5X3 and 6<4X3 minima the occupation prob-
C. Dynamics of (NaCl)35Cl~ ability for the 6x4x3 minima is larger.

Some examples of the interfunnel dynamics that we find ~ AS the two lowest-energy 64X 4 minima are well-
on solution of the master equation are depicted in Fig. 5. Fopeparated in configuration space we considered relaxation
these calculations, even though we are only interested iffom both these minima. In both cases, there is a large prob-
P;(t) for the lowest-energy minima, we have to use the ei-ability flow into the 6<4X3 minima, which is then trans-
genvalues and eigenvectors of the full 1624524 transition ~ ferred to the X5x3 funnel on the same time scale as when
matrix in Eq.(5), because all 1624 minima are on pathwaysinitiated in the 6<4x3 funnel. However, the time scale for
that are potentially relevant to the dynamics. The time scalethe build-up of population in theX4x 3 minima depends on
involved are much longer than those accessible by converihe initial configuration. Probability flows more rapidly and
tional simulations. directly into the 6<4X3 minima when initiated from mini-

The dynamics of relaxation to equilibrium depend sig-mum O, reflecting the low barriers between these minima
nificantly on the starting configuration. When the lowest-(Fig. 2). For relaxation from minimum L there are two active
energy 6<4x3 minimum is the initial configuration there is pathways, leading to an increase in the population of both the
a small transient population inX&x4 minima before the 5x5X3 and the &4X3 minima. The direct path into the
system adopts a85x 3 structure. This is consistent with the 5x5x3 funnel has the lower barriéirable ) but is long®
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(96.7 A and involves a large numbéseventeenof barrier  multi-state system if the interfunnel dynamics are the only
crossings, and so has a smaller rate than the path into thmocesses affecting the occupation probabilities of the rel-
6xX4X3 funnel, which has a slightly higher barriésy 0.05 evant funnels, and if the interfunnel dynamics cause the oc-
eV). The small shoulder in the occupation probability of thecupation probabilities of the two funnels to converge to their
5X5X3 minima occurs in the time range when the occupa-equilibrium values.
tion probability of the 5¢4xX4 minima has reached a value In Fig. 7 we test the above expression by applying it to
close to zerdthus reducing the contribution from the direct the interconversion of $4X3 and 5<5X3 nanocrystals.
path and when the probability flow out of theX®x4  The two lines in the graph converge to the same plateau
minima is only just beginning. value, before both falling off beyond 0.001 s. This plateau
The combination of our thermodynamics and dynamicscorresponds to the time range for which the interfunnel pas-
results for(NaCl);sCl~ enable us to explain why the& X4  sage dominates the evolution of the probabilities for the two
cuboids were not observed experimentally. The4%4  funnels. At shorter times, when the occupation probabilities
minima have a shorter lifetime than the other cuboidal formdor the two funnels are still close to their initial values, there
and have a low equilibrium occupation probability. are many other contributing processes. At longer times the
Another way to analyze the dynamics is to examine howprobabilities are both very close to their equilibrium values,
local equilibration progresses towards the point where globahnd the slower equilibration with thex@x<3 funnel domi-
equilibrium has been obtained. To accomplish this we defin@ates the probability evolution. From the plateau in Fig. 7 we
two minima to be in local equilibrium at the time when obtaink™ +k~=5320s . The individual rate constants can
then be obtained by using the detailed balance relation,
|Pi(t) P{9—P; () PP _ o KTPE=k P,
x/Pi(t)Pj(t)Pf“Pfq =€ @ The application of Eq(8) to escape from the 83X3
) ) funnel also leads to a range oivhere there is a well-defined
is obeyed for all later times. In the present work we sety|ateaqu. However, this approach works less well for the in-
€=0.01, i.e., the two minima are within 1% of equilibrium. {o conversion of X4x4 and 6<4x3 minima[Figs. 5a) and
Using this definition we can construct equilibration graphs.5 )] This is because the assumption that no other processes
in which nodes occlt when twgroups of minima come  .ontripute to the probability evolution of the two funnels is
into local equilibrium: o ~__obeyed less well, and because the occupation probabilities do
We show an example of an equilibration graph in Fig. 6.t converge to their equilibrium values, but near to the equi-

Equilibration first occurs at the bottom of the<8X3 and |ipriym values that would obtain if the>85x 3 minima were
5x5x3 funnels between those minima that are connected by, juded. Nevertheless approximate valueskbfand k-
low barrier paths, then progresses to minima with the samgg, pe obtained.

cuboidal shape but which are separated by larger bgrriers, Diagonalization of the matri¥V produces a set of eigen-
and finally occurs between the funnels. The order of Inter'values that give the time scales for a set of characteristic

funnel equilibrium agrees with the time scales that we Ob'probability flows. The dynamical processes to which the ei-
serve in the time evolution of the occupation probabilities of '

the nanocrystalsFig. 5. Minimum O, then minimum L, genvalues correspond can be identified by_ examining _the
) N . eigenvectors. Flow occurs between those minima for which

come into equilibrium with the §4x3 funnel. Then, the the corresponding components of the eigenvector have oppo-

5X5X3 and 6<4X3 funnels reach local equilibrium. Finally, P g P g PP

A . site sign[Eq. (5)]. This observation forms the basis for Kunz
the 8<3x3 funnel reaches equilibrium with the rest of the and Berry’s net-flow index which quantifies the contribution

PES. As one of the major determinants of the time scalgy ., eigenvectorto flow out of a funnelA.3:*?The index is

required for local equilibrium is the height of the barriers defined by

between minima, it is unsurprising that the equilibration

graph reflects the structure of the disconnectivity gréfb.

2). fr=2> P €)
In the experiments oriNaCl);sCl~ rate constants and Jeh

activation energies were obtained for the conversion of th

6X4X3 and 8<3X3 nanocrystals into the >5X3

el’he index allows the interfunnel modes to be identified; the

A B 7
nanocrystat® It would, therefore, be useful if we could ex- valuesitoffi nang fr Lorn;[hlesemr:n Zggsszw bri Ic? rg\i/itini o
tract rate constants for the different interfunnel processegppos € sign. For example, € mode €
; . most 5x5X3—6x4x3 character hasf>*%*3=-0.339
from the master equation dynamics. - ) A
£6%4X3=0.331, anch =5275s 1. The eigenvalue is in good
For a two-state system, whefe=B andk, andk_ are e - : .
forward and reverse rate constants, respectively, it can b greement with the sum of interfunnel rates obtained using

shown that g.(8). . . . . .
The extraction of the interfunnel rate in this manner is

hindered by the fact that the eigenvalues/fcannot cross
=—(ky+kot, ®) as a function of temperature. Instead, there are avoided

crossings and mixing of modes. For example, the small dif-
and the equivalent expression for B are obe¥ethis is a  ference between the two values for the sum of the55
standard result for a first-order reaction. This expression willX3—6Xx4X3 interfunnel rate constants that we obtained
also hold for the rate of passage between two funnels in ousbove is probably due to mixing. The eigenvector with

Pa(t)— P
n e —
PA(0)— P
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T 6x4x3

log[(p.(1) - P /(p,(0) - p2)]

1
t

107 10°¢ 10° 0.0001 0.001 0.01
time /s

J -10
10 time /s 1

FIG. 7. By following (1t)log[(pi(t) —p{)/(pi(0)— pi?] at T=400 K when
FIG. 6. Equlibration graph showing how the system progresses towardainimum D is the initial configuration, this graph tests the applicability of
equilibrium atT=400 K when the cluster is initially in minimum D. The Eg. (8) to the interconversion of theX%x3 and 6x4X3 nanocrystals.
lines join when minima come into equilibrium with each other. The vertical
scale and the horizontal position of the ends of the lines are chosen for
clarity. The ends are labeled by the letter for the corresponding minimum.

K" paxpi—1exp —(E[_ 1, —E;_1)/KT)

j . _ _ “py exp(— (E[ 1~ E)/KT). (19)
which the interfunnel mode mixes gains some&3»<3—6 ) ) . i .
X4%3 character: it hag5%5%3=—0.014. f6%4%3=0.017 Therefore, if the occupation probability for funn&ls domi-

and\ =6388s 1 nated by the occupation probability for the lowest-energy
By calculating and diagonalizing/ at a series of tem- minimum in the funnel, i.e pa~ p for the relevant tempera-
tt}l{re range, then the activation energy is equal to the energy

peratures we can examine the temperature d_ependence of difference between the highest-energy transition state on the
interfunnel rate constants. For most of the interfunnel pro-

cesses, the rate constants that we obtain fit well to thiowest-barrier path and the energy of the lowest-energy mini-

; i . . . mum in the starting funnel.
Arrhenlus form,k_—Aexp( E/KT), yvhereEa Is the activa- We should note that in the above derivation the interfun-
tion energy andA is the prefactofFig. 8).

. . . . nel probability flow is assumed to all pass through a single
In our previous study of the interconversion mechanism P Y P 9 9

. z . L o Sransition state. However, if there is competition between
in (NaCl)3sCl~ we estimated the activation energies in order . .
. two paths, one with a low barrier and a small prefactor and

Yne with a larger barrier and a large prefactor, we expect that

to a simple one-step reaction, we equated the activation en:- . :
. ; ) . the low-barrier path would dominate at low temperature and
ergy with the difference in energy between the highest- . . . . .
o the high-barrier path at high temperature. This behavior
energy transition state on the lowest-energy path between the Lo . . "
- would give rise to an interfunnel rate constant with a positive
relevant nanocrystals and the lowest-energy minimum of the

. 7 . Curvature in an Arrhenius plot. However, the lines are either
starting nanocrystai. However, it was not clear how well

. . straight or have a small amount of negative curvature.
this analogy would work. In Table | we compare these esti- .
The lack of positive curvature, and the agreement be-

mates with the activation energies obtained from our master . 2 .
. . L tween the estimated and the observed activation energies,
equation results. There is good agreement, confirming the

o : o é)robably indicates that the interfunnel probability flow is
utility of the approximate approach. Similar agreement ha Zlominated by paths which pass through the highest-energy
also been found for the interfunnel dynamics of a 38—aton1 . . I .

ransition state on the lowest barrier path. It is interesting
Lennard—Jones clust&t.

. . . that, on a PES with so many minima and transition states, a
A simple explanation for this correspondence can be

: : - .~ single transition n hav h a large influen n th
given. We first label the minima along the lowest-barrier> 1 9'c transition state can have such a farge influence on the

. ; .~ dynamics.
path between the two funnels in ascending order and dkfine At low enough temperaturad(p, /p,)/dT~0, and so

so that the highest-energy transition state on this path “eﬁwe interfunnel barrier height can be measured with respect to

between minimal—1 and I. If the minima behind the - : .
. " . : the lowest-energy minimum in the starting funhgj. (11)].
highest-energy transition statee., 1 tol—1) are in local . o
S . . S However, as the occupation probabilities of other minima in
equilibrium, then the occupation probability of the minimum A .
the funnel becomes significant relative to that for the lowest-

| =1 s given by energy minimum in the funnel, the ratip, /p, decreases,
PI_1 thus giving the lines in the Arrhenius plot their slight nega-
H“GXF(— (Ej—1—E1)/KT). (100 tive curvature. In other words, the apparent activation energy

decreases with increasing temperature, because the barrier
Then, if the rate of interfunnel flovk* p,, is equated to the height should be measured with respect to some kind of av-
rate of passage between minital andl, erage minimum energy for the funnel, perhafis,



11078  J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 J. P. K. Doye and D. J. Wales

10" spond to rocksalt nanocrystals with different cuboidal forms.

: The large potential energy barriers between the funnels
causes the time scales for escape from metastable nanocrys-
tals to be far longer than those easily accessible by conven-
tional dynamics simulations. Therefore, we examined the in-
terfunnel dynamics by applying the master equation
approach to a database(®faCl);5Cl™ minima and transition
states. The slowest rate constant we obtained was
Ksxsx3 .gxaxa=1.46x10 8s 1 at T=275 K.

Using a net flow index we were able to identify the
eigenvalues of the transition matri®/, which correspond to
interfunnel probability flow. Thus, we were able to obtain
rate constants and activation energies for the interconversion
of the different nanocrystals. One particularly interesting
10" . . . . . finding is that the activation energies correspond fairly
0.0015 0.002 0.0025 0.003 0.0035 0.004 closely to the potential energy differences between the

/T highest-energy transition state on the lowest-energy path be-
FIG. 8. Arrhenius plots for the rates of interfunnel passage. The data pointiveen two nanocrystals and the lowest-energy minimum of
are derived from the eigenvalues of the matfixand the lines are fits to the ~ the starting nanocrystal. This is the result one might expect
form k= A exp(—E,/KT). In ascending order in the figure the lines are for by a simple extrapolation from the dynamics of a simple
the 5<5x3—-8X3x3, BX3X35X5X3, 5X5X3-6x4X3, 6xAX3-5  mglecular reaction. However, it holds despite the multistep,
X5X3, 6X4X3—5X4X4(0), 6X4X3—5X4X4(L), 5X4X4(0)—6X4X3 : . . .
and 54X 4(L)—6X4X3 processes. and potentially multipath, nature of the interfunnel dynamics.
The question of whether this result is generally true for in-

=3, _pE . The negative curvature is most pronounced Whenterfunnel dynamics involving large potential energy barriers

the occupation probabilities in a funnel change considerably®" F€flects some of the particulars of ttaC)z:Cl™ system
For example, the B4x4(L)—6x4x3 rate constant has the is an mtere_stmg sqk_JJec_t for further research. We already
most curvature because minimum L has a particularly lowknow that this simplification holds for the 38-atom Lennard-
vibrational entropy leading to population of other minima JON€S clustet”
within that funnel(Fig. 2).
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