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Structural relaxation in Morse clusters: Energy landscapes
Mark A. Miller, Jonathan P. K. Doye, and David J. Wales
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 10 August 1998; accepted 29 September 1998!

We perform a comprehensive survey of the potential energy landscapes of 13-atom Morse clusters,
and describe how they can be characterized and visualized. Our aim is to detail how the global
features of the funnel-like surface change with the range of the potential, and to relate these changes
to the dynamics of structural relaxation. We find that the landscape becomes rougher and less steep
as the range of the potential decreases, and that relaxation paths to the global minimum become
more complex. ©1999 American Institute of Physics.@S0021-9606~99!03001-9#
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I. INTRODUCTION

Structural relaxation plays a key role in a diverse ran
of problems in chemical physics, including protein foldin
glass formation, and the observation of ‘‘magic numbe
peaks in the mass spectrometry of rare gas clusters. The
namic evolution of such systems is determined by the po
tial energy surface~PES! generated by the interactions b
tween their constituent particles. Quite often one wants
find the structure and physical properties of a~macro!mol-
ecule or cluster, by which it is usually meant the propert
of the global minimum on the PES, or, equivalently, t
properties at zero Kelvin. However, the dynamics of a s
tem at temperatures or energies above which it can es
from the global minimum depend on larger regions of t
PES, the topology, and topography of which determine
precise behavior. When considering the wider features of
PES in this way, it has become usual to refer to the PES
the ‘‘potential energy landscape.’’

One can also consider thefree energy landscape, a
temperature-dependent function which incorporates the
tropy. For example, in protein folding such a landscape
be defined either as a function of the protein configuration
averaging the free energy over all solvent coordinates, o
a function of distance from the folded state in terms o
similarity parameter.1

In recent years, much understanding has been gained
number of fields by relating structural and dynamical pro
erties to the underlying PES. For example, many years
Levinthal pointed out the apparent contradiction between
astronomical number of possible configurations that a pro
can adopt and the rapidity with which it finds the biolog
cally active structure when it folds.2,3 The ‘‘paradox’’ is re-
solved by realizing that efficient folding is only possib
when the potential energy landscape is dominated by a
nel, i.e., consists largely of convergent kinetic pathwa
leading down in energy towards the required structure.4 The
precise features of a funnel may vary, but the native s
must be thermodynamically stable at temperatures or e
gies where the dynamics are fast enough for the system t
able to explore the landscape and find it.5 The native state is
destabilized if there are structurally distinct states of l
energy which can act as kinetic traps.6 Hence, a pronounced
3280021-9606/99/110(1)/328/7/$15.00
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global minimum encourages efficient folding.7,8

The potential energy landscape also plays an impor
role in determining the behavior of bulk liquids. Angell ha
proposed a widely used scheme in which liquids are cla
fied from ‘‘strong’’ to ‘‘fragile.’’ 9 A strong liquid is charac-
terized by a viscosity whose temperature dependence foll
an Arrhenius relationship (}exp@A/T#). These are often liq-
uids with open network structures like water and SiO2 ,
whereas fragile liquids tend to have more isotropic inter
tions. Angell10 and Stillinger11 have described the gener
features of the energy landscapes that might be expecte
characterize the two extremes. In a recent study, Sastryet al.
have investigated the role of different regions of the lan
scape in the process of glass formation in a model fra
liquid.12 They find that as the temperature of the liquid
decreased, the system samples regions with higher barr
and on further cooling it samples deeper minima and n
exponential relaxation sets in.

Another way that an energy landscape can be class
is as ‘‘sawtooth-like’’ or ‘‘staircase-like’’ depending on th
energy difference between minima relative to the barri
which separate them.13,14 For example, the ‘‘structure-
seeking’’ properties of the (KCl)32 cluster~i.e., its ability to
find a rock salt structure even when cooled rapidly! can be
attributed to downhill barriers which are low compared to t
potential energy gradient towards crystalline minima, as i
staircase.

In order to characterize an energy landscape, it is ne
sary to make a survey of its important features: minim
transition states and pathways. Since the number of s
features increases at least exponentially with the numbe
particles in the system,15 it is impractical and undesirable t
catalogue them all for large systems. Consequently, exis
studies have usually concentrated on analyzing wha
hoped to be a representative sample of minima and trans
states.13,16In this study we examine in detail the landscape
the 13-atom Morse cluster (M13), which is large enough to
possess a complex PES, but is small enough for us to ma
nearly exhaustive list of its minima and transition states. T
model system is especially interesting because the en
landscape is dominated by a funnel, and the potential c
tains one parameter which allows us to adjust the comple
of the PES. Previous studies17,18 have shown that potentia
© 1999 American Institute of Physics
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energy surfaces are simpler for long-ranged potentials,
the effects of the range on the morphology of global mini
of atomic clusters19,20 and the stability of simple liquids16,21

have already received attention. The range of the poten
also affects phase behavior: in a study of 7-atom Morse c
ters, Mainz and Berry found that liquid-like and solid-lik
phase coexistence is less distinct when the range of attra
is longer.22

In this paper, we concentrate on finding useful ways
characterize and visualize a complex PES, and in the S
mary we comment on how the range of the potential is lik
to affect the relaxation properties of the cluster. We are c
rently using the data collected in this study to perform mas
equation dynamics on the system to address relaxatio
detail.

II. EXPLORING THE LANDSCAPE

The Morse potential23 can be written in the form

V5(
i , j

Vi j ; Vi j 5er~12r i j /r e!@er~12r i j /r e!22#e, ~1!

wherer i j is the distance between atomsi and j . e andr e are
the dimer well depth and equilibrium bond length, and si
ply scale the PES without affecting its topology. They c
conveniently be set to unity and used as the units of ene
and distance.r is a dimensionless parameter which det
mines the range of the interparticle forces, with low valu
corresponding to long range. Physically meaningful valu
range at least fromr53.15 and 3.17 for sodium an
potassium24 to 13.62 for C60 molecules.25 When r56, the
Morse potential has the same curvature as the Lennard-J
potential at the minimum.

The first step in characterizing the PES is to map out
local minima and the network of transition states26 and path-
ways that connects them. The eigenvector-followi
technique27–29 can efficiently locate transition states~first-
order saddles! by maximizing the energy along a specifie
direction, while simultaneously minimizing in all other d
rections. The minima connected to a given transition s
are defined by the steepest descent paths commencing p
lel and antiparallel to the transition vector~the Hessian ei-
genvector with negative eigenvalue! at the transition state
Although eigenvector following can also be used for the
minimizations, the pathways are not necessarily the sam29

and may even lead to a different minimum. Since both
pathways and the connectivity are of interest here, we u
steepest descent technique for minimizations, employ
analytic second derivatives, following Page and McIver.30

Our algorithm for exploring the PES is similar to th
used by Tsai and Jordan in a study of small Lennard-Jo
and water clusters.31 Starting from a known minimum:

~1! Search for a transition state along the eigenvector w
the lowest eigenvalue.

~2! Deduce the path through this transition state and
minima connected to it.

~3! Repeat from step 1 beginning antiparallel to the eig
vector, and then in both directions along eigenvect
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with successively higher eigenvalues until a specifi
number,nev, of directions have been searched uphill.

~4! Repeat from step 1 untilnev modes of all known minima
have been searched.

By taking steps directly between minima, this meth
avoids wasting time on intrawell dynamics. Other metho
for exploring energy landscapes, such as molecular dyn
ics, can become trapped in local minima, especially at l
temperature, where there is a wide separation in time s
between interwell and intrawell motion. The chosen value
nev clearly affects the thoroughness of the survey, althou
even if all (3N26) vibrational modes of anN-atom cluster
are searched, there is no guarantee of finding every minim
and transition state. In practice, the required computer t
and storage demand thatnev be reduced for larger, since the
complexity of the PES increases dramatically as the rang
the potential decreases. However, one finds that sear
from low-lying minima are more likely to converge in
reasonable number of iterations, so the above algorithm
augmented with searches along further eigenvectors
lower-energy minima. We are confident that the databa
generated forr54 and 6 are nearly exhaustive, and althou
those for higher values ofr are necessarily less complet
this approach still allows us to map out the PES fairly co
prehensively.

Details of the searches and the resulting databases
r54, 6, 10, and 14 are summarized in Table I. The dram
rise in the number of minima and transition states found
the range of the potential decreases is the first indication
the increasing complexity of the PES.17 The remainder of
this paper investigates in more detail the nature of th
changes and some useful ways of characterizing the la
scapes.

III. TOPOLOGICAL MAPPING

When trying to describe an energy ‘‘landscape,’’ one h
already been forced to use terminology appropriate to a
face in three-dimensional space, and pictorial representat
are usually restricted even further to two dimensions. Vi
alizing a 3N-dimensional object directly in such a way ha
obvious limitations, yet it is appealing to have an idea
‘‘what the surface looks like.’’

One helpful way of doing this is to use topological ma
ping to construct a disconnectivity graph, as applied to
polypeptide by Becker and Karplus.32 The analysis begins by
mapping every point in configuration space onto the lo

TABLE I. Details of the databases for M13 at four values of the range
parameterr. nev is the minimum number of eigenvectors of each minimu
searched for a transition state, andns is the average number of searches fro
each minimum.nmin andnts are the numbers of minima and transition stat
found.

r 4 6 10 14

nev 15 6 3 2
ns 31.3 13.0 7.0 7.5

nmin 159 1439 9306 12760
nts 685 8376 37499 54439
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minimum reached by following the steepest descent pat15

Thus, configuration space is represented by the discrete s
minima, each of which has an associated ‘‘well’’ of poin
which map onto it. Although this approach discards inform
tion about the volume of phase space associated with e
minimum, the density of minima can provide a qualitati
impression of the volumes associated with the various
gions of the landscape.

At a given total energy,E, the minima can be groupe
into disjoint sets, called basins~‘‘super basins’’ in Becker
and Karplus’ nomenclature!, whose members are mutual
accessible at that energy. In other words, each pair of min
in a basin are connected directly or through other minima
a path whose energy never exceedsE, but would require
more energy to reach a minimum in another basin. At l
energy there is just one basin—that containing the glo
minimum. At successively higher energies, more bas
come into play as new minima are reached. At still high
energies, the basins coalesce as higher barriers are overc
until finally there is just one basin containing all the minim
~provided there are no infinite barriers!.

The disconnectivity graph is constructed by performi
the basin analysis at a series of energies, plotted on a ver
scale. At each energy, a basin is represented by a node,
lines joining nodes in one level to their daughter nodes in
level below. The choice of the energy levels is important;
wide a spacing and no topological information is left, whi
too close a spacing produces a vertex for every transi
state and hides the longer range structure of the landsc
The horizontal position of the nodes is arbitrary, and can
chosen for clarity. In the resulting graph, all branches ter
nate at local minima, while all minima connected directly
indirectly to a node are mutually accessible at the co
sponding energy.

The disconnectivity graphs for M13 with r54 and 6 are
plotted on the same scale in Fig. 1. We have chosen a li
energy spacing of one dimer well depth, which is an eff
tive compromise between the points raised above. Both t
are typical of a funnel-like landscape: as the energy is lo
ered, minima are cut off a few at a time with no second
funnels, which would appear as side branches. A large
ward shift in the energy range of the minima is apparent
increasingr from 4 to 6, due to the increase in the energe
penalty for strain and a decrease in the energetic contribu
from next-nearest neighbors as the range of the pote
decreases.19 An increase in barrier heights is also revealed
the somewhat longer branches atr56. Because of the large
number of minima involved in the databases forr510 and
14, the disconnectivity graphs are too dense to illustrate,
we shall see in the numerical analysis of the next sec
how the trends develop.

The concepts involved in the disconnectivity graph ha
much in common with the ‘‘energy lid’’ description o
Sibaniet al.33 in which minima are grouped together if the
are connected by paths never exceeding a particular en
~the ‘‘lid’’ !. These authors plotted a tree with a time axis,
which nodes represent the time when groups of minima
come into equilibrium.

The term ‘‘basin’’ has been used with a somewhat d
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ferent meaning by Berry and co-workers.13,34 In this defini-
tion, a basin consists of all minima connected to the ba
bottom by a monotonic sequence, i.e. a sequence of c
nected minima with monotonically decreasing energy. T
definition contrasts with that of Becker and Karplus,32 be-
cause it is independent of the energy, and actually has a l
common with the notion of a funnel. Although the wor
‘‘funnel’’ may conjure up a misleading image when the su
face is rough or shallow in slope, we will use it in this co
text to avoid confusion with the previous definition of a b
sin as a set of mutually accessible minima at a given ene
The funnel terminating at the global minimum is denoted
primary funnel, whilst adjoining side funnels are termed s
ondary. It should be noted that this definition permits a mi
mum to belong to more than one funnel via different tran
tion states. The significance of dividing the landscape in t
way is that interfunnel motion is likely to occur on a slow
time scale than interwell flow,13,34 so funnels constitute the
next level in a hierarchy of landscape structure. Sufficien
deep or voluminous secondary wells can act as traps.4,6 A
striking example is the cluster of 38 Lennard-Jones ato
whose truncated octahedral global minimum was only fou
quite recently19,35because of the much larger secondary fu
nel associated with a low-lying icosahedral structure.36

As the first line of Table II shows, forr54 the land-
scape of M13 is a perfect funnel: all minima lie on monotoni
sequences terminating at the global minimum. At higher v
ues ofr a small fraction of minima lie outside the primar
funnel, and although they technically constitute second
funnels, they represent a very small proportion of the ph
space. We will now see how the characteristics of the p
mary funnel evolve as the range of the potential is decrea

FIG. 1. Disconnectivity trees for M13 with r54 andr56 plotted on the
same energy scale~in units of the pair well depth!.
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IV. PROPERTIES OF THE LANDSCAPE

The remainder of Table II lists some global properties
the landscape at four values ofr. Some of the trends ar
straightforward to understand. For example, definingn̄ i as
the geometric mean of the normal mode frequencies at m
mum i , the average of this quantity over the database
minima, ^n̄&m, rises monotonically withr because of the
increasing stiffness of shorter-ranged potentials. The ave
of the transition state imaginary frequency,n i

im , increases
less rapidly in magnitude, and levels off at highr, indicating
that the transition regions are flatter relative to the well b
toms than at lowr.

The increasing energy,Egm, of the global minimum was
noted in the previous section, and the table shows that
increase is accompanied by a decreasing gapDEgap to the
second lowest minimum. The striking drop inDEgap whenr
reaches 14 is due to a change in morphology of the sec
lowest structure, as illustrated in Fig. 2. To see why t
happens, it is helpful to decompose the potential energy
the following contributions:37

V52nnn1Estrain1Ennn, ~2!

where nnn is the number of nearest-neighbor interactio
i.e., the number of pairs lying closer than a valuer 0 ~taken
here to be 1.15r e), and the strain energy and non-neare
neighbor contributions are defined by

TABLE II. Some properties of the potential energy landscape of M13 at four
values of the range parameterr. All dimensioned quantities are tabulated
reduced units.nmin is the number of minima, of whichnpf lie in the primary
funnel. Egm is the energy of the global minimum, with the next-lowe

energy structure lyingDEgap higher.n̄ i is the geometric mean normal mod
frequency at minimumi and n i

im is the imaginary frequency at transitio
state i . bi

up is the larger~uphill! barrier height between the two minim
connected by transition statei , bi

down is the smaller~downhill! barrier, and
DEi

con is the energy difference between the minima, so thatbi
up5bi

down

1DEi
con. Si is the integrated path length between the two minima conne

by transition statei , Di is their separation in configuration space, andÑi is
the cooperativity index of the rearrangement~defined in the text!. ni

gm is the
smallest number of steps from minimumi to the global minimum, andSi

gm

is the integrated length of this path.^¯&m , ^¯& ts and^¯&p indicate aver-
ages where the index runs over minima, transition states, and nondege
pathways~i.e., pathways not merely connecting permutational isomers!, re-
spectively.

r 4 6 10 14

nmin2npf 0 1 219 442
Egm 246.635 242.440 239.663 237.259
DEgap 3.024 2.864 2.245 0.468

^n̄&m
1.187 1.625 2.615 3.660

^un imu& ts 0.396 0.473 0.637 0.628
^bup&p 3.666 2.070 1.470 1.536
^bdown&p 0.461 0.543 0.583 0.784
^DEcon&p 3.205 1.526 0.887 0.752
^S&p 2.471 1.735 1.030 0.971
^D&p 1.469 1.163 0.840 0.817

^Ñ&p
6.673 5.939 6.093 5.918

^ngm&m 1.354 2.447 3.744 3.885
^Sgm&m 2.772 3.534 3.573 3.357
f
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Estrain5 (
i , j

r i j ,r 0

@Vi j 11#, ~3!

Ennn5 (
i , j

r i j >r 0

Vi j . ~4!

nnn and Estrain are more sensitive properties of the structu
thanEnnn, and so the lowest energy cluster is determined
a balance between maximizingnnn and minimizingEstrain.
The icosahedron@Fig. 3~a!# is the global minimum for all
four values ofr considered here because it has the larg
number of nearest neighbors (nnn542). However, the large
value ofnnn is at the expense of considerable strain. AsEstrain

is the energetic penalty for nearest-neighbor distances d
ating from r e, it increases rapidly for strained structures
the pair-potential well narrows at largerr. Ennn is also sen-
sitive to r; it decreases as the range of the potential
creases.

The upward trends in Fig. 2 are caused by the change
Estrain andEnnn. For r,13.90, the second lowest minimum
is a defective icosahedron in which one vertex has been
moved and one face is capped@Fig. 3~b!#. The removal of a
vertex allows the strain in the icosahedron to relax, and
the energy rises less steeply than for the icosahedron
DEgap falls. However, decahedral clusters are intrinsica
less strained than icosahedral ones, and atr513.90 the deca-
hedron@Fig. 3~c!#, which for lower r is a transition state,

d

rate

FIG. 2. Correlation diagram for some low-lying structures~see Fig. 3!: the
icosahedron (I h), the decahedron (D5h) and the lowest-energy defectiv
icosahedron (Cs). Dashed lines indicate regions where the structure is n
minimum: D5h becomes a transition state andCs becomes a second-orde
saddle.

FIG. 3. Structures discussed in the text:~a! the icosahedron (I h), ~b! the
lowest-energy defective icosahedron (Cs), and~c! the decahedron (D5h).
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FIG. 4. Energy distribution of the minima for four values of the range parameterr. In each case, the energy of the global minimum is indicated by an ar
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becomes the second lowest minimum. In fact, forr
.14.77, the decahedron is the global minimum, althou
this value ofr may be too large to be observed in chemic
systems. The change in the order of the stationary p
arises from a delicate balance betweenEstrain andEnnn. The
vibrational mode of the decahedron with the lowest Hess
eigenvalue is a twist about theC5 axis. This motion strains
the structure, but brings non-nearest-neighbors closer
high r, the increased strain wins, causing the energy to
and giving a minimum, whereas for longer-ranged inter
tions the non-nearest-neighbors lower the energy, givin
saddle.

The decreasingDEgap indicates a local flattening of th
PES at higherr. This effect extends beyond the vicinity o
the global minimum to the whole landscape, as can be s
from the energy distributions of minima shown in Fig. 4. A
r increases, the energy distribution shifts upwards and
comes narrower, and forr510 and 14, it develops two shar
peaks at233 and234. At high values ofr, Ennn becomes
small, and the energetic penalty for strain is large. Deco
position of the energy according to Eq.~2! reveals that the
peaks in the distributions correspond to low-strain structu
with 33 and 34 nearest neighbors. Low strain can arise fr
two structural motifs: close packing or polytetrahedral pa
ing ~without pentagonal bipyramids!. It is not easy to classify
such a small cluster according to these schemes, but
h
l
nt

n

At
e
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-
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is

worth noting that the radial distribution function, taken ov
all the minima, develops aA2 signature asr increases,
which is characteristic of close packing.38

A more quantitative measure of the slope of the PES
provided by the energy difference between pairs of c
nected minima,DEi

con ~wherei labels the connecting trans
tion state, or, equivalently the pathway!. As Table II shows,
the average of this quantity over the pathways drops
quickly asr increases from 4.DEi

con is the difference be-
tween the uphill and downhill barriersbi

up andbi
down defined

by transition statei and the two minima it connects. Al
though the average over the pathways of the uphill barr
^bup&p , decreases as the range of the potential decrea
^bdown&p increases, i.e., the barriers that must be overco
for structural relaxation towards the global minimum a
larger; the flattening of the funnel is accompanied by rou
ening.

Given the dramatic increase in the number of station
points as the range of the potential decreases, and tha
volume of accessible phase space will be reduced as the
range attraction is squeezed out, we must expect s
change in the nature of the individual pathways betwe
minima and their organization on the landscape. DefiningDi

as the separation in configuration space of the two min
connected by transition statei , Table II shows, as we migh
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expect, that connected minima are on average closer w
the potential is short ranged. This effect is accompanied b
decrease in the average of the integrated path length,Si . It is
interesting to see how the individual pathways are organi
into routes to the global minimum. We have calculated
shortest path from each minimum to the global minimum,
measured by the total integrated path lengthSi

gm ~the path
with feweststepsbetween minima is generally longer!. The
average ofSi

gm is fairly insensitive tor, whilst the average of
the number of steps along the corresponding pathways,ni

gm,
increases. Thus, on average, the path for relaxation to
global minimum does not increase significantly in length, b
becomes more rugged as more transition states mus
crossed. Whereas every minimum atr54 can reach the glo
bal minimum in either 1 or 2 steps, as many as 5 may
required atr514. Table III shows how the minima are dis
tributed overni

gm, giving some insight into the connectivit
of the landscape. The number of minima withni

gm51 tells us
how many transition states are connected directly to the
bal minimum. The values are remarkably high, especially
permutational isomers are not included. Interestingly,
number of minima does not increase continuously as the
quences branch out from the global minimum~as one might
expect in a funnel!, but tails off quite gently.

An intuitive explanation for the constancy of^Sgm& and
the increase in̂ ngm& might be that paths are split into
larger number of subrearrangements. The number of at
contributing to rearrangementi can be measured by the co
operativity indexÑi5N/g i , whereg i is the moment ratio of
displacement, which is defined by39

g i5

N(
a

N

ura~s!2ra~ t !u4

S (
a

N

ura~s!2ra~ t !u2D 2 , ~5!

wherera is the Cartesian position vector of atoma, ands
and t denote the final and initial configurations in rearrang
ment pathwayi . Table II shows that the average value ofÑi

is almost independent ofr. In fact the distribution ofÑi

~from 1 to N) is remarkably similar for all four database
This result contrasts with statistics previously obtained
the larger clusters LJ55 and (C60)55, which showed that co-

TABLE III. Distribution of the number of stepsngm lying on the shortest
path from local minima to the global minimum at four values of the ran
parameterr.

ngm

Number of minima

r54 r56 r510 r514

1 105 188 71 148
2 50 591 937 1116
3 3 518 2887 3502
4 116 3315 4393
5 19 1644 2627
6 6 403 843
7 47 120
8 1 10
en
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operative ~high Ñi) rearrangements are less likely fo
(C60)55, where the range of the potential corresponds tor
'14.29 It is possible that a 13-atom cluster is too small
support localized subrearrangements in this way.

V. SUMMARY

We have performed a comprehensive survey of the
tential energy landscapes of the 13-atom Morse cluster
four values of the range parameter using system
eigenvector-following searches. The landscapes were
characterized in detail using disconnectivity graphs, fun
analysis, and a selection of parameters that provide ins
into the topology and topography. We have described
rationalized the changes in the landscape as the range o
potential is varied over a physically meaningful range.

The trends displayed in Table II and the above disc
sion are underlined by the plots of representative monoto
sequences in Fig. 5. The overall classification of the poten
energy landscape is that of a funnel, but one which beco
flatter and rougher as the range of the potential decrea
This change is accompanied by a general increase in c
plexity of the surface in terms of the number of minima a
transition states and in the number of steps required to re
one minimum from another.

Previous studies of model potential landscapes6 have
shown that relaxation from high-energy configurations to
global minimum is most efficient when the PES has a la
potential energy gradient towards the global minimum w
low downhill barriers, and lacks secondary funnels which
as kinetic traps. On this basis we would expect M13 to relax
most easily when the the range of the potential is long,
spite of the fact that the frequency of intrawell vibration
oscillations decreases as the potential becomes less ‘‘stiff
fixed values ofe and r e ~see Table II!. Low values of the
range parameterr are therefore likely to produce ‘‘structur

FIG. 5. Example monotonic sequences leading to the global minimum
three values of the range parameterr. S is the integrated distance along th
reaction path from the global minimum. Minima are indicated by fill
circles, and the transition states by open circles. The plots demonstr
number of features discussed in the text: the general increase in ener
the minima, the decreasing gap to the global minimum, the increasing
rier heights, the shorter rearrangements, and the decreasing gradient to
the global minimum as the range of the potential decreases.
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seekers,’’ whereas high values will tend to produce ‘‘gla
formers,’’ reflecting a continuous change from a stairca
like to a sawtooth-like landscape.

Equipped with an understanding of the potential ene
landscape and its dependence on the range of the pote
we have applied the master equation approach to investi
the dynamics of structural relaxation in M13. This work en-
ables us to probe in detail the flow of probability betwe
individual minima in an ensemble of clusters as they
proach the equilibrium distribution, and the results will
described in a separate publication.
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