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By analyzing the dynamics of model potential energy surfaces we systematically investigate the
processes involved in passing from a high energy state to the global minimum and how the
probability of reaching the global minimum depends upon the topography and topology of the
potential energy surfad®ES. Relaxation to the global minimum is easiest for PES’s consisting of

a single funnela set of convergent pathways which lead to the global minijnuith low barriers

and a significant potential energy gradient towards the global minimum. The presence of additional
funnels on the surface can severely reduce the rate of relaxation to the global minimum. Such
secondary funnels act most efficiently as kinetic traps when they terminate at a low energy
minimum, have a steep potential energy gradient and are (igle have a large configurational
entropy compared to the primary funnel. Indeed, it is even possible to construct PES’s for which
the system relaxes to the minimum at the bottom of a secondary funnel rather than the global
minimum and then remains in this metastable state over a long time scale. Our results for these
model PES’s are discussed in the context of theoretical and experimental knowledge of the
dynamics of proteins, clusters, and glasses. 196 American Institute of Physics.
[S0021-960606)50842-1

I. INTRODUCTION putational complexity theor{,which categorizes problems
into classes of similar difficulty. The most relevant class is
How difficult is it to go from a random point on a po- that of NP-hard problems, for which there is no known algo-
tential energy surfacéPES to the global minimum? The rithm that is guaranteed to find the solution within polyno-
answer, of course, depends upon the system. Many proteinsial time, effectively rendering NP-hard problems intrac-
are able to fold reversibly to the physiologically active nativetable for large sizes. It has been shown that finding the global
structure from unfolded states. However, a random amin@ninimum of a proteit® or a clustel® is NP-hard. Again,
acid sequence is very unlikely to be able to fold to a uniquethere seems to be a paradox between the NP hardness of
structure. Similarly, in condensed matter physics there argrotein folding and the actual behavior of proteins. However,
substances for which it is hard to prevent crystallization ast should be noted that computational complexity theory pro-
the liquid is cooled, and others which instead are likely tovides a worst case analysis. First, the proofs apply to general
form glasses. categories of problems and not necessarily to every instance
The seminal analysis of the global optimization problemof a problem. Although there may be no efficient method for
in the context of protein folding was made by Levinthal. finding the global minimum of a general heteropolymer, bio-
This author estimated the number of configurations a typicalogical proteins may represent a subset whose properties
protein could adopt3" whereN is the number of amino have evolved so that they can fold. Secondly, the criterion
acid9 and noted that even if protein configurations could befor a successful algorithm is very stringent; one must not
sampled at a rate of, say, Oper second, it would take only find the global minimum, but prove that this it is actu-
longer than the age of the universe to find the native structurelly the global minimum. In contrast, proteins do not neces-
if this sampling was simply random. The result of this simplesarily have to fold to the global energy minimum, but instead
calculation markedly contradicts the actual properties of promust have a high probability of folding to the native struc-
teins, which can generally find the native structure from arture which probably corresponds to one of the lowest energy
unfolded state on time scales of the order of seconds or lesminima on the PES. Similarly, the heuristic global optimiza-
This well-known contradiction has come to be known astion methods, such as simulated annedfingnd genetic
Levinthal’s paradox. A similar paradox can be formulatedalgorithms'?>**are not rigorously guaranteed to find the glo-
for a cluster. For example, the number of geometrically disbal minimum. For example, these methods can find the
tinct minima on the PES of a 55-atom cluster interacting viaMackay icosahedron for the 55-atom Lennard-Jones cluster,
the Lennard-Jones potential has been estiniatetle of the  which is widely accepted to be the global minimum even
order of 13 yet the cluster can rapidly find the Mackay though this has never been rigorously proved.
icosahedral global minimum from the liquidlike statéThe Some have tried to resolve Levinthal’'s paradox by hy-
existence of “magic number” peaks in the mass spectra opothesizing a reduction in the number of states that the pro-
rare gas clustet$ indicates that these systems can also lotein has to search through. Typically it is argued that the
cate certain global minima very efficiently. protein first collapses rapidly to a compact conformation and
A more rigorous approach to defining the effort involved that the subsequent search is through the greatly reduced
in finding the global minimum can be obtained using com-space of these compact stat&s$® Although in some cases
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this might so reduce the number of states that Levinthal'plex models and real proteins, it is probably best to interpret
paradox no longer applies, it cannot in general provide dhe energy gap criterion as the energy gap between the native
complete answer. For instance, the number of minima correstate and the lowest energy structurally distinct non-native
sponding to the liquidlike state of a 55-atom Lennard-Jonestate. The higher the energy of the non-native states relative
clustef is of the order of 1¢. This is much less than the to the global minimum the less likely they are to act as
total number of minima on the PES but the ease with whictkinetic traps. Support for this reinterpretation has been found
the global minimum can be found is still incompatible with a from an annealing study of simple off-lattice proteffis.
random search through this reduced configuration space. In  Other studies of lattice models have come to very differ-
fact, when the cluster has an energy or temperature in thent conclusions from Salet al. In particular, Klimov and
melting region, it can switch back and forth between theThirumalai report no correlation between the folding time
Mackay icosahedral global minimum and the liquidlike and the energy gap between the two lowest energy states.
states on a time scale of the order of nanosecdndslg Instead, they found that the folding time decreased as the
parameters appropriate for argdn ratio of the folding temperatur€; (at which the native struc-
Seeking to resolve Levinthal's paradox by reducing theture becomes the thermodynamically most stable statie
search space may be unproductive in a more fundamentabllapse transition temperaturé, (at which the protein
sense, for it ignores a basic fallacy in Levinthal's paradox:itransforms from an extended to a compact $tatereased.
Namely the assumption that each point in configurationThe source of the differences between this study and that of
space is equally likely. Levinthal was effectively assumingSali et al. is not clear since the two studies involved very
that the PES is totally flat. However, the topography of asimilar systems.
protein PES is far from flat, involving many “mountain An alternative approach to understanding protein folding
ranges” and “valleys,” thus making some configurations has been put forward by Wolynes and co-work&r€8 It is
more likely than others(In the canonical ensemble the low based upon a statistical characterization of the free energy
potential energy configurations have larger Boltzmannandscape, and has its origin in spin-glass theory. This ap-
weights, and in the microcanonical ensemble they have aroach was combined with the idea of a “folding funnel,” a
larger momentum density of stateJ.o illustrate this point set of convergent pathways which lead to the global mini-
Zwanziget al. produced a simple model of a protein with an mum, making it kinetically accessible from the ensemble of
energetic bias towards the native structure which could findnisfolded state&® A protein that can fold would have a
the global minimum on physically reasonable time sc#les. single folding funnel, whereas a random heteropolymer is
However, this particular model problem belohgs the class likely to have numerous funnels leading to structurally dif-
of problems P, which are tractable in polynomial time, not toferent low energy states. The theory describes the global
the class NP. properties of the free energy surface in terms of a few pa-
In lattice model studies of proteins, sequences that foldameters: The ruggedness of the surface, the extent of the
are often compared with those that do not. Some studies hav¥ennel (the size of the configurational spacand the poten-
suggested that one of the distinctive characteristics of théal energy gradient towards the native state. A rugged PES
folding sequences is a significant energy gap between thieas many minima with large barriers between them. For a
global minimum and the next lowest energy structtir,  protein to be able to fold the funnel would need a sufficiently
and this criterion has been used to design sequences that fdatge potential energy gradient to direct the folding protein to
rapidly 13° One particularly comprehensive study of a 27-the native structure.
unit chain led Salet al. to conclude that the necessary and In the above model, the slope of the funnel can also be
sufficient condition for a folding sequence is that the nativerelated to the energy gap between the native state and the
state be a pronounced global minimdmiHowever, this con-  disordered collapsed structur@sdifferent energy gap to that
clusion has been criticized both because the correlation baised by Salet al). By maximizing this energy gap the ratio
tween the energy gap and folding ability is rather weak andf T; (defined aboveto the glass transition temperatufg
because the criterion concentrates on only a very small patat which the dynamics dramatically slow down because of
of the PES, whereas folding ability surely depends on theinetic barriers to escape local minima on the PESnaxi-
entire energy landscap®.Interestingly, Saliet al’s results  mized. A large ratiol ¢/ T, ensures that the native state is the
actually show a stronger correlation between the foldingmost stable state at temperatures where the dynamics are still
ability and the temperaturd,, at which the global mini- fast, allowing the protein to reach the native state rather than
mum has an equilibrium probability of 0.8, if only compact becoming trapped in a local minimum. This criterion can
states are considered. also explain the performance of global optimization meth-
There are further problems when trying to apply the en-ods, such as simulated annealing, which attempt to follow
ergy gap criterion to real proteins, since for a real proteinthe global free energy minimum as a system is cooled. Such
there are many minima on the PES which involve only smallmethods are likely to fail when the global minimum of the
perturbations to the native structure and have very similafree energy changes at a temperature belw This ap-
potential energie$! In contrast, for the lattice model consid- proach can also help us to understand some aspects of the
ered by Salet al. any change to the native structure involvesresults for lattice model proteins that we noted earlier. The
a much larger perturbation and can give rise to a large inT, that was used by Sadit al. has a very similar definition to
crease in the energy. Therefore, when applied to more con¥;; both are measures of the stability of the native state of
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the protein. It is, therefore, unsurprising that increaslyg energy structures for clusters with 75, 76, 77, 102, 103, and
(and henceT /Ty, if T, is fairly independent of sequence 104 atoms are probably decahedfal’ These cases are
increases the ability of the protein to reach the native statanuch harder for a global optimization algorithm to find since
Also, Thirumalai has emphasis@dhe relationship between the structures have a much greater close-packed character. In
the values of the ratio$/T, and T{/T,. fact the decahedral clusters have never been found yet by an
Another equivalent formulation of the above ideas is inunbiased global optimization meth8¥lt is much harder for
the “principle of minimal frustration.” Proteins that have a the cluster to find the funnel associated with the decahedral
single folding funnel are likely to have a native state inminima, compared to the wide funnel that leads down to the
which all the interactions between residues are favorable. licosahedral minima.
contrast, in compact configurations of a random heteropoly- Interestingly, in a study of small Lennard-Jones clusters
mer there are likely to be residues brought together withH19 atoms and legsvhich used global optimization methods
conflicting interactions—a random heteropolymer is “frus- based upon the simulated annealing of the classical density
trated.” Minimizing the frustration leads to a low energy distribution, the efficiency was found to be correlated with
native structure and consequently to a large valueTior  the energy gap between the global minimum and the next
These ideas not only provide an elegant theoretical undetowest energy staté.However, it may be dangerous to draw
standing of protein folding, but by using experimental infor- general conclusions from this result. First, the difference in
mation to estimate the characteristic parameters of the energlynamic behavior between proteins that can and cannot fold
landscape for real proteins, they allow a connection to bés much greater than that between clusters of different sizes;
made between real proteins and lattice modkls. all the clusters considered in the above study can reach the
These theories developed in the context of protein foldglobal minimum relatively easy. Second, for these very small
ing can also be useful in understanding the dynamics of sysystems, much of the thermodynamics is determined by the
tems in the realm of condensed matter physics. For examplégw energy minima on the PES and the energy gap between
simple liquids have been described as frustrated systemthe two lowest energy structures is likely to correlate with
they have significant polytetrahedral characfef yet all  the melting temperature. For example, the “melting” transi-
space cannot be packed with regular tetrahedra. This frustréion of the 13-atom cluster is associated with transitions be-
tion can be easily seen if one packs five regular tetrahedriaveen the icosahedron and the set of the defective icosahe-
around a common edge. There remains a gap of 7.4° whictiral minima which are next lowest in enertitiowever, for
can only be bridged if the tetrahedra are distorted. Therefordarger clusters melting is associated with a transition between
close-packed structures, which are packings of both tetrah¢he low energy minima and the numerous high energy amor-
dra and octahedra, are the densest and lowest energy strygious minima, and the melting temperature is now likely to
tures, even though the regular tetrahedron is the densest loda¢ correlated with the energy gap between the global mini-
packing. Frank was the first to suggest that this structuramum and this band of “liquidlike” minima>
difference between the solid and the liquid was responsible  The complexity of proteins means that, inevitably, one
for the large degree of supercooling that could be achievetias to be satisfied with a coarse-grained picture of the dy-
for liquid metals® The widest funnels on the PES in such namics involved in protein folding. Studies of small clusters,
systems lead to glassy minima rather than to close-packettherefore, could offer particularly important insights since
structures. their size allows a much more detailed analysis of the®®ES
The packing constraints, and hence the degree of frustraand the time scale of the transition from the disordered lig-
tion, can be changed by introducing positive curvature intauidlike states to a unique solidlike structure is short enough
space. In fact for a space of appropriate positive curvaturegp be probed by computer simulation. Initial studies explor-
five regular tetrahedra fit exactly around a common edge anihg the relationship between the dynamic behavior of clus-
the lowest energy, highest density structure is a perfect polyters and the PES have already produced interesting
tetrahedral packing called polytope{3,3,5. Straley per- results?***For example, a comparison of potassium chloride
formed a series of simulations which showed that crystalli-and argon clusters has shown that the greater ability of po-
zation occurs much more rapidly in this curved space than itassium chloride clusters to crystallize into solidlike struc-
Euclidean space, elegantly demonstrating the effect of frustures from the liquid is due to the lower energy barriers and
tration on the dynamic® For the curved space there is a the greater potential energy gradient along series of reaction
single funnel on the PES which leads down through the ligpaths which lead to rock-salt-type structuf@& more quan-
uid states to the global minimum. titative study sought to understand the behavior of a 19-atom
Similarly, for small Lennard-Jones clusters global opti- Lennard-Jones cluster based upon large samples of minima
mization strategies, such as genetic algorithms, are able tnd transition states. The dynamical behavior was found by
find the global minimum based on icosahedra from the massalculating transition rates between minima, and then con-
of liquidlike structures fairly easifff because icosahedral structing and solving a master equation to describe the flow
structures have significant polytetrahedral character. Howef probability through configuration spat&The latter re-
ever, there are a number of sizes at which small Lennardsults, however, did not include corrections for the fact that
Jones clusters do not have an icosahedral global minimunthe samples represent only a small fraction of the total num-
For example, the global minimum of a 38-atom cluster is theber of stationary points on the PES.
face-centered-cubic truncated octahedfdhand the lowest In this paper we follow a similar approach, proceeding
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from a complete description of a model PES in terms of its  (a)
minima and transition states to the thermodynamic and dy-
namic behavior. We concentrate on the ability of the system 104
to find the global minimum and how this is related to the
thermodynamics through Landau entropy profiles. This ap-
proach allows us to systematically investigate the effects of
various topographic features. In Sec. Il we describe the basic
PES and the methods for calculating the thermodynamic and
dynamic behavior. In Sec. Il we present the results for the
PES with a single folding funnel, and in Sec. IV we consider 44
the results for the modified surfaces. Finally in Sec. V, we i
summarize the main conclusions from this work. Throughout 21 E,
the paper we attempt to show how our approach can illumi- |
nate and provide a framework for understanding the results
already known for specific systems, such as proteins, clus- 1 2 3 4 s , 6 7 8 9 0

: : ®) \\\\§§§ ///////

Energy
(=3

-~

Il. METHODS

%

I=4
The dynamics on a multidimensional potential energy ’ /,=3
surface can be described by a master equéfiétthus giv-
ing the time evolution of the probability distribution,
P(t)={P;(t)}, whereP; is the probability of the system be-
ing in statei. The master equation has the form

Energy

dp;
d_tI:; wij P, (1) 14

wherew;; =Wj; — 6;; 2 W,; andW;; is the rate of transition

from statej to statei. The diagonal elements of the matrix,

w;; , give the total rate of transition out of state FIG. 1. () One-dimensional cross section through our standard PES show-
If the transition matrixw is neither decomposable nor ing a reaction pathway from the top of the PES to the global minimum.

splitting, the matrix has a single zero eigenva‘lﬁle’/vhose :WEQ?ftval(lét)Essorf] corrtz?s;()jonq tto mi?imsEaSnd .Biféintegler valéjef] to transi-

. e e i ppi_tioN states chematic depiction of a wi andl ,,,,=6 showing

elg_envecétor corresponds to the equ"lb_”um prObablllty distri the dramatic increase in the number of minima with energy.

bution, P*% The master equation describes the evolution of a

system from an initial distributior?(0), towardsP®% at in-

finite time the probability distribution must be equal P&

The dynamics and thermodynamics must be consistent in |Pi(t)PFo—P;(1) PEY
this limit. —
The transition matrix must satisfy detailed balance to be \/Pi(t)Pi(t)Pi P
physically reasonable, i.eW;;Pi? = W;;PF%. As a conse- e, the two states are within 1% of equilibrium. The equili-
quence, the solution of the master equation can be expandgglation time for two states is then defined as the time at
in a complete set of eigenfunctions of the symmetric matrixyhich the above inequality is first satisfied. This allows us to

01, 3

w’, defined asv/; = \P§YP{W;; . The result i8* construct equilibration trees mapping out how the system
proceeds to the state where the whole system is in
- P(0) equilibrium#6:47
(D) =+/PEY ulehitul —— :
Pi()= VP % Ui L /qu’ 2 The standard PES that we consider is depicted in Fig. 1.

_ It consists of a single funnel in which the number of minima

whereu! is theith element of thgth eigenvector ofv’ and  increases rapidly with energyFig. 1(b)]. To simplify the
\; is the jth eigenvalue ofw’. Apart from the zero eigen- calculations the minima have been grouped intg levels.
value, the\; are all negative. In all our calculations, we have The minima in each level are assumed to have identical
used the above analytical solution. An alternative method oproperties, and to be always in equilibrium with each other,
solving the master equation is to integrate ED. numeri-  thus allowing us to consider each level as a single state in the
cally. master equation. This framework is equivalent to assuming

The concept of detailed balance also allows us to defin¢hat the barriers between minima in the same level are zero.
when two states come into local equilibrium; i.e., Level =1 is the global minimum, and the number of
W;; P;(t)~W;;P;(t). The precise condition that we use is minima increases geometrically as the PES is ascended.
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There areg times more minima in each subsequent level. Imax n(E—E)< 1
Therefore, the number of minima in leveln,, is g"1 and Q(E)= —_—,
the total number of minima on the PES gt — 1)/(g — 1). =1 Tl

We do not consider permutational isomers explicitly sincewherelI is the Gamma function. It follows that the microca-
they do not affect the relaxation dynamics. For a real PESponical equilibrium probabilities are given by

there areO(N!) permutational isomers of each minimum.

(6)

k—1
Therefore, there will be many funnels leading down to the  peqE)= @ 7
different permutational isomers of the global minimum. I'(x) v Q(E)
However, as each funnel is identical they do not need to bghe canonical partition function and equilibrium probabili-
considered separately. ties can be constructed in a similar manner

We assume that the minima in leuehre only connected |

to minima in levelsl = 1. The transition states connecting 2(T _§x ne ~& d PEYT) = nie” P8 g
minima in adjacent levels are all assumed to lie an enbrgy ( )_|=1 (Bhy)~’ and PP{(T)= (Bhv)<Z" (8)

above the higher minimum. Each minimum in levek as-
sumed to be connected tominima in levell =1 and hence h - .
to go minima in levell + 1. From this information, and us- E1=0. Beyondl=2 the potential energy is assumed to in-
ing RRKM (Rice—Ramsperger—Kassel—Margutheory® crease linearly withl. Therefore,E,=E,+ (I —2)AE for

within the harmonic approximation, the microcanonical rated =2, WhereAE is a measure of the potential energy_gradient
for transitions between levels are of the funnel. For a typical cluster PES, the mean vibrational

frequency is smaller for minima of higher potential

The global minimum defines the energy zero, i.e.,

E-E,—b\* 1 of _ energy®—the stabilization of the liquidlike phase at high
W|+1,|=90( E_E ) — 1 uphil, temperatures is due to both the large number of minima and
! I+l 4 the greater vibrational entropy. Therefore, we use
E—E—b\* ! F ) ?=1—(I - 1)Av. This define; fche unit of time as the vi_bra-
W|_1',=o( ECE ) ———1 downhill, tional period of the _g_IobaI minimum. The mean V|brat|onal_
' Yi-u frequency of a transition state is assumed to be the geometric

mean of the vibrational frequencies of the two minima it
connects, i.ey| ;1) = Vv 41

Results were also obtained for a globally connected
model surface, rather than the “nearest-neighbor” connec-
All other elements of the matridV are assumed to be 0 in ton pattern described above. For brevity, we will provide

the present treatment. Similarly, the canonical transition rateQ"1Y @ détailed account of the latter surface, since we expect
this to be a more realistic model of the systems we are inter-

whereE; is the energy of levdl, « is the number of internal
degrees of freedom, and, and v, are the geometric
mean vibrational frequencies of the minima in leveland

the transition states between leveland| + 1, respectively.

are given b
g y ested in. Some closed form solutions for special cases are
r given in the appendix.
W|+1,|290W exp[— B(Ej+1—E;+b)]  uphill,
+1,
o (5) Ill. THE STANDARD POTENTIAL ENERGY SURFACE
W|—1|=U—V—|K_1 exd —Bb]  downhill, The parameters for the standard PES employed in the
’ Vi-1) present study are

whereg is the inverse temperature. We have performed cal- «=101, o=1, E,=3.79688, AE=0.8,
culations both in the microcanonical and canonical en- 9
sembles, but since most of the properties probed show a 9~ 10" Ima=10, Ar=0.01, b=0.5. ©
weak ensemble dependence the majority of the results ré&hese values produce a total of 1x10° minima on the
ported here are microcanonical. The microcanonical enPES. Some of the thermodynamic properties of the system
semble is appropriate to describe an isolated cluster in vacuaye shown in Fig. 2. These were calculated using the follow-
but the canonical ensemble is probably more appropriate fang definitions: The microcanonical temperatufe,is given
proteins where the solvent can act as a heat bath. by 1kT=(dIn Q/JE)y., the canonical internal energy by
The thermodynamics of the system can be described usd=—(dIn Z/dB)y .\, and the canonical heat capacity by
ing a superposition method, whereby the total energy densit¢ = (JU/dT)y . In each case analytic derivatives of the
of states,Q)(E), is constructed by summing the density of appropriate partition functions were employed.
states for all the energetically accessible minima on the PES. It can be seen from Fig. 2 that the system shows the
This method has been used for Lennard-Jones clusters fmite-size analog of a first-order phase transition; there are
calculate the thermodynamic properties from a sample oprominent features in the caloric curves and a large peak in
minima on the PE$>*°and simulation results are accurately the heat capacity. The transition has a two-state character
reproduced when anharmonicity is includedpplying this  involving the global minimum and minima in the highest
method to the model PES within the harmonic approxima-energy region of the PES, with intermediate minima never
tion gives being significantly populated at equilibriuffrig. 2(c)]. The
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FIG. 2. Thermodynamics of our standard PE&: Caloric curves for the
microcanonical(solid line) and canonicaldashed ling ensembles(b) ca-
nonical heat capacity, ang) equilibrium probabilities of occupation of
level I, P9, for the microcanonical ensemble.
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FIG. 3. (a) Variation of the folding timet; with energy for our standard
PES.t; is defined as the time foP, to reach 0.8, from an initial state
P,o(0)=1. The vertical dashed line denotes the energy at whifh-0.8

and so is the upper limit for whict is defined[Above this energy,(t) is
always less than 0.B(b) The variation of the probability of being in the
global minimum,P,, as a function of time and energy. The ten lines shown
are fort=100 to 1000 in intervals of 100 and are labeled by the appropriate
value oft.

is a feature unique to finite systerisSuch loops have been
commonly observed for clustéfs®* and have also been
noted in protein simulatiorss. In small clusters the physical
cause of this region of negative heat capacity is the absence
of phase separation, which is prevented by the relatively high
energetic cost of an interface between the solidlike and lig-
uidlike regions®®

The microcanonical dynamics of the system were exam-
ined by initially populating the highest energy state, i.e., set-
ting P,o(0)=1, and observing the relaxation towards equi-
librium at constant energy. The corresponding canonical
results are omitted for brevity. We consider in particular the
time required for the global minimum to develop an 80%

energy at which the global minimum has an equilibrium probability of occupation. By analogy to relaxation in pro-
probability of 0.5,E;, can be used as a definition of the teins we call this the “folding” time,t;; i.e., P;(t;)=0.8.

transition energy. For our “standard” PES;=38.2745.

The dependence of on E for the standard PES is shown in

Also of particular note is the Van der Waals loop thatFig. 3(@). There is a clear minimum ity which occurs at an

occurs in the microcanonical caloric curMég. 2(a)], which

energy, Ena. Of 26.41 =0.6%;). The folding time in-
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creases rapidly at low energy because it becomes more dif- (a)
ficult to overcome the barriers on the PES, and increases at
higher energies because the thermodynamic driving force to- 10 80
wards the global minimum is diminished. Similar maxima
have been seen in the folding rates of model prot&is;®°

in the “crystallization” rate of a(KCl)s, cluster®* and in the
nucleation rate of glass@these maxima occur for the same
reasons as for our model PES. Maxima in the folding rates
have also been observed in experiments on proteins which
are rapid folder§3-%°but the interpretation of these results is
complicated by the fact that real proteins can undergo low
temperature denaturatiSh.

Another view of the relaxation dynamics is provided by
Fig. 3(b) which shows the increase in the population of the
ground state with time; there is again an energy window for
which the global minimum can become significantly popu-
lated. It is interesting to note that the energy at which the
maximum in the population of the global minimum occurs
decreases somewhat as the time increases. This indicates that
to optimize the population of the global minimum one should
not quench the system to a low energy and let it evolve, but
rather use a cooling schedule whereby the energy is de-
creased as a function of time, as in constant thermodynamic
speed annealiny.

To further understand the dynamics of the system it is .
helpful to use Landau functiorf&®?which describe the ther- . unfolding
modynamic potential, i.e., the entroggnicrocanonical en-
semblg or the Helmholtz free energfcanonical ensemb)g
in terms of an order parameter. The presence of a first-order

Landau entropy / k

Landau entropy / k

35 30 35 40 45 30 55 6 65
phase transition is indicated by two stable states of the Lan- energy

dau function, i.e., two maxima in the Landau entropy sepa-

rated by a well, or two minima in the Landau free energyFIG. 4. (a) Landau entropy profiles for our standard PES using the order

Separated by a barrier. We choose to call the minimum in thgarametet. The seven lines shown are fa=20-80 in intervals of 10 and

. . are labeled by the appropriate valuekaf(b) Depth of the Landau entropy
Landau entropy an entropy bottleneck, since it represents l?ottleneck relative to the Landau entropy maximum at large valuds of

constricted region of phase space which has a lower densityfolding” ) and relative to the Landau entropy maximum at the global

of states than the regions that it connects. The Landau prarinimum (“unfolding” ). The dashed line gives the magnitude of the Lan-

files also enable us to understand the influence of the theflau entropy difference between the two stable states.

modynamics on the dynamics. If there is one stable state,

relaxation to that state is likely to be rapid unless other ki-

netic factors intervene. If there are two stable states, the rat@odynamically “downhill.” Consequently atE,., the

of transition from the metastable to the stable state decreasgsobability density “flows” smoothly down the PES with

as the entropy bottleneck becomes narrower or the free ehe intermediate states having significant transient popula-

ergy barrier increases. The importance of the Landau fredons[Fig. 5b)].

energy in understanding protein folding has been recognized The equilibration trees in Fig. 6 map out the times at

by Bryngelsonet al. who considered the dynamics expectedwhich different levels come in to approximate equilibrium

for a number of different Landau free energy profites. with each othefas defined by Eq3)]. At E.«levels 1 and
Application of a Landau-type analysis using a restricted? first reach local equilibriuniFig. 6b)], i.e., equilibrium

thermodynamic potential depends on finding a suitable ordefirst occurs between the levels corresponding to the Landau

parameter which can differentiate between the states of inentropy maximum. Next, level 3 reaches equilibrium with

terest. For many systems this can be a difficult task, but folevels 1 and 2, and so on to higher valuesl othe local

our model PES provides a natural order parameter since itequilibrium propagates to higher energy away from the Lan-

is a measure of the distance from the global minimum. Thalau entropy maximum. Similar behavior occurs at lower en-

Landau entropy is then defined asS (I)=S(E) ergies, except that the barriers on the PES have a larger

+ k In PF{E) and the Landau free energy By (1) =A(T) retarding effect on the dynamics. Therefore, the equilibration

— kT InPf{T). Landau entropy profiles for our standard tree atE=15[Fig. &a)] shows the same structure asEat,,

PES are given in Fig. 4 for a range of energies. At lowexcept that the time scales are around a thousand times

energy there is a single maximum corresponding to the gloslower. In the microcanonical ensemble the kinetic energy

bal minimum, and relaxation to the global minimum is ther-increases as the potential energy decreases. Consequently, at
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FIG. 5. Time evolution of the probabilitieB, for our standard PES at an
energy of(a) 15, (b) 26.41, andc) 36. Initially, P;,=1. The energy 26.41
corresponds to the minimum in the “folding” time of Fig(a.

the kinetic energy is independent of the position in configu-
ration space.

For E>28.238, there are two Landau entropy maxima,
which correspond to the global minimum and the high po-
tential energy “unfolded” states. The entropy bottleneck oc-
curs because at lower potential energy the loss in entropy
due to the reduced number of minima is not completely com-
pensated by the greater vibrational entropy that results from
the larger kinetic energy. As a result of the entropy bottle-
neck, the equilibration trees have a qualitatively different
form from those at lower energies; equilibration initially oc-
curs within the secondary Landau entropy maximum corre-
sponding to the higher lying levels and then propagates down
the PESFig. 6(c)]. It is interesting to note that this change
in direction of equilibration appears at approximately the
same energy as the Landau entropy bottleneck.B~e86
there is a separation of time scales between equilibration
within the secondary Landau entropy maximum, and equili-
bration between the maxima. This is reflected in the time
evolution of the probability distribution: The probabilities of
occupying higher potential energy levels rapidly attain ap-
proximate local equilibrium values which then slowly decay
as the global minimum becomes more populdfeid. 5(c)].

Similar behavior is seen for the Landau free energy in
the canonical ensemble. In fact, the temperature at whjch
develops a double well can be derived analyticégsuming
that Av is smal). Two free energy minima are observed if

- AE
Ing+xAv’

This corresponds t&kT>0.242 for our standard PES. As
relaxation to the global minimum is impeded by a free en-
ergy barrier, Eq(10) implies that largeAE and smallg and
Av assist relaxation to the global minimum. These are the
same conditions as those that lead to a large valuk; of
Landau free energy profiles have previously been calcu-
lated for lattice models of proteits:?831*They show a
similar behavior to that found for our model PES, with a
single minimum at low temperature, and two stable states at
higher temperatures corresponding to the folded and un-
folded proteint>28 For clusters there can be a range of tem-
perature around the melting transition for which Landau
functions reveal two stable states corresponding to the solid-
like and liquidlike states*’° Similarly it has been shown
that the nucleation of a crystalline phase from the bulk
Lennard-Jones liquid involves a large free energy baffier.

kT (10

IV. MODIFIED POTENTIAL ENERGY SURFACES

The previous section showed that our simplest model
PES captured many of the dynamical effects commonly seen
in finite systems such as proteins and clusters. Here we seek
to modify the standard PES to understand which factors in-

low energies the transition rate over the barriers is muchluence a system’s ability to find the global minimum. The
slower at the top of the PES, and the system accelerates asiitodel PES has too many parameters to allow a systematic
descends the PES. Therefore, transient populations in thstudy of the whole parameter space. Additional complexity

intermediate states are less pronounced=atl5 than at

could, of course, be generated by making the parameters

Enax- INn the canonical ensemble this effect is absent becaudenctions ofl . The effects of varying some of the parameters,
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FIG. 7. The dependence tf on the barrier heigh for our standard PES.
91 ty is defined byP,(t;)=0.8. The vertical dotted line denotes the energy at
which P$9=0.8. Each line is marked by the value lof

5 though, are fairly obvious. For example, increasing/ould
make all the ratesr times faster. Our approach here is to
make only changes to the PES that leave the basic thermo-
34 dynamics unchanged—i.e., we keép constant—and to
concentrate on the factors that could lead to particularly in-
teresting behavior.

14

2400 2500 2600 2700 2800 2900 3000 A. Barrier heights
© time The first modification that we make is to change the
10 barrier height. Unsurprisingly, increasigleads to a reduc-

tion in the rate of relaxation to the global minimuifig. 7).

9+ . S .

More interesting is the dependence of this effect upon the
81 energy: Increasing the barrier heights leads to a much larger
74 increase int; at low energies. This is because a larger frac-

tion of the kinetic energy must be converted to potential
energy to overcome the barriers at low energies. The energy
54 at which the maximum “folding” rate occurs increases as
the barrier heights increase. The shape of the minimuta in

¢ is also dependent ob, becoming broader as the barrier
31 heights are decreased; lat=0.01 there is a larger energy
2 window for which fast relaxation to the global minimum can
occur.
1;0 . o0 o000 100000 Similar behavior is observed for the canonical ensemble,
time namely the rate of relaxation to the global minimum has a

exp(— Bb) dependence on the barrier height. Therefore, at

fixed temperature the relaxation rate has a rigorously expo-

nential dependence dn and changindp has a greater effect

on the relaxation rate at low temperature.

Th resul n il nder in the lan f

FIG. 6. Equilibration tree for our standard PES at an energgaol5, (b) else esudts Cal eeaé’_%be u de. StO;)d b t e ah g.uﬁge 0
26.41, and(c) 36. Initially, P,q=1. Each line in the equilibration tree rep- Bryngelson an WO yn > In_creasmg t e_ arrier heights
resents a single level or a set of levels that are in equilibrium with eactcorresponds to increasing, without changingT;, hence
other. The lines join at times when states first come into local equilibrium agecreasing the I’atifl)'f/Tg and the “folding” ability. Potas-

defined by Eq.(3). The vertical position of these nodes is given by the _: : -
average value df for the levels that are in equilibrium with each other. The sium chloride clusters prowde a gOOd example of systems for

horizontal positions of the ends of lines on the left-hand side of the graph\,’\’hich relatively small barrier heights produce rapid relax-
which correspond to individual levels, are arbitrary. ation down the PEgs.
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FIG. 8. (a) Variation oft; with the slope of the PESb) Variation of the magnitude of the Landau entropy bottlendskdid lineg with AE. The dashed line
gives the magnitude of the Landau entropy difference between the two stable (@aeguilibration tree andd) time evolution of the probabilities?, , for
the flat PES AE=0) from an initial distributionP,,=1. All results are folE=26.41.

B. The slope of the funnel begins to decrease rapidly. However, once the PES is suffi-
In the energy landscape model of protein folding, theciently.steep to makg the uphill rate small compared_to. the
slope of the funnel(potential energy gradientis a key downhill rate, further increasing the slope on_ly has_allmlted
paramete?”*! Here we analyze the effect of the slope by effect. At largeAE the folding time even begins to increase
varying AE. To keepE, constant we must also vaf,. For ~ adain because the lever2 begins to have a low enough
the case when\E is zero, i.e., a flat surfac&,=10 for ~ €nergy for it to have a significant equilibrium population.
I=2. It can be seen from Fig.(® that the slope has a dra- An equivalent explanation for the behavior can be pro-
matic effect on the folding time, and that a sufficiently steepvided in terms of the Landau entropy. In order to kegp
slope is necessary for reasonably rapid relaxation to the glgzonstant as the slope is decreased the energy of the interme-
bal minimum. This behavior can be explained from the rela-diate levels must be increased. This has the effect of reduc-
tive rates of uphill and downhill transitions in our model. ing the equilibrium probability for occupation of these levels.
The barrier for going downhill is, and for going uphill Therefore, as\E is decreased a Landau entropy bottleneck
AE+b. Therefore, the downhill transition rate is not signifi- develops and then increases in deffily. 8(b)]. The folding
cantly affected by the slope, but the uphill rate decreasetime increases rapidly as the bottleneck deepens, but has a
rapidly as the slope is increased. For the flat PES taking anly weak dependence afE when there is a single Landau
step to highel is, ignoring the vibrational contributions to entropy maximum.
the rate,g times more likely than to lowel, causing the The flat PES would correspond to the Levinthal limit
probability distribution to remain concentrated at large val-where the states are searched randomly, but for the variation
ues ofl. As a slope is introduced into the PES the uphill rateof the vibrational frequency with, which makes the minima
decreases relative to the downhill rate and the folding timeén higher levels slightly more probable. For this PES, equili-
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FIG. 9. (8 Schematic depiction of a PES with a kinetic bottlenegk.3, ando=1 except foro;,= 0,3=1/3. (b) Dependence df; on ;. (c) Equilibration
tree and(d) time evolution of the probabilitie®?, , from an initial distributionP,,=1 for a PES withs,=0.1. All results are foE=26.41.

bration occurs initially at large values of and proceeds PES’s. However, it does show that even if the energy gap
away from the Landau entropy maximum. There is a largeview were correct, it would require further explanation; it is
separatior(of the order of 18 between the time scales for not self-evident why an energy gap should guarantee kinetic
equilibration within the largd entropy maximum and be- foldability.
tween the entropy maximirig. 8(c)], because of the deep
Landau entropy bottleneck. This is evidenced by the probb Kinetic bottlenecks
ability flows across the PEFFig. 8(d)]; P;o and P4 rapidly '
reach local equilibrium values, which then decay away as the For our standard PE& is independent of. However, a
ground state is slowly populated. real PES is unlikely to show such uniformity. For example, it

These results help to explain why potassium chloridehas been suggested that for some proteins the number of
clusters are able to relax to the rock-salt structures savailable pathways may decrease near to the native state
rapidly®* Reaction pathways leading down to the rock-saltleading to the observation of kinetically determined
structures generally exhiBtAE>b. intermediate$®

As AE is decreaseé,, which is simply the energy gap In this section we investigate the effect of making
between the global minimum and the next lowest energyependent oh. In particular, we reduce the number of con-
state, has to be increased to maintBin Therefore, the ef- nections betweeh=1 andl =2, and betweeh=2 andl =3.
ficiency with which the global minimum is found is reduced Such a PES is illustrated in Fig(&); it has oq,=0,3=1/3
asE, is increased. This result does not necessarily contradicnd so only 1 in 3 of the minima in level 3 are connected to
the view of Saliet al. however, since we can decouple fac- a minimum in level 2. These changes do not affect the ther-
tors in our model in a way that may not be possible for realmodynamics in any wayincluding the Landau entropyut
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instead produce a kinetic bottleneck. In Figb)9 the depen-

dence of the folding time for the modified surface upop (a)
is shown.t; increases as the number of connections is re-
duced, but at the most by only one to two orders of magni-
tude. The slowing down of the dynamics at the bottleneck
leads first to local equilibrium above the bottlenddkg.
9(c)] and to a build-up of probability in level 3 and to a
lesser extent in levels 4 and[Big. 9d)].

These results show that kinetic bottlenecks may signifi-
cantly affect the folding rate, but to a smaller extent than
other factors, such as the slope of the funnel or the multiple
funnels that we shall consider next. Kinetic bottlenecks may
be important in rationalizing the detailed dynamic behavior
of a particular system, but are unlikely to represent the dif-
ference between, for example, folding and nonfolding pro-
teins.

(b) 107
D. Multiple funnels

In this section, we consider the consequences for the 10°3
dynamics when the PES has more than one funnel. This al-
lows us to examine Leopoleét al’'s suggestion that the
amino acid sequences which fold to a unigue native state are !
characterized by a single funnel leading to the global mini- s
mum, whereas those that do not fold have multiple funnels
leading to structurally different mininf. The results should
also be relevant to other systems where the system has dif-
ficulty in reaching the global minimum, such as glasses. It 1000
has been suggested that the glassy states are located at the
bottom of funnels which are separate from the crystalline 15 20 25 30 35
funnel®:72 Encrgy

A schematic picture of the modified PES which we have
investigated is shown in Fig. 10. It has a secondary funnéef!G. 10. (@) One—dimensiona’I cross sec_tic_)n th_rough a PES with two funnels
joined 1 the primary funnel at=lyege The levels in the el e Vaies o for e s 1 e secondary frnel e
secondary funnel are denoted Byand have the same prop- | . are as labeled, and the curve for our standard RizShed ling has
erties as the corresponding levels for the standard PES. Inbeen added for comparison.
tially, we consider the case where the secondary funnel ends
at|'=2', since for this case the secondary funnel hardly
affects the equilibrium thermodynamics—tlﬁéCl never have tion trees(Figs. 12 and 1B At E=26.41, there is only a
significant magnitudegsee, e.g., Fig. @)]. small entropy bottleneck associated with exit from the sec-

The rate of relaxation to the global minimum is not sig- ondary funnel, and the time scale for this process is only
nificantly affected by the secondary funnel at energies neaabout an order of magnitude larger than that for relaxation
to E;, but as the energy is decreased the rate slows dramafirom high energy minima. At higher energies, where there is
cally compared to the standard PESg. 10b)]. The latter no entropy bottleneck, this time scale separation disappears
effect becomes more pronounced at larger valuek,&Qt. altogether. However, foE=21 there is a much larger en-
This behavior can be explained by examining the Landauropy bottleneck to be overcome. By 1000, the system has
entropy(Fig. 11). At higher energies, the bottom of the sec- relaxed down the PES, reaching a state wHeye-1/2 and
ondary funnel is not an entropy maximum, and so the systerthe probability of being in the secondary funnel is also close
never gets trapped there. However, below the energy foio a half[Fig. 12a)]. In the initial relaxation the system is
which relaxation down the primary funnel is thermodynami-equally likely to go into either funnel, because both funnels
cally favorable, levell’=2" becomes a Landau entropy have the same properties aroundl .4 This situation per-
maximum and there is a Landau entropy bottleneck whictsists for about two orders of magnitude in tirfrote the log
must be overcome in passing from the secondary to the priscale in the figureuntil the probability begins to flow from
mary funnel[Fig. 11(b)]. The conditions which are thermo- the secondary funnel into the primary. The same basic struc-
dynamically most favorable for folding for the standard PESture is seen for both equilibration trees in Fig. 13; equilibra-
also most favor trapping in the secondary funnel. tion occurs separately aboVg 4. and within the bottoms of

The consequences of these changes in the Landau ethe two funnels. The tree fdE=21 clearly shows the large
tropy can be seen in the probability flows and the equilibra-separation in time scales.

10000 4

J. Chem. Phys., Vol. 105, No. 18, 8 November 1996



8440 J. P. K. Doye and D. J. Wales: Relaxation to the global minimum

(a) 1.0
0 —
sINN e T e — 10
- 40 T 0.8 1
-10+ R e Sy
o 30
—
Z 154 . 0.6
© ., 2
g 3 1
S 207 " o A B
o s
&3 LA ] 2'
<o .25 o 0.4
5 o
-
2304
15 0.2 1 )
8 7 3
-40 6 &
. T T T T T r T 0.0- T ; 6
1 2 3 4 5 6 7 8 9 10 10 100 1000 10000 100000 10
) time
1.0
®) (b)
304 0.8
251
A
S -
a 0.6
201
s R
s3]
2 154 04
=]
g
-
10 1
0.2 4
5 -
0.0+ e ’ y y
0 T T y T 0 200 400 600 800 1000 1200 1400
15 20 25 30 . time
Energy

FIG. 11. (a) Landau entropy profiles for a PES with two funnels and FIG. 12. Time evolution of the probabilitie®, , at an energy ofa) 21 and
lhoqe=6. The lines are labeled by the corresponding values of the energy(b) 26.41 for a PES with two funnels arig,4=6. The secondary funnel
The dashed lines are for the secondary funnel and points have been marketids at ' =2. Initially, P;o=1.

by the appropriate value of. (b) The energy dependence of the magnitude

of the Landau entropy bottleneck for passage from the bottom of the sec-

ondary funnel to the primary funnel.

der refolding conditions which prevent this incorrect contact
forming, the protein folds on a time scale of 15 ms, but when
There have been some interesting investigations of th&rapping occurs folding takes longer than 0.8 She tem-

effects of trapping by low energy non-native states in proteirperature dependence of the two rate constarits cyto-
folding simulation€® 73 These show that at low temperatures chromec agrees well with the behavior of our model PES.
there is a fast component to the relaxation rate, which correfhe faster rate constant exhibits a maximum, as would be
sponds to the protein passing directly into the native strucexpected for direct relaxation to the global minimdiFig.
ture, and a slower component, where the system becom&$a)], whereas the rate constant for the slower process just
trapped in one of the low energy non-native states beforelecreases as the temperature decrédsedich is what
reaching the native structure. As for our model PES, thisvould be expected when the magnitude of the Landau en-
separation of time scales can disappear at highetropy bottleneck for escape from a trap increases with de-
temperature&’ Experimental studies of protein folding often creasing temperatuf@ig. 11(b)].
show kinetics with two(or morg time scales presefit;4="" Interestingly, it has been suggested that chaperonins,
there are subpopulations of proteins which fold at differentsuch as GroEL and GroES, assist protein folding by reducing
rates. Experiments on hen lysozyme have clearly shown thahe effect of trappind®2°The chaperonins can bind proteins
the faster rate corresponds to direct folding to the nativevhich are trapped in non-native structures and then release
state’”® and it has been inferred that the slower rate is due tahem in an untrapped configuration, thus allowing the protein
trapping in low energy non-native structures. This interpre-another opportunity to find the native structure directly.
tation has been confirmed for cytochrome-or this protein, Chaperonins can effect the release from a trapped state be-
the chain misorganization responsible for trapping is the incause the PES’s for the free protein and the protein bound to
correct ligation of a haem group by a histidine residue. Unthe chaperonin are different; a configuration that corresponds
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FIG. 13. Equilibration trees at an energy(@j 21 and(b) 26.41 for a PES ) ) .

with two funnels and,.4—=6. The secondary funnel endslat 2. Initially, FIG. 14. Dynamic properties of a PES with two funnels &pd=6 at an

P,o=1. The lines corresponding to individual levels are labeled by the€nergy of 26.41. The secondary funnel ends’at1. (a) Dependence of;

appropriate values dfor|’. uponE;. . (b) Time evolution of the probabilities, , for E;, = 1.5 from an
initial distribution P,p=1.

to a trap for the free protein may not be so for the bound
protein/® Simulations show that the folding rate of slow- cause they are structurally dissimilar and well separated on
folding proteins increases significantly when this “iterative the PES.
annealing” model for chaperonin action is includ&dend- The PES of(KCl);, shows some interesting features.
ing further credence to this proposal. The relaxation down to the low energy rock-salt-like struc-
The trapping properties of the secondary funnel can beures from the amorphous states is rafitowever, it is not
increased by adding a minimumldt=1", as shown in Fig. clear whether the system can then reach(the4x4) global
14(a). t; increases exponentially as the depth of the secondminimum from the other rock-salt-like structures, which can
ary funnel is increased. Ak, approaches the value for have very different shapes from the global minimum, e.g.,
which P$? = 0.2 (E;, = 0.364),t; increases even more rap- the second lowest energy minimum hag5x4x3) shape
idly, as expected from our definition of [P,(t;)=0.8]. At  plus an extra row of four atonf&.It might be that these
higher energies, the dependence of the relaxation rate arystal-like structures have separate funnels, the steep slopes
E,, diminishes asE,, is approached. For this system the of which make interconversion to other rock-salt-like struc-
probability density flows rapidly and equally into the bot- tures difficult. This would give rise to a significant separation
toms of both funnels and then begins to trickle very slowlybetween time scales for relaxation down the PES and equili-
back up the PES froh'=1" into the primary funne[Fig.  bration between the rock-salt-like structures, similar to that
14(b)]. This PES provides an example where the energy difseen for our model PES above.
ference between the two lowest energy minima has a very In the above examples, the properties of both funnels
significant effect on the relaxation rate to the global mini-were the same exceptldt=1". As a result, the initial relax-
mum, and supports our suggestion that this quantity is mosttion down the PES was equally likely to take the system
important when the two minima equilibrate very slowly be- into either funnel. However, for materials that easily form
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glasses the system is more likely to relax into the amorphous This PES can mimic some of the effects of frustration.
glassy minima than into the crystalline minima. A similar If, as in simple liquids, the high potential energy amorphous
effect can be achieved in our model by making the “width” minima have a different type of order from the crystalline
of the primary funnel narrower than that of the secondgry. global minimum, one might expect that the glassy states at
determines the number of minima in each level, and consehe bottom of the liquidlike band of minimamaximize the
quently also determines the increase in the configurationglolytetrahedral order as far as is possible. Therefore, the
entropy as the funnel is ascendEd, i.e., its width. Therefore, 6|assy minima are not ||ke|y to be connected to the Crysta|_
we make the value of for the primary funnel belown,ge,  line funnel, but instead reside at the bottom of rugged fun-
dp, Whereg, is smaller than for thle rest of the PES, the ne|s which descend from the liquidlike regions of configura-
primary funnel is only connected ** ~ of the g'"!  {ion space. In contrast, the funnel terminating at the
minima in the levell =1, For the parameterk,,;c=6,  crystalline state is likely to be connected to a small fraction
gp=4 andg= 10, this corresponds to only 1% of the minima of the higher energy amorphous minima which contain in-
in the levell =1,,,4.. These changes to the PES affect the ratejpient crystal-like nuclei. Consistent with this idea, large
of transition between levels,,ge and Inoqe—1, Which be- | angay free energy barriers have been found in simulations
comes of nucleation of a crystalline phase from a Lennard-Jones
liquid.”* This view of the PES topography of glass formers

Wi o1l
node ~7node has many similarities to the ideas put forward by Stillinger
g\ E—E  —b\*"t f for fragile liquids’2
d d
=g = = E’ = — (1)) We now choose to end the secondary funnel’at2’
9 Inode Vlnode™ Lnode since glasses normally have a significantly higher potential
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FIG. 15. Dynamic properties of a PES with two funnels dpgd—=6. Forl <l ,,4ethe primary funnel has a lower value gfthan for the rest of the PES. The
secondary funnel ends Ht=2. (a) Dependence df; upong, at an energy of 26.41b) Landau entropy profiles wheg),=4 at different values of the energy
as labeled(c) Time evolution of the probabilities?, , and(d) equilibration tree whemg,=4 from an initial distributionP,,=1 at an energy of 26.41.
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energy than the crystalline state. For this PES, the rate dhese surfaces has enabled us to identify features which af-
relaxation to the global minimum dramatically slows as thefect the relaxation efficiency to the global minimum by con-
primary funnel is narrowed by decreasigg [Fig. 15a)]. sidering Landau entropies and free energies. For a surface
This occurs because the levet5 has a lower entropy than with a single funnel relaxation is fastest when the potential
I"'=5" and | .46 [Fig. 15b)]. On reaching =1,.4, the  energy gradient towards the bottom of the funnel is large and
system is much more likely to pass into the secondary funthe barrier heights are small.
nel, rather than overcome the Landau entropy bottleneck as- Our simplest model surface appears to capture many of
sociated with passage into the primary funnel. The depth ofthe most interesting features of the dynamical effects seen in
this bottleneck increases as the width of the primary funnetlusters and proteins. Our results are also consistent with
decreases. previous work framed within the language of spin-glass

The time evolution of the probabilities wheg,=4  theory; for example increasing the barrier heights raises the
shows that all the probability initially passes into the secondglass temperaturg; without changing the folding tempera-
ary funnel, and then slowly trickles back through the Landauure T; and hence decreases the efficiency of relaxation to
entropy bottleneck into the global minimuffrig. 15c)].  the global minimum.
This results in a large separation of time scales between the We have also modeled kinetic bottlenecks and surfaces
time for equilibration within the secondary funnel and be-with multiple funnels. Multiple funnels can greatly reduce
tween the two funnelfFig. 15d)]. the relaxation efficiency and produce dynamics with both

This example shows that the secondary funnel is a moréast and slow time scales. In contrast the effects of kinetic
effective trap when it has a larger width than the primarybottlenecks appear to be more limited.
funnel. Earlier in this section, we showed that a low energy  Our interest in this problem was first stirred by work
minimum at the bottom of the secondary funnel also in-which stressed the importance of the energy gap between the
creases its trapping efficiency. By combining these two fealowest and the next-lowest energy minima on the folding
tures we can create a PES where virtually all the probabilityefficiency of model proteins. There immediately appeared to
flows to the bottom of the secondary funnel, and then rebe an obvious analogy with “magic number” clusters such
mains there for a long tim@=ig. 16). Only on very long time as the Mackay icosahedron, which are found in simulations
scales does the global minimum start to become significantlgnd molecular beam experiments. Indeed, one could push the
populatedt; for this PES is 7.4 10%. In the example shown analogy further and consider magic number clusters as those
E;, = 0.6, and soPj; = 0.091, thus preventing complete which have survived a selection procedure in a molecular
population of the global minimum at the total energy consid-beam, just as proteins have apparently evolved to possess
ered. This PES provides an example of how relaxation to &fficient “funneling” potential energy surfaces. However, it
unique metastable minimum might occur, simply because ofow appears that factors other than the lowest energy gap are
its greater kinetic accessibility. A similar behavior is seen formore important. Nevertheless, the analogies between “magic
some proteins from the serpin family of protease inhibifdrs; number” clusters in molecular beams and rapidly folding
the protein plasminogen activator inhibitor-1 first folds to theproteins are probably still valid and will continue to lead to
active state, but then on a time scale of hours can spontan8ew insights in the global analysis of potential energy sur-
ously transform to an inactive latent fofth®

The above PES bears some resemblance to the 38-atom
and 75-atom Lennard-Jones clusters, for which the low en-
ergy icosahedral minima are reached on relaxation down the
PES, rather than the fcc or decahedral global minimigiff.
The difficulty in reaching the global minima is associated
with the narrowness of the funnels leading down to the glo- o3
bal minima. Our results also suggest that it would not be so
surprising if it was effectively impossible to reach the global
minimum of the 75-atom cluster by a dynamic method with- 96
out biasing the system towards decahedral minima. These p
clusters, though, have an additional complication compared
to our model PES. The free energy global minimum depends
on temperature, and only at low temperatures does it actually
correspond to the global potential energy minimum. This is 0.2
because of the greater configurational entropy of the minima
at the bottom of the icosahedral funrigl.

7\
J\
A
{
/A
1 10 100 1000 10000 10° 10° 100 10% 10°
time

V. CONCLUSION

. : F1G. 16. Time evolution of the probabilitieB, , for a PES with two funnels
In this paper, we have analyzed model potent|al energ%ndlnodfG at a total energy of 26.41. FoK| 4. the primary funnel has

surfaces of increa§ing complexityi using a master equati08p=4. The secondary funnel endslat 1 at a potential energ;, = 0.6.
approach. The existence of a suitable order parameter foiitially, P;=1.
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faces in terms of the interplay between structure, functionAPPENDIX
dynamics, and thermodynamics.

In the canonical ensemble the partition functions for our
standard surface are simple geometric progressions which
can be summed analytically ihv=0. For |, even and
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financial support. We would also like to thank Dr Ralph for P1(t) whenP, (0) = 1. The result fol ;,,,=10, setting
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P,(t)=P%%+ aloe-(1+adetd _ 1 + 2 2 2
(=P SFEry 1= 5]
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wherea?=e #*E andc=e"#°. It is not hard to show that e b .
the eigenvalues ofw’ in this case are\;=0 and Pi(t)= ool (1—e~ Pmait)
Nii1=—e PP(1+a’+au;), where they; (1<i<l 1) "
are the eigenvalues of thena,—1)X (I g, —1) matrix M de- =P${T1—exp —te AP/PSY)], (A3)
fined by becauseP$9=e AY/|\ a)- Herehay is given by
a2—a2|max
1, |i—j|=l 7\max:_e_ﬁb 1+e AE274B) 1—_a2_ ) (A4)
Mij = (AZ)

0. otherwise. wherea was defined above. From E@3) it is clear that the

fastest relaxation is achieved for=0, as expected. How-
ever, further improvement of the relaxation rate can only be

The eigenvalues dfl satis i|<2 which ensures that all . .
g V] achieved by making$9smaller. A large energy gap between

the eigenvalues of’ are negative except for the zero eigen- the lowest two minim " nding to the val ¢
value which gives the fime-independent teff" in Eq. egul?s iisa Iaroervaluz,(F(f:‘c")q beustpaosmalslgerorela?(at?(‘)ﬁeri%e' to
(Al). The analytic solutions obtained for this special case,[he lobal m'ngm m 1
display many interesting symmetries, but we will not pursue 9 inimum.
these further here.
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