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By analyzing the dynamics of model potential energy surfaces we systematically investigate the
processes involved in passing from a high energy state to the global minimum and how the
probability of reaching the global minimum depends upon the topography and topology of the
potential energy surface~PES!. Relaxation to the global minimum is easiest for PES’s consisting of
a single funnel~a set of convergent pathways which lead to the global minimum! with low barriers
and a significant potential energy gradient towards the global minimum. The presence of additional
funnels on the surface can severely reduce the rate of relaxation to the global minimum. Such
secondary funnels act most efficiently as kinetic traps when they terminate at a low energy
minimum, have a steep potential energy gradient and are wide~i.e., have a large configurational
entropy! compared to the primary funnel. Indeed, it is even possible to construct PES’s for which
the system relaxes to the minimum at the bottom of a secondary funnel rather than the global
minimum and then remains in this metastable state over a long time scale. Our results for these
model PES’s are discussed in the context of theoretical and experimental knowledge of the
dynamics of proteins, clusters, and glasses. ©1996 American Institute of Physics.
@S0021-9606~96!50842-1#
-

te
iv
in
u
a
a
t

em
l.
ic

b

tu
pl
r
a
le
a
e
i
v

y

lo

ed
m

I. INTRODUCTION

How difficult is it to go from a random point on a po
tential energy surface~PES! to the global minimum? The
answer, of course, depends upon the system. Many pro
are able to fold reversibly to the physiologically active nat
structure from unfolded states. However, a random am
acid sequence is very unlikely to be able to fold to a uniq
structure. Similarly, in condensed matter physics there
substances for which it is hard to prevent crystallization
the liquid is cooled, and others which instead are likely
form glasses.

The seminal analysis of the global optimization probl
in the context of protein folding was made by Levintha1

This author estimated the number of configurations a typ
protein could adopt~3N whereN is the number of amino
acids! and noted that even if protein configurations could
sampled at a rate of, say, 1013 per second, it would take
longer than the age of the universe to find the native struc
if this sampling was simply random. The result of this sim
calculation markedly contradicts the actual properties of p
teins, which can generally find the native structure from
unfolded state on time scales of the order of seconds or
This well-known contradiction has come to be known
Levinthal’s paradox. A similar paradox can be formulat
for a cluster. For example, the number of geometrically d
tinct minima on the PES of a 55-atom cluster interacting
the Lennard-Jones potential has been estimated2 to be of the
order of 1021, yet the cluster can rapidly find the Macka
icosahedral3 global minimum from the liquidlike state.4 The
existence of ‘‘magic number’’ peaks in the mass spectra
rare gas clusters5,6 indicates that these systems can also
cate certain global minima very efficiently.

A more rigorous approach to defining the effort involv
in finding the global minimum can be obtained using co
8428 J. Chem. Phys. 105 (18), 8 November 1996 0021-9606/
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putational complexity theory,7 which categorizes problems
into classes of similar difficulty. The most relevant class is
that of NP-hard problems, for which there is no known algo-
rithm that is guaranteed to find the solution within polyno-
mial time, effectively rendering NP-hard problems intrac-
table for large sizes. It has been shown that finding the global
minimum of a protein8,9 or a cluster10 is NP-hard. Again,
there seems to be a paradox between the NP hardness of
protein folding and the actual behavior of proteins. However,
it should be noted that computational complexity theory pro-
vides a worst case analysis. First, the proofs apply to general
categories of problems and not necessarily to every instance
of a problem. Although there may be no efficient method for
finding the global minimum of a general heteropolymer, bio-
logical proteins may represent a subset whose properties
have evolved so that they can fold. Secondly, the criterion
for a successful algorithm is very stringent; one must not
only find the global minimum, but prove that this it is actu-
ally the global minimum. In contrast, proteins do not neces-
sarily have to fold to the global energy minimum, but instead
must have a high probability of folding to the native struc-
ture which probably corresponds to one of the lowest energy
minima on the PES. Similarly, the heuristic global optimiza-
tion methods, such as simulated annealing11 and genetic
algorithms,12,13are not rigorously guaranteed to find the glo-
bal minimum. For example, these methods can find the
Mackay icosahedron for the 55-atom Lennard-Jones cluster,
which is widely accepted to be the global minimum even
though this has never been rigorously proved.

Some have tried to resolve Levinthal’s paradox by hy-
pothesizing a reduction in the number of states that the pro-
tein has to search through. Typically it is argued that the
protein first collapses rapidly to a compact conformation and
that the subsequent search is through the greatly reduced
space of these compact states.14,15 Although in some cases
96/105(18)/8428/18/$10.00 © 1996 American Institute of Physics
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8429J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
this might so reduce the number of states that Levintha
paradox no longer applies, it cannot in general provide
complete answer. For instance, the number of minima co
sponding to the liquidlike state of a 55-atom Lennard-Jon
cluster2 is of the order of 1012. This is much less than the
total number of minima on the PES but the ease with wh
the global minimum can be found is still incompatible with
random search through this reduced configuration space
fact, when the cluster has an energy or temperature in
melting region, it can switch back and forth between t
Mackay icosahedral global minimum and the liquidlik
states on a time scale of the order of nanoseconds~using
parameters appropriate for argon!.4

Seeking to resolve Levinthal’s paradox by reducing t
search space may be unproductive in a more fundame
sense, for it ignores a basic fallacy in Levinthal’s parado
Namely the assumption that each point in configurat
space is equally likely. Levinthal was effectively assumi
that the PES is totally flat. However, the topography of
protein PES is far from flat, involving many ‘‘mountain
ranges’’ and ‘‘valleys,’’ thus making some configuration
more likely than others.~In the canonical ensemble the low
potential energy configurations have larger Boltzma
weights, and in the microcanonical ensemble they hav
larger momentum density of states.! To illustrate this point
Zwanziget al.produced a simple model of a protein with a
energetic bias towards the native structure which could fi
the global minimum on physically reasonable time scale16

However, this particular model problem belongs9 to the class
of problems P, which are tractable in polynomial time, not
the class NP.

In lattice model studies of proteins, sequences that f
are often compared with those that do not. Some studies h
suggested that one of the distinctive characteristics of
folding sequences is a significant energy gap between
global minimum and the next lowest energy structure,15,17

and this criterion has been used to design sequences tha
rapidly.18,19 One particularly comprehensive study of a 2
unit chain led Saliet al. to conclude that the necessary an
sufficient condition for a folding sequence is that the nat
state be a pronounced global minimum.15 However, this con-
clusion has been criticized both because the correlation
tween the energy gap and folding ability is rather weak a
because the criterion concentrates on only a very small
of the PES, whereas folding ability surely depends on
entire energy landscape.20 Interestingly, Saliet al.’s results
actually show a stronger correlation between the fold
ability and the temperature,Tx , at which the global mini-
mum has an equilibrium probability of 0.8, if only compa
states are considered.

There are further problems when trying to apply the e
ergy gap criterion to real proteins, since for a real prot
there are many minima on the PES which involve only sm
perturbations to the native structure and have very sim
potential energies.21 In contrast, for the lattice model consid
ered by Saliet al.any change to the native structure involv
a much larger perturbation and can give rise to a large

crease in the energy. Therefore, when applied to more com
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plex models and real proteins, it is probably best to interpret
the energy gap criterion as the energy gap between the nativ
state and the lowest energy structurally distinct non-native
state. The higher the energy of the non-native states relative
to the global minimum the less likely they are to act as
kinetic traps. Support for this reinterpretation has been found
from an annealing study of simple off-lattice proteins.22

Other studies of lattice models have come to very differ-
ent conclusions from Saliet al. In particular, Klimov and
Thirumalai report no correlation between the folding time
and the energy gap between the two lowest energy states.23

Instead, they found that the folding time decreased as the
ratio of the folding temperatureTf ~at which the native struc-
ture becomes the thermodynamically most stable state! to the
collapse transition temperatureTu ~at which the protein
transforms from an extended to a compact state! increased.
The source of the differences between this study and that o
Sali et al. is not clear since the two studies involved very
similar systems.

An alternative approach to understanding protein folding
has been put forward by Wolynes and co-workers.24–28 It is
based upon a statistical characterization of the free energ
landscape, and has its origin in spin-glass theory. This ap
proach was combined with the idea of a ‘‘folding funnel,’’ a
set of convergent pathways which lead to the global mini-
mum, making it kinetically accessible from the ensemble of
misfolded states.29 A protein that can fold would have a
single folding funnel, whereas a random heteropolymer is
likely to have numerous funnels leading to structurally dif-
ferent low energy states. The theory describes the globa
properties of the free energy surface in terms of a few pa-
rameters: The ruggedness of the surface, the extent of th
funnel ~the size of the configurational space!, and the poten-
tial energy gradient towards the native state. A rugged PES
has many minima with large barriers between them. For a
protein to be able to fold the funnel would need a sufficiently
large potential energy gradient to direct the folding protein to
the native structure.

In the above model, the slope of the funnel can also be
related to the energy gap between the native state and th
disordered collapsed structures~a different energy gap to that
used by Saliet al.!. By maximizing this energy gap the ratio
of Tf ~defined above! to the glass transition temperatureTg
~at which the dynamics dramatically slow down because of
kinetic barriers to escape local minima on the PES! is maxi-
mized. A large ratioTf /Tg ensures that the native state is the
most stable state at temperatures where the dynamics are st
fast, allowing the protein to reach the native state rather than
becoming trapped in a local minimum. This criterion can
also explain the performance of global optimization meth-
ods, such as simulated annealing, which attempt to follow
the global free energy minimum as a system is cooled. Such
methods are likely to fail when the global minimum of the
free energy changes at a temperature belowTg . This ap-
proach can also help us to understand some aspects of th
results for lattice model proteins that we noted earlier. The
Tx that was used by Saliet al.has a very similar definition to
Tf ; both are measures of the stability of the native state of
o. 18, 8 November 1996
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8430 J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
the protein. It is, therefore, unsurprising that increasingTx
~and henceTf /Tg , if Tg is fairly independent of sequence!
increases the ability of the protein to reach the native st
Also, Thirumalai has emphasised30 the relationship between
the values of the ratiosTf /Tu andTf /Tg .

Another equivalent formulation of the above ideas is
the ‘‘principle of minimal frustration.’’ Proteins that have
single folding funnel are likely to have a native state
which all the interactions between residues are favorable
contrast, in compact configurations of a random heteropo
mer there are likely to be residues brought together w
conflicting interactions—a random heteropolymer is ‘‘fru
trated.’’ Minimizing the frustration leads to a low energ
native structure and consequently to a large value forTf .
These ideas not only provide an elegant theoretical und
standing of protein folding, but by using experimental info
mation to estimate the characteristic parameters of the en
landscape for real proteins, they allow a connection to
made between real proteins and lattice models.31

These theories developed in the context of protein fo
ing can also be useful in understanding the dynamics of s
tems in the realm of condensed matter physics. For exam
simple liquids have been described as frustrated syste
they have significant polytetrahedral character,32,33 yet all
space cannot be packed with regular tetrahedra. This frus
tion can be easily seen if one packs five regular tetrahe
around a common edge. There remains a gap of 7.4° wh
can only be bridged if the tetrahedra are distorted. Theref
close-packed structures, which are packings of both tetra
dra and octahedra, are the densest and lowest energy s
tures, even though the regular tetrahedron is the densest
packing. Frank was the first to suggest that this structu
difference between the solid and the liquid was respons
for the large degree of supercooling that could be achie
for liquid metals.34 The widest funnels on the PES in suc
systems lead to glassy minima rather than to close-pac
structures.

The packing constraints, and hence the degree of frus
tion, can be changed by introducing positive curvature i
space. In fact for a space of appropriate positive curvatu
five regular tetrahedra fit exactly around a common edge
the lowest energy, highest density structure is a perfect p
tetrahedral packing32 called polytope$3,3,5%. Straley per-
formed a series of simulations which showed that crysta
zation occurs much more rapidly in this curved space than
Euclidean space, elegantly demonstrating the effect of fr
tration on the dynamics.35 For the curved space there is
single funnel on the PES which leads down through the
uid states to the global minimum.

Similarly, for small Lennard-Jones clusters global op
mization strategies, such as genetic algorithms, are abl
find the global minimum based on icosahedra from the m
of liquidlike structures fairly easily36 because icosahedra
structures have significant polytetrahedral character. H
ever, there are a number of sizes at which small Lenna
Jones clusters do not have an icosahedral global minim
For example, the global minimum of a 38-atom cluster is t
face-centered-cubic truncated octahedron37,38 and the lowest
J. Chem. Phys., Vol. 105, N
te.

n

In
ly-
th
-

er-
-
rgy
e

-
s-
le,
s:

ra-
ra
ich
re,
e-
ruc-
cal
al
le
ed

ed

ra-
to
re,
nd
ly-

li-
in
s-

-

-
to
ss

w-
d-
m.
e

energy structures for clusters with 75, 76, 77, 102, 103, and
104 atoms are probably decahedral.38,39 These cases are
much harder for a global optimization algorithm to find since
the structures have a much greater close-packed character.
fact the decahedral clusters have never been found yet by a
unbiased global optimization method.40 It is much harder for
the cluster to find the funnel associated with the decahedra
minima, compared to the wide funnel that leads down to the
icosahedral minima.

Interestingly, in a study of small Lennard-Jones clusters
~19 atoms and less! which used global optimization methods
based upon the simulated annealing of the classical densit
distribution, the efficiency was found to be correlated with
the energy gap between the global minimum and the nex
lowest energy state.41 However, it may be dangerous to draw
general conclusions from this result. First, the difference in
dynamic behavior between proteins that can and cannot fold
is much greater than that between clusters of different sizes
all the clusters considered in the above study can reach th
global minimum relatively easy. Second, for these very small
systems, much of the thermodynamics is determined by the
low energy minima on the PES and the energy gap between
the two lowest energy structures is likely to correlate with
the melting temperature. For example, the ‘‘melting’’ transi-
tion of the 13-atom cluster is associated with transitions be-
tween the icosahedron and the set of the defective icosahe
dral minima which are next lowest in energy.42 However, for
larger clusters melting is associated with a transition between
the low energy minima and the numerous high energy amor-
phous minima, and the melting temperature is now likely to
be correlated with the energy gap between the global mini-
mum and this band of ‘‘liquidlike’’ minima.33

The complexity of proteins means that, inevitably, one
has to be satisfied with a coarse-grained picture of the dy-
namics involved in protein folding. Studies of small clusters,
therefore, could offer particularly important insights since
their size allows a much more detailed analysis of the PES43

and the time scale of the transition from the disordered liq-
uidlike states to a unique solidlike structure is short enough
to be probed by computer simulation. Initial studies explor-
ing the relationship between the dynamic behavior of clus-
ters and the PES have already produced interesting
results.43,44For example, a comparison of potassium chloride
and argon clusters has shown that the greater ability of po
tassium chloride clusters to crystallize into solidlike struc-
tures from the liquid is due to the lower energy barriers and
the greater potential energy gradient along series of reaction
paths which lead to rock-salt-type structures.43 A more quan-
titative study sought to understand the behavior of a 19-atom
Lennard-Jones cluster based upon large samples of minim
and transition states. The dynamical behavior was found by
calculating transition rates between minima, and then con-
structing and solving a master equation to describe the flow
of probability through configuration space.44 The latter re-
sults, however, did not include corrections for the fact that
the samples represent only a small fraction of the total num-
ber of stationary points on the PES.

In this paper we follow a similar approach, proceeding
o. 18, 8 November 1996
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8431J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
from a complete description of a model PES in terms of
minima and transition states to the thermodynamic and d
namic behavior. We concentrate on the ability of the syste
to find the global minimum and how this is related to th
thermodynamics through Landau entropy profiles. This a
proach allows us to systematically investigate the effects
various topographic features. In Sec. II we describe the ba
PES and the methods for calculating the thermodynamic a
dynamic behavior. In Sec. III we present the results for t
PES with a single folding funnel, and in Sec. IV we consid
the results for the modified surfaces. Finally in Sec. V, w
summarize the main conclusions from this work. Througho
the paper we attempt to show how our approach can illum
nate and provide a framework for understanding the resu
already known for specific systems, such as proteins, cl
ters, and glasses.

II. METHODS

The dynamics on a multidimensional potential energ
surface can be described by a master equation,44,45 thus giv-
ing the time evolution of the probability distribution,
P(t)5$Pi(t)%, wherePi is the probability of the system be-
ing in statei . The master equation has the form

dPi
dt

5(
j
wi j Pj , ~1!

wherewi j5Wij2d i j(kWki andWij is the rate of transition
from statej to statei . The diagonal elements of the matrix
wii , give the total rate of transition out of statei .

If the transition matrixw is neither decomposable no
splitting, the matrix has a single zero eigenvalue,45 whose
eigenvector corresponds to the equilibrium probability dist
bution,Peq. The master equation describes the evolution o
system from an initial distribution,P~0!, towardsPeq; at in-
finite time the probability distribution must be equal toPeq.
The dynamics and thermodynamics must be consistent
this limit.

The transition matrix must satisfy detailed balance to
physically reasonable, i.e.,Wij Pj

eq 5 Wji Pi
eq. As a conse-

quence, the solution of the master equation can be expan
in a complete set of eigenfunctions of the symmetric matr
w8, defined aswi j8 5 APj

eq/Pi
eqwi j . The result is

44

Pi~ t !5APi
eq(

j ,k
ui
jel j tuk

j Pk~0!

APk
eq
, ~2!

whereui
j is the i th element of thej th eigenvector ofw8 and

l j is the j th eigenvalue ofw8. Apart from the zero eigen-
value, thel j are all negative. In all our calculations, we hav
used the above analytical solution. An alternative method
solving the master equation is to integrate Eq.~1! numeri-
cally.

The concept of detailed balance also allows us to defi
when two states come into local equilibrium; i.e
Wij Pj (t)'Wji Pi(t). The precise condition that we use is
J. Chem. Phys., Vol. 105, N
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uPi~ t !Pj
eq2Pj~ t !Pi

equ

APi~ t !Pj~ t !Pi
eqPj

eq
<0.01, ~3!

i.e., the two states are within 1% of equilibrium. The equili-
bration time for two states is then defined as the time at
which the above inequality is first satisfied. This allows us to
construct equilibration trees mapping out how the system
proceeds to the state where the whole system is in
equilibrium.46,47

The standard PES that we consider is depicted in Fig. 1.
It consists of a single funnel in which the number of minima
increases rapidly with energy@Fig. 1~b!#. To simplify the
calculations the minima have been grouped intolmax levels.
The minima in each level are assumed to have identical
properties, and to be always in equilibrium with each other,
thus allowing us to consider each level as a single state in the
master equation. This framework is equivalent to assuming
that the barriers between minima in the same level are zero.
Level l51 is the global minimum, and the number of
minima increases geometrically as the PES is ascended.

FIG. 1. ~a! One-dimensional cross section through our standard PES show-
ing a reaction pathway from the top of the PES to the global minimum.
Integer values ofl correspond to minima and half-integer values to transi-
tion states.~b! Schematic depiction of a PES withg52 andlmax56 showing
the dramatic increase in the number of minima with energy.
o. 18, 8 November 1996
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8432 J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
There areg times more minima in each subsequent lev
Therefore, the number of minima in levell , nl , is g

l21 and
the total number of minima on the PES is (glmax2 1)/(g2 1).
We do not consider permutational isomers explicitly sin
they do not affect the relaxation dynamics. For a real P
there areO(N!) permutational isomers of each minimum
Therefore, there will be many funnels leading down to
different permutational isomers of the global minimu
However, as each funnel is identical they do not need to
considered separately.

We assume that the minima in levell are only connected
to minima in levelsl61. The transition states connectin
minima in adjacent levels are all assumed to lie an energb
above the higher minimum. Each minimum in levell is as-
sumed to be connected tos minima in levell21 and hence
to gs minima in levell11. From this information, and us
ing RRKM ~Rice–Ramsperger–Kassel–Marcus! theory48

within the harmonic approximation, the microcanonical ra
for transitions between levels are

Wl11,l5gsSE2El112b

E2El
D k21 n̄ l

k

n̄ l11,l
k21 uphill,

~4!

Wl21,l5sSE2El2b

E2El
D k21 n̄ l

k

n̄ l21,l
k21 downhill,

whereEl is the energy of levell , k is the number of interna
degrees of freedom, andn̄ l and n̄ l ,l11 are the geometric
mean vibrational frequencies of the minima in levell , and
the transition states between levelsl and l11, respectively.
All other elements of the matrixW are assumed to be 0 i
the present treatment. Similarly, the canonical transition r
are given by

Wl11,l5gs
n̄ l

k

n̄ l11,l
k21 exp[2b~El112El1b!] uphill,

~5!

Wl21,l5s
n̄ l

k

n̄ l21,l
k21 exp@2bb# downhill,

whereb is the inverse temperature. We have performed
culations both in the microcanonical and canonical
sembles, but since most of the properties probed sho
weak ensemble dependence the majority of the results
ported here are microcanonical. The microcanonical
semble is appropriate to describe an isolated cluster in va
but the canonical ensemble is probably more appropriate
proteins where the solvent can act as a heat bath.

The thermodynamics of the system can be described
ing a superposition method, whereby the total energy den
of states,V(E), is constructed by summing the density
states for all the energetically accessible minima on the P
This method has been used for Lennard-Jones cluste
calculate the thermodynamic properties from a sample
minima on the PES,49,50and simulation results are accurate
reproduced when anharmonicity is included.2 Applying this
method to the model PES within the harmonic approxim
tion gives
J. Chem. Phys., Vol. 105,
el.
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V~E!5(
l51

lmax nl~E2El !
k21

G~k!n̄ l
k , ~6!

whereG is the Gamma function. It follows that the microca-
nonical equilibrium probabilities are given by

Pl
eq~E!5

nl~E2El !
k21

G~k!n̄ l
kV~E!

. ~7!

The canonical partition function and equilibrium probabili-
ties can be constructed in a similar manner

Z~T!5(
l51

lmax nle
2bEl

~bhn̄ l !
k , and Pl

eq~T!5
nle

2bEl

~bhn̄ l !
kZ

. ~8!

The global minimum defines the energy zero, i.e.,
E150. Beyondl52 the potential energy is assumed to in-
crease linearly withl . Therefore,El5E21( l22)DE for
l>2, whereDE is a measure of the potential energy gradient
of the funnel. For a typical cluster PES, the mean vibrational
frequency is smaller for minima of higher potential
energy49—the stabilization of the liquidlike phase at high
temperatures is due to both the large number of minima and
the greater vibrational entropy. Therefore, we use
n̄ l512( l21)Dn. This defines the unit of time as the vibra-
tional period of the global minimum. The mean vibrational
frequency of a transition state is assumed to be the geometric
mean of the vibrational frequencies of the two minima it
connects, i.e.,n̄ l11,l 5 An ln l11

Results were also obtained for a globally connected
model surface, rather than the ‘‘nearest-neighbor’’ connec-
tion pattern described above. For brevity, we will provide
only a detailed account of the latter surface, since we expect
this to be a more realistic model of the systems we are inter-
ested in. Some closed form solutions for special cases are
given in the appendix.

III. THE STANDARD POTENTIAL ENERGY SURFACE

The parameters for the standard PES employed in the
present study are

k5101, s51, E253.796 88, DE50.8,
~9!

g510, lmax510, Dn50.01, b50.5.

These values produce a total of 1.113109 minima on the
PES. Some of the thermodynamic properties of the system
are shown in Fig. 2. These were calculated using the follow-
ing definitions: The microcanonical temperature,T, is given
by 1/kT5~] ln V/]E)N,V , the canonical internal energy by
U52~] ln Z/]b)N,V , and the canonical heat capacity by
Cv5(]U/]T)N,V . In each case analytic derivatives of the
appropriate partition functions were employed.

It can be seen from Fig. 2 that the system shows the
finite-size analog of a first-order phase transition; there are
prominent features in the caloric curves and a large peak in
the heat capacity. The transition has a two-state character
involving the global minimum and minima in the highest
energy region of the PES, with intermediate minima never
being significantly populated at equilibrium@Fig. 2~c!#. The
No. 18, 8 November 1996
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8433J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
energy at which the global minimum has an equilibriu
probability of 0.5,Ef , can be used as a definition of th
transition energy. For our ‘‘standard’’ PES,Ef538.2745.

Also of particular note is the Van der Waals loop th
occurs in the microcanonical caloric curve@Fig. 2~a!#, which

FIG. 2. Thermodynamics of our standard PES:~a! Caloric curves for the
microcanonical~solid line! and canonical~dashed line! ensembles,~b! ca-
nonical heat capacity, and~c! equilibrium probabilities of occupation o
level l , Pl

eq, for the microcanonical ensemble.
J. Chem. Phys., Vol. 105,
t

is a feature unique to finite systems.51 Such loops have been
commonly observed for clusters52–54 and have also been
noted in protein simulations.55 In small clusters the physical
cause of this region of negative heat capacity is the absence
of phase separation, which is prevented by the relatively high
energetic cost of an interface between the solidlike and liq-
uidlike regions.56

The microcanonical dynamics of the system were exam-
ined by initially populating the highest energy state, i.e., set-
ting P10(0)51, and observing the relaxation towards equi-
librium at constant energy. The corresponding canonical
results are omitted for brevity. We consider in particular the
time required for the global minimum to develop an 80%
probability of occupation. By analogy to relaxation in pro-
teins we call this the ‘‘folding’’ time,t f ; i.e., P1(t f)50.8.
The dependence oft f onE for the standard PES is shown in
Fig. 3~a!. There is a clear minimum int f which occurs at an
energy,Emax, of 26.41 (50.69Ef). The folding time in-

FIG. 3. ~a! Variation of the folding timet f with energy for our standard
PES. t f is defined as the time forP1 to reach 0.8, from an initial state
P10(0)51. The vertical dashed line denotes the energy at whichP1

eq50.8
and so is the upper limit for whicht f is defined.@Above this energyP1(t) is
always less than 0.8.# ~b! The variation of the probability of being in the
global minimum,P1 , as a function of time and energy. The ten lines shown
are fort5100 to 1000 in intervals of 100 and are labeled by the appropriate
value of t.
No. 18, 8 November 1996
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8434 J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
creases rapidly at low energy because it becomes more
ficult to overcome the barriers on the PES, and increase
higher energies because the thermodynamic driving force
wards the global minimum is diminished. Similar maxim
have been seen in the folding rates of model proteins,28,57–60

in the ‘‘crystallization’’ rate of a~KCl!32 cluster,
61 and in the

nucleation rate of glasses;62 these maxima occur for the sam
reasons as for our model PES. Maxima in the folding ra
have also been observed in experiments on proteins w
are rapid folders,63–65but the interpretation of these results
complicated by the fact that real proteins can undergo l
temperature denaturation.66

Another view of the relaxation dynamics is provided b
Fig. 3~b! which shows the increase in the population of t
ground state with time; there is again an energy window
which the global minimum can become significantly pop
lated. It is interesting to note that the energy at which
maximum in the population of the global minimum occu
decreases somewhat as the time increases. This indicate
to optimize the population of the global minimum one shou
not quench the system to a low energy and let it evolve,
rather use a cooling schedule whereby the energy is
creased as a function of time, as in constant thermodyna
speed annealing.67

To further understand the dynamics of the system it
helpful to use Landau functions,68,69which describe the ther-
modynamic potential, i.e., the entropy~microcanonical en-
semble! or the Helmholtz free energy~canonical ensemble!,
in terms of an order parameter. The presence of a first-o
phase transition is indicated by two stable states of the L
dau function, i.e., two maxima in the Landau entropy se
rated by a well, or two minima in the Landau free ener
separated by a barrier. We choose to call the minimum in
Landau entropy an entropy bottleneck, since it represen
constricted region of phase space which has a lower den
of states than the regions that it connects. The Landau
files also enable us to understand the influence of the t
modynamics on the dynamics. If there is one stable st
relaxation to that state is likely to be rapid unless other
netic factors intervene. If there are two stable states, the
of transition from the metastable to the stable state decre
as the entropy bottleneck becomes narrower or the free
ergy barrier increases. The importance of the Landau
energy in understanding protein folding has been recogni
by Bryngelsonet al.who considered the dynamics expect
for a number of different Landau free energy profiles.26

Application of a Landau-type analysis using a restrict
thermodynamic potential depends on finding a suitable or
parameter which can differentiate between the states of
terest. For many systems this can be a difficult task, but
our model PESl provides a natural order parameter since
is a measure of the distance from the global minimum. T
Landau entropy is then defined asSL( l )5S(E)
1 k ln Pl

eq(E) and the Landau free energy byAL( l )5A(T)
2 kT ln Pl

eq(T). Landau entropy profiles for our standa
PES are given in Fig. 4 for a range of energies. At lo
energy there is a single maximum corresponding to the g
bal minimum, and relaxation to the global minimum is the
J. Chem. Phys., Vol. 105, N
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modynamically ‘‘downhill.’’ Consequently atEmax, the
probability density ‘‘flows’’ smoothly down the PES with
the intermediate states having significant transient popula-
tions @Fig. 5~b!#.

The equilibration trees in Fig. 6 map out the times at
which different levels come in to approximate equilibrium
with each other@as defined by Eq.~3!#. At Emax levels 1 and
2 first reach local equilibrium@Fig. 6~b!#, i.e., equilibrium
first occurs between the levels corresponding to the Landau
entropy maximum. Next, level 3 reaches equilibrium with
levels 1 and 2, and so on to higher values ofl : the local
equilibrium propagates to higher energy away from the Lan-
dau entropy maximum. Similar behavior occurs at lower en-
ergies, except that the barriers on the PES have a larger
retarding effect on the dynamics. Therefore, the equilibration
tree atE515 @Fig. 6~a!# shows the same structure as atEmax
except that the time scales are around a thousand times
slower. In the microcanonical ensemble the kinetic energy
increases as the potential energy decreases. Consequently, at

FIG. 4. ~a! Landau entropy profiles for our standard PES using the order
parameterl . The seven lines shown are forE520–80 in intervals of 10 and
are labeled by the appropriate value ofE. ~b! Depth of the Landau entropy
bottleneck relative to the Landau entropy maximum at large values ofl
~‘‘folding’’ ! and relative to the Landau entropy maximum at the global
minimum ~‘‘unfolding’’ !. The dashed line gives the magnitude of the Lan-
dau entropy difference between the two stable states.
o. 18, 8 November 1996
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8435J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
low energies the transition rate over the barriers is m
slower at the top of the PES, and the system accelerates
descends the PES. Therefore, transient populations in
intermediate states are less pronounced atE515 than at
Emax. In the canonical ensemble this effect is absent beca

FIG. 5. Time evolution of the probabilitiesPl for our standard PES at a
energy of~a! 15, ~b! 26.41, and~c! 36. Initially, P1051. The energy 26.41
corresponds to the minimum in the ‘‘folding’’ time of Fig. 3~a!.
J. Chem. Phys., Vol. 105,
ch
as it
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use

the kinetic energy is independent of the position in configu-
ration space.

For E.28.238, there are two Landau entropy maxima,
which correspond to the global minimum and the high po-
tential energy ‘‘unfolded’’ states. The entropy bottleneck oc-
curs because at lower potential energy the loss in entropy
due to the reduced number of minima is not completely com-
pensated by the greater vibrational entropy that results from
the larger kinetic energy. As a result of the entropy bottle-
neck, the equilibration trees have a qualitatively different
form from those at lower energies; equilibration initially oc-
curs within the secondary Landau entropy maximum corre-
sponding to the higher lying levels and then propagates down
the PES@Fig. 6~c!#. It is interesting to note that this change
in direction of equilibration appears at approximately the
same energy as the Landau entropy bottleneck. ForE536
there is a separation of time scales between equilibration
within the secondary Landau entropy maximum, and equili-
bration between the maxima. This is reflected in the time
evolution of the probability distribution: The probabilities of
occupying higher potential energy levels rapidly attain ap-
proximate local equilibrium values which then slowly decay
as the global minimum becomes more populated@Fig. 5~c!#.

Similar behavior is seen for the Landau free energy in
the canonical ensemble. In fact, the temperature at whichAL

develops a double well can be derived analytically~assuming
thatDn is small!. Two free energy minima are observed if

kT.
DE

ln g1kDn
. ~10!

This corresponds tokT.0.242 for our standard PES. As
relaxation to the global minimum is impeded by a free en-
ergy barrier, Eq.~10! implies that largeDE and smallg and
Dn assist relaxation to the global minimum. These are the
same conditions as those that lead to a large value ofTf .

Landau free energy profiles have previously been calcu-
lated for lattice models of proteins.15,28,31,55They show a
similar behavior to that found for our model PES, with a
single minimum at low temperature, and two stable states at
higher temperatures corresponding to the folded and un-
folded protein.15,28 For clusters there can be a range of tem-
perature around the melting transition for which Landau
functions reveal two stable states corresponding to the solid-
like and liquidlike states.54,70 Similarly it has been shown
that the nucleation of a crystalline phase from the bulk
Lennard-Jones liquid involves a large free energy barrier.71

IV. MODIFIED POTENTIAL ENERGY SURFACES

The previous section showed that our simplest model
PES captured many of the dynamical effects commonly seen
in finite systems such as proteins and clusters. Here we seek
to modify the standard PES to understand which factors in-
fluence a system’s ability to find the global minimum. The
model PES has too many parameters to allow a systematic
study of the whole parameter space. Additional complexity
could, of course, be generated by making the parameters
functions ofl . The effects of varying some of the parameters,
No. 18, 8 November 1996
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8436 J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
FIG. 6. Equilibration tree for our standard PES at an energy of~a! 15, ~b!
26.41, and~c! 36. Initially, P1051. Each line in the equilibration tree rep-
resents a single level or a set of levels that are in equilibrium with ea
other. The lines join at times when states first come into local equilibrium
defined by Eq.~3!. The vertical position of these nodes is given by th
average value ofl for the levels that are in equilibrium with each other. Th
horizontal positions of the ends of lines on the left-hand side of the gra
which correspond to individual levels, are arbitrary.
J. Chem. Phys., Vol. 105, N
though, are fairly obvious. For example, increasings would
make all the ratess times faster. Our approach here is to
make only changes to the PES that leave the basic thermo
dynamics unchanged—i.e., we keepEf constant—and to
concentrate on the factors that could lead to particularly in-
teresting behavior.

A. Barrier heights

The first modification that we make is to change the
barrier height. Unsurprisingly, increasingb leads to a reduc-
tion in the rate of relaxation to the global minimum~Fig. 7!.
More interesting is the dependence of this effect upon the
energy: Increasing the barrier heights leads to a much larger
increase int f at low energies. This is because a larger frac-
tion of the kinetic energy must be converted to potential
energy to overcome the barriers at low energies. The energy
at which the maximum ‘‘folding’’ rate occurs increases as
the barrier heights increase. The shape of the minimum int f
is also dependent onb, becoming broader as the barrier
heights are decreased; atb50.01 there is a larger energy
window for which fast relaxation to the global minimum can
occur.

Similar behavior is observed for the canonical ensemble,
namely the rate of relaxation to the global minimum has a
exp(2bb) dependence on the barrier height. Therefore, at
fixed temperature the relaxation rate has a rigorously expo-
nential dependence onb, and changingb has a greater effect
on the relaxation rate at low temperature.

These results can easily be understood in the language o
Bryngelson and Wolynes:24–26 Increasing the barrier heights
corresponds to increasingTg without changingTf , hence
decreasing the ratioTf /Tg and the ‘‘folding’’ ability. Potas-
sium chloride clusters provide a good example of systems for
which relatively small barrier heights produce rapid relax-
ation down the PES.43

ch
as

h,

FIG. 7. The dependence oft f on the barrier heightb for our standard PES.
t f is defined byP1(t f)50.8. The vertical dotted line denotes the energy at
which P1

eq50.8. Each line is marked by the value ofb.
o. 18, 8 November 1996



FIG. 8. ~a! Variation of t f with the slope of the PES.~b! Variation of the magnitude of the Landau entropy bottlenecks~solid lines! with DE. The dashed line
gives the magnitude of the Landau entropy difference between the two stable states.~c! Equilibration tree and~d! time evolution of the probabilities,Pl , for
the flat PES (DE50) from an initial distributionP1051. All results are forE526.41.
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B. The slope of the funnel

In the energy landscape model of protein folding, t
slope of the funnel~potential energy gradient! is a key
parameter.27,31 Here we analyze the effect of the slope b
varyingDE. To keepEf constant we must also varyE2 . For
the case whenDE is zero, i.e., a flat surface,El510 for
l>2. It can be seen from Fig. 8~a! that the slope has a dra
matic effect on the folding time, and that a sufficiently ste
slope is necessary for reasonably rapid relaxation to the
bal minimum. This behavior can be explained from the re
tive rates of uphill and downhill transitions in our mode
The barrier for going downhill isb, and for going uphill
DE1b. Therefore, the downhill transition rate is not signifi
cantly affected by the slope, but the uphill rate decrea
rapidly as the slope is increased. For the flat PES takin
step to higherl is, ignoring the vibrational contributions to
the rate,g times more likely than to lowerl , causing the
probability distribution to remain concentrated at large v
ues ofl . As a slope is introduced into the PES the uphill ra
decreases relative to the downhill rate and the folding ti
J. Chem. Phys., Vol. 105, N
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begins to decrease rapidly. However, once the PES is suffi-
ciently steep to make the uphill rate small compared to the
downhill rate, further increasing the slope only has a limited
effect. At largeDE the folding time even begins to increase
again because the levell52 begins to have a low enough
energy for it to have a significant equilibrium population.

An equivalent explanation for the behavior can be pro-
vided in terms of the Landau entropy. In order to keepEf

constant as the slope is decreased the energy of the interme-
diate levels must be increased. This has the effect of reduc-
ing the equilibrium probability for occupation of these levels.
Therefore, asDE is decreased a Landau entropy bottleneck
develops and then increases in depth@Fig. 8~b!#. The folding
time increases rapidly as the bottleneck deepens, but has a
only weak dependence onDE when there is a single Landau
entropy maximum.

The flat PES would correspond to the Levinthal limit
where the states are searched randomly, but for the variation
of the vibrational frequency withl , which makes the minima
in higher levels slightly more probable. For this PES, equili-
o. 18, 8 November 1996



FIG. 9. ~a! Schematic depiction of a PES with a kinetic bottleneck.g53, ands51 except fors125s2351/3. ~b! Dependence oft f on s12. ~c! Equilibration
tree and~d! time evolution of the probabilities,Pl , from an initial distributionP1051 for a PES withs1250.1. All results are forE526.41.
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bration occurs initially at large values ofl and proceeds
away from the Landau entropy maximum. There is a lar
separation~of the order of 1013! between the time scales fo
equilibration within the largel entropy maximum and be
tween the entropy maxima@Fig. 8~c!#, because of the deep
Landau entropy bottleneck. This is evidenced by the pr
ability flows across the PES@Fig. 8~d!#; P10 andP9 rapidly
reach local equilibrium values, which then decay away as
ground state is slowly populated.

These results help to explain why potassium chlor
clusters are able to relax to the rock-salt structures
rapidly.61 Reaction pathways leading down to the rock-s
structures generally exhibit43 DE@b.

As DE is decreasedE2 , which is simply the energy gap
between the global minimum and the next lowest ene
state, has to be increased to maintainEf . Therefore, the ef-
ficiency with which the global minimum is found is reduce
asE2 is increased. This result does not necessarily contra
the view of Saliet al. however, since we can decouple fa
tors in our model in a way that may not be possible for re
J. Chem. Phys., Vol. 105, N
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PES’s. However, it does show that even if the energy gap
view were correct, it would require further explanation; it is
not self-evident why an energy gap should guarantee kinetic
foldability.

C. Kinetic bottlenecks

For our standard PESs is independent ofl . However, a
real PES is unlikely to show such uniformity. For example, it
has been suggested that for some proteins the number of
available pathways may decrease near to the native state
leading to the observation of kinetically determined
intermediates.26

In this section we investigate the effect of makings
dependent onl . In particular, we reduce the number of con-
nections betweenl51 andl52, and betweenl52 andl53.
Such a PES is illustrated in Fig. 9~a!; it hass125s2351/3
and so only 1 in 3 of the minima in level 3 are connected to
a minimum in level 2. These changes do not affect the ther-
modynamics in any way~including the Landau entropy! but
o. 18, 8 November 1996
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8439J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
instead produce a kinetic bottleneck. In Fig. 9~b!, the depen-
dence of the folding time for the modified surface upons12
is shown.t f increases as the number of connections is
duced, but at the most by only one to two orders of mag
tude. The slowing down of the dynamics at the bottlene
leads first to local equilibrium above the bottleneck@Fig.
9~c!# and to a build-up of probability in level 3 and to
lesser extent in levels 4 and 5@Fig. 9~d!#.

These results show that kinetic bottlenecks may sign
cantly affect the folding rate, but to a smaller extent th
other factors, such as the slope of the funnel or the mult
funnels that we shall consider next. Kinetic bottlenecks m
be important in rationalizing the detailed dynamic behav
of a particular system, but are unlikely to represent the d
ference between, for example, folding and nonfolding p
teins.

D. Multiple funnels

In this section, we consider the consequences for
dynamics when the PES has more than one funnel. This
lows us to examine Leopoldet al.’s suggestion that the
amino acid sequences which fold to a unique native state
characterized by a single funnel leading to the global mi
mum, whereas those that do not fold have multiple funn
leading to structurally different minima.29 The results should
also be relevant to other systems where the system has
ficulty in reaching the global minimum, such as glasses
has been suggested that the glassy states are located
bottom of funnels which are separate from the crystall
funnel.61,72

A schematic picture of the modified PES which we ha
investigated is shown in Fig. 10. It has a secondary fun
joined to the primary funnel atl5 l node. The levels in the
secondary funnel are denoted byl 8 and have the same prop
erties as the corresponding levels for the standard PES.
tially, we consider the case where the secondary funnel e
at l 8528, since for this case the secondary funnel hard
affects the equilibrium thermodynamics—thePl 8

eq never have
significant magnitudes@see, e.g., Fig. 2~c!#.

The rate of relaxation to the global minimum is not si
nificantly affected by the secondary funnel at energies n
to Ef , but as the energy is decreased the rate slows dram
cally compared to the standard PES@Fig. 10~b!#. The latter
effect becomes more pronounced at larger values ofl node.
This behavior can be explained by examining the Land
entropy~Fig. 11!. At higher energies, the bottom of the se
ondary funnel is not an entropy maximum, and so the sys
never gets trapped there. However, below the energy
which relaxation down the primary funnel is thermodynam
cally favorable, levell 8528 becomes a Landau entrop
maximum and there is a Landau entropy bottleneck wh
must be overcome in passing from the secondary to the
mary funnel@Fig. 11~b!#. The conditions which are thermo
dynamically most favorable for folding for the standard PE
also most favor trapping in the secondary funnel.

The consequences of these changes in the Landau
tropy can be seen in the probability flows and the equilib
J. Chem. Phys., Vol. 105,
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tion trees~Figs. 12 and 13!. At E526.41, there is only a
small entropy bottleneck associated with exit from the sec-
ondary funnel, and the time scale for this process is only
about an order of magnitude larger than that for relaxation
from high energy minima. At higher energies, where there is
no entropy bottleneck, this time scale separation disappears
altogether. However, forE521 there is a much larger en-
tropy bottleneck to be overcome. Byt51000, the system has
relaxed down the PES, reaching a state whereP1'1/2 and
the probability of being in the secondary funnel is also close
to a half @Fig. 12~a!#. In the initial relaxation the system is
equally likely to go into either funnel, because both funnels
have the same properties aroundl5 l node. This situation per-
sists for about two orders of magnitude in time~note the log
scale in the figure! until the probability begins to flow from
the secondary funnel into the primary. The same basic struc-
ture is seen for both equilibration trees in Fig. 13; equilibra-
tion occurs separately abovel nodeand within the bottoms of
the two funnels. The tree forE521 clearly shows the large
separation in time scales.

FIG. 10. ~a! One-dimensional cross section through a PES with two funnels
wherel node56 The values ofl 8 for the minima in the secondary funnel are
as labeled.~b! Dependence oft f upon the energy andl node. The values of
l node are as labeled, and the curve for our standard PES~dashed line! has
been added for comparison.
No. 18, 8 November 1996
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8440 J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
There have been some interesting investigations of
effects of trapping by low energy non-native states in prote
folding simulations.60,73These show that at low temperature
there is a fast component to the relaxation rate, which cor
sponds to the protein passing directly into the native stru
ture, and a slower component, where the system becom
trapped in one of the low energy non-native states befo
reaching the native structure. As for our model PES, th
separation of time scales can disappear at high
temperatures.60 Experimental studies of protein folding often
show kinetics with two~or more! time scales present;63,74–77

there are subpopulations of proteins which fold at differe
rates. Experiments on hen lysozyme have clearly shown t
the faster rate corresponds to direct folding to the nati
state,75 and it has been inferred that the slower rate is due
trapping in low energy non-native structures. This interpr
tation has been confirmed for cytochromec. For this protein,
the chain misorganization responsible for trapping is the
correct ligation of a haem group by a histidine residue. U

FIG. 11. ~a! Landau entropy profiles for a PES with two funnels an
l node56. The lines are labeled by the corresponding values of the ener
The dashed lines are for the secondary funnel and points have been ma
by the appropriate value ofl 8. ~b! The energy dependence of the magnitud
of the Landau entropy bottleneck for passage from the bottom of the s
ondary funnel to the primary funnel.
J. Chem. Phys., Vol. 105, N
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der refolding conditions which prevent this incorrect contact
forming, the protein folds on a time scale of 15 ms, but when
trapping occurs folding takes longer than 0.3 s.77 The tem-
perature dependence of the two rate constants63 for cyto-
chromec agrees well with the behavior of our model PES.
The faster rate constant exhibits a maximum, as would be
expected for direct relaxation to the global minimum@Fig.
3~a!#, whereas the rate constant for the slower process jus
decreases as the temperature decreases,63 which is what
would be expected when the magnitude of the Landau en
tropy bottleneck for escape from a trap increases with de-
creasing temperature@Fig. 11~b!#.

Interestingly, it has been suggested that chaperonins
such as GroEL and GroES, assist protein folding by reducing
the effect of trapping.78–80The chaperonins can bind proteins
which are trapped in non-native structures and then releas
them in an untrapped configuration, thus allowing the protein
another opportunity to find the native structure directly.
Chaperonins can effect the release from a trapped state be
cause the PES’s for the free protein and the protein bound to
the chaperonin are different; a configuration that corresponds

y.
ked

c-

FIG. 12. Time evolution of the probabilities,Pl , at an energy of~a! 21 and
~b! 26.41 for a PES with two funnels andl node56. The secondary funnel
ends atl 852. Initially, P1051.
o. 18, 8 November 1996
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8441J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
to a trap for the free protein may not be so for the bou
protein.79 Simulations show that the folding rate of slow
folding proteins increases significantly when this ‘‘iterativ
annealing’’ model for chaperonin action is included,81 lend-
ing further credence to this proposal.

The trapping properties of the secondary funnel can
increased by adding a minimum atl 8518, as shown in Fig.
14~a!. t f increases exponentially as the depth of the seco
ary funnel is increased. AsE18 approaches the value fo
whichP18

eq
5 0.2 (E18 5 0.364),t f increases even more rap

idly, as expected from our definition oft f [P1(t f)50.8]. At
higher energies, the dependence of the relaxation rate
E18 diminishes asE28 is approached. For this system th
probability density flows rapidly and equally into the bo
toms of both funnels and then begins to trickle very slow
back up the PES froml 8518 into the primary funnel@Fig.
14~b!#. This PES provides an example where the energy
ference between the two lowest energy minima has a v
significant effect on the relaxation rate to the global min
mum, and supports our suggestion that this quantity is m
important when the two minima equilibrate very slowly b

FIG. 13. Equilibration trees at an energy of~a! 21 and~b! 26.41 for a PES
with two funnels andl node56. The secondary funnel ends atl 852. Initially,
P1051. The lines corresponding to individual levels are labeled by
appropriate values ofl or l 8.
J. Chem. Phys., Vol. 105,
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cause they are structurally dissimilar and well separated
the PES.

The PES of~KCl!32 shows some interesting features
The relaxation down to the low energy rock-salt-like stru
tures from the amorphous states is rapid.61 However, it is not
clear whether the system can then reach the~43434! global
minimum from the other rock-salt-like structures, which ca
have very different shapes from the global minimum, e.g
the second lowest energy minimum has a~53433! shape
plus an extra row of four atoms.82 It might be that these
crystal-like structures have separate funnels, the steep slo
of which make interconversion to other rock-salt-like stru
tures difficult. This would give rise to a significant separatio
between time scales for relaxation down the PES and equ
bration between the rock-salt-like structures, similar to th
seen for our model PES above.

In the above examples, the properties of both funne
were the same except atl 8518. As a result, the initial relax-
ation down the PES was equally likely to take the syste
into either funnel. However, for materials that easily form

e

FIG. 14. Dynamic properties of a PES with two funnels andl node56 at an
energy of 26.41. The secondary funnel ends atl 851. ~a! Dependence oft f
uponE18 . ~b! Time evolution of the probabilities,Pl , for E18 5 1.5 from an
initial distributionP1051.
No. 18, 8 November 1996
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8442 J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
glasses the system is more likely to relax into the amorph
glassy minima than into the crystalline minima. A simila
effect can be achieved in our model by making the ‘‘width
of the primary funnel narrower than that of the secondaryg
determines the number of minima in each level, and con
quently also determines the increase in the configuratio
entropy as the funnel is ascended, i.e., its width. Therefore
we make the value ofg for the primary funnel belowl node,
gp , wheregp is smaller than for the rest of the PES, th
primary funnel is only connected togp

lnode21 of the glnode21

minima in the levell5 l node. For the parametersl node56,
gp54 andg510, this corresponds to only 1% of the minim
in the levell5 l node. These changes to the PES affect the r
of transition between levelsl node and l node21, which be-
comes

Wlnode21,lnode

5sS gpg D lnode21S E2Elnode
2b

E2Elnode
D k21 n̄ lnode

k

n̄ lnode21,lnode
k21 . ~11!
us
r
’

e-
al
, if

te

This PES can mimic some of the effects of frustration.
If, as in simple liquids, the high potential energy amorphous
minima have a different type of order from the crystalline
global minimum, one might expect that the glassy states at
the bottom of the liquidlike band of minima33 maximize the
polytetrahedral order as far as is possible. Therefore, the
glassy minima are not likely to be connected to the crystal-
line funnel, but instead reside at the bottom of rugged fun-
nels which descend from the liquidlike regions of configura-
tion space. In contrast, the funnel terminating at the
crystalline state is likely to be connected to a small fraction
of the higher energy amorphous minima which contain in-
cipient crystal-like nuclei. Consistent with this idea, large
Landau free energy barriers have been found in simulations
of nucleation of a crystalline phase from a Lennard-Jones
liquid.71 This view of the PES topography of glass formers
has many similarities to the ideas put forward by Stillinger
for fragile liquids.72

We now choose to end the secondary funnel atl 8528
since glasses normally have a significantly higher potential
FIG. 15. Dynamic properties of a PES with two funnels andl node56. For l, l node the primary funnel has a lower value ofg than for the rest of the PES. The
secondary funnel ends atl 852. ~a! Dependence oft f upongp at an energy of 26.41.~b! Landau entropy profiles whengp54 at different values of the energy
as labeled.~c! Time evolution of the probabilities,Pl , and~d! equilibration tree whengp54 from an initial distributionP1051 at an energy of 26.41.
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8443J. P. K. Doye and D. J. Wales: Relaxation to the global minimum
energy than the crystalline state. For this PES, the rate
relaxation to the global minimum dramatically slows as t
primary funnel is narrowed by decreasinggp @Fig. 15~a!#.
This occurs because the levell55 has a lower entropy than
l 8558 and l node56 @Fig. 15~b!#. On reachingl5 l node, the
system is much more likely to pass into the secondary f
nel, rather than overcome the Landau entropy bottleneck
sociated with passage into the primary funnel. The depth
this bottleneck increases as the width of the primary fun
decreases.

The time evolution of the probabilities whengp54
shows that all the probability initially passes into the secon
ary funnel, and then slowly trickles back through the Land
entropy bottleneck into the global minimum@Fig. 15~c!#.
This results in a large separation of time scales between
time for equilibration within the secondary funnel and b
tween the two funnels@Fig. 15~d!#.

This example shows that the secondary funnel is a m
effective trap when it has a larger width than the prima
funnel. Earlier in this section, we showed that a low ener
minimum at the bottom of the secondary funnel also
creases its trapping efficiency. By combining these two f
tures we can create a PES where virtually all the probabi
flows to the bottom of the secondary funnel, and then
mains there for a long time~Fig. 16!. Only on very long time
scales does the global minimum start to become significa
populated;t f for this PES is 7.43108. In the example shown
E18 5 0.6, and soP18

eq
5 0.091, thus preventing complet

population of the global minimum at the total energy cons
ered. This PES provides an example of how relaxation t
unique metastable minimum might occur, simply because
its greater kinetic accessibility. A similar behavior is seen
some proteins from the serpin family of protease inhibitors83

the protein plasminogen activator inhibitor-1 first folds to t
active state, but then on a time scale of hours can spont
ously transform to an inactive latent form.84,85

The above PES bears some resemblance to the 38-a
and 75-atom Lennard-Jones clusters, for which the low
ergy icosahedral minima are reached on relaxation down
PES, rather than the fcc or decahedral global minimum.36,86

The difficulty in reaching the global minima is associat
with the narrowness of the funnels leading down to the g
bal minima. Our results also suggest that it would not be
surprising if it was effectively impossible to reach the glob
minimum of the 75-atom cluster by a dynamic method wit
out biasing the system towards decahedral minima. Th
clusters, though, have an additional complication compa
to our model PES. The free energy global minimum depe
on temperature, and only at low temperatures does it actu
correspond to the global potential energy minimum. This
because of the greater configurational entropy of the min
at the bottom of the icosahedral funnel.38

V. CONCLUSION

In this paper, we have analyzed model potential ene
surfaces of increasing complexity using a master equa
approach. The existence of a suitable order parameter
J. Chem. Phys., Vol. 105, N
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these surfaces has enabled us to identify features which af-
fect the relaxation efficiency to the global minimum by con-
sidering Landau entropies and free energies. For a surface
with a single funnel relaxation is fastest when the potential
energy gradient towards the bottom of the funnel is large and
the barrier heights are small.

Our simplest model surface appears to capture many of
the most interesting features of the dynamical effects seen in
clusters and proteins. Our results are also consistent with
previous work framed within the language of spin-glass
theory; for example increasing the barrier heights raises the
glass temperatureTg without changing the folding tempera-
ture Tf and hence decreases the efficiency of relaxation to
the global minimum.

We have also modeled kinetic bottlenecks and surfaces
with multiple funnels. Multiple funnels can greatly reduce
the relaxation efficiency and produce dynamics with both
fast and slow time scales. In contrast the effects of kinetic
bottlenecks appear to be more limited.

Our interest in this problem was first stirred by work
which stressed the importance of the energy gap between the
lowest and the next-lowest energy minima on the folding
efficiency of model proteins. There immediately appeared to
be an obvious analogy with ‘‘magic number’’ clusters such
as the Mackay icosahedron, which are found in simulations
and molecular beam experiments. Indeed, one could push the
analogy further and consider magic number clusters as those
which have survived a selection procedure in a molecular
beam, just as proteins have apparently evolved to possess
efficient ‘‘funneling’’ potential energy surfaces. However, it
now appears that factors other than the lowest energy gap are
more important. Nevertheless, the analogies between ‘‘magic
number’’ clusters in molecular beams and rapidly folding
proteins are probably still valid and will continue to lead to
new insights in the global analysis of potential energy sur-

FIG. 16. Time evolution of the probabilities,Pl , for a PES with two funnels
and l node56 at a total energy of 26.41. Forl, l node the primary funnel has
gp54. The secondary funnel ends atl 851 at a potential energyE18 5 0.6.
Initially, P1051.
o. 18, 8 November 1996
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APPENDIX

In the canonical ensemble the partition functions for our
standard surface are simple geometric progressions which
can be summed analytically ifDn50. For lmax even and
E25DE, so that the ladder of energy levels is entirely regu-
lar, we were able to obtain closed-form analytic expressions
for P1(t) whenPlmax

(0) 5 1. The result forlmax510, setting
s51 andn51, is

elaxation to the global minimum
P1~ t !5P1
eq1a10e2~11a2!ctH 2

1

5~11a2!
1

~11a2!coshS 12A5
2 D act1S 12A5

2 D a sinhS 12A5
2 D act

~52A5!F ~11a2!22a2S 12A5
2 D 2G

1

~11a2!coshS 11A5
2 D act1S 11A5

2 D a sinhS 11A5
2 D act

~51A5!S ~11a2!22a2S 11A5
2 D 2D

2

~11a2!coshA52A5
2

act1A52A5
2

a sinhA52A5
2

act

5~32A5!F ~11a2!22a2S 52A5
2 D G

2

~11a2!coshA51A5
2

act1A51A5
2

a sinhA51A5
2

act

5~31A5!F ~11a2!22a2S 51A5
2 D G J , ~A1!
-

e
e

h

b

w
f
e
a
t
r
t

wherea25e2bDE andc5e2bb. It is not hard to show that
the eigenvalues ofw8 in this case arel150 and
l i1152e2bb(11a21am i), where them i ~1< i< lmax21!
are the eigenvalues of the~lmax21!3~lmax21! matrixM de-
fined by

Mi j5H 1, u i2 j u51

0, otherwise.
~A2!

The eigenvalues ofM satisfy um i u,2 which ensures that all
the eigenvalues ofw8 are negative except for the zero eigen
value which gives the time-independent termP1

eq in Eq.
~A1!. The analytic solutions obtained for this special cas
display many interesting symmetries, but we will not pursu
these further here.

For the globally connected standard surface wit
s5n51 andDn50 relatively simple analytic forms can be
derived for the eigenvalues and eigenvectors ofw8 without
the further simplificationE25DE. If Plmax

(0) 5 1 then
we find
No
P1~ t !5
e2bb

ulmaxu
~12e2ulmaxut!

5P1
eq@12exp~2te2bb/P1

eq!#, ~A3!

ecauseP1
eq5e2bb/ulmaxu. Herelmax is given by

lmax52e2bbF11e2b~E22DE!S a22a2lmax

12a2 D G , ~A4!

herea was defined above. From Eq.~A3! it is clear that the
astest relaxation is achieved forb50, as expected. How-
ver, further improvement of the relaxation rate can only be
chieved by makingP1

eqsmaller. A large energy gap between
he lowest two minima, corresponding to the value ofE2 ,
esults in a larger value ofP1

eq but a smaller relaxation rate to
he global minimum.
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