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We employ an order parameter approach to investigate melting in clusters bound by the 
Lennard-Jones potential containing 13, 55, and 147 atoms. We find well-defined Landau free energy 
barriers between solidlike and liquidlike states for the two larger clusters. A barrier is also revealed 
in an approximate analytical calculation using only information derived from the potential energy 
surface. For the two smaller clusters the order parameters are calculated for a large number of local 
minima. This helps us to interpret the Landau free energy calculations and to comment upon the 
suitability of the various order parameters for the cluster melting process. Systematic quenching 
offers us further insight into melting events for the 55-atom cluster. Finally, we elaborate further 
upon the relationships between S-bends and probability distributions in different ensembles. 

I. INTRODUCTION (c) a decrease in order as measured by an appropriate order 
parameter. 

Clusters of atoms or molecules are both similar to and We propose that if an order parameter Q can be found 
different from bulk material. They provide a useful way of such that the Landau free energy F(Q) has two minima for a 
increasing our understanding of phenomena in bulk materials range of temperatures then two distinct phases can be iden- 
and on surfaces as well as being of interest in their own right. tified and can be said to coexist. As the size of the cluster 
As the number of atoms, N, in a cluster gets sufficiently large tends to infinity the free energy barrier between these 
one expects to find that most atoms in the interior have es- minima is expected to increase and the phase transition tends 
sentially the same environment as in the bulk, while the same to a first-order bulk phase transition. In Sec. II we shall de- 
is true of surface atoms and a macroscopic surface. For small fine the Landau free energy and show that the criterion of a 
enough N this distinction is no longer possible and bulk phe- double minimum in F(Q) is equivalent to the existence of 
nomena may disappear. In fact, for N less than about 50 two distinct maxima in the probability distribution p(Q) of 
cluster properties often depend sensitively and irregularly the order parameter Q in the canonical ensemble (bimodal- 
upon N. ity). 

The main question that we address is the characterization 
of melting and freezing in a finite atomic cluster. What does 
one mean by distinct phases in a small system? In a bulk 
system different phases have different macroscopic proper- 
ties. They correspond to different regions of the 3N dimen- 
sional configurational space of the system. The phase transi- 
tion between bulk liquid and solid is first order with a free 
energy barrier between the phases. At the melting transition 
temperature the free energies of the two phases are equal and 
coexistence of solid and liquid in contact with each other is 
possible. Below this temperature the presence of a high free 
energy barrier may allow the existence of the liquid phase 
even though it is not the most stable form thermodynami- 
cally. In this state the supercooled liquid is said to be meta- 
stable. 

Clusters containing small numbers (7-55) of atoms have 
been observed to fluctuate spontaneously between solidlike 
and liquidlike forms’ on a nanosecond time scale in simula- 
tions. At low temperatures the clusters are ordered and can 
be described as solids although the structure is different from 
bulk material. At high temperatures the cluster is definitely 
disordered and can be described as liquidlike. For an inter- 
mediate range of temperatures the cluster takes up both 
forms, and, in a constant temperature calculation, is observed 
to fluctuate between them. The liquidlike phase may be dis- 
tinguished by (a) increased mobility, (b) greater average po- 
tential energy at the same temperature (lower temperature at 
the same total energy in the microcanonical ensemble), and 

The practical problem is to identify a suitable order pa- 
rameter. It must be a smooth function of the 3N atomic co- 
ordinates so that if the order parameter of the system changes 
from Q, to Qz it passes through intermediate values. We 
have considered a number of possibilities and conclude that 
the best order parameter to use depends on the cluster size. 
We then find that there are double minima in the Landau free 
energy for clusters containing 55 and 147 Lennard-Jones at- 
oms. We have also investigated the free energy barriers be- 
tween the phases. The heights of these barriers determine the 
dynamical behavior of the clusters. Indeed the most marked 
differences between the phase transition in these clusters and 
in the bulk is that the free energy barrier in the canonical 
ensemble is low enough to be easily surmounted, while the 
size of the clusters is such that the whole cluster is involved 
in the transition. 

Previous investigations of clusters in the microcanonical 
ensemble have shown an inflection (at low particle numbers) 
in the potential energy versus temperature curve, which be- 
comes an S-bend at higher particle number.le4 This behavior 
is typical of systems with first-order phase changes. We shall 
discuss the relation of these observations to our findings. The 
thermodynamic and dynamic properties of a cluster are de- 
termined microscopically by the underlying potential energy 
surface. In order to understand the properties of the free en- 
ergy that we find in simulations, we search for minima and 
transition states of this surface. We discuss how far the ther- 
modynamic quantities that we measure can be related to 
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TABLE 1. Order parameters in ideal configurations. 

fee 
hcp 
bCC 

Simple cubic 
Icosahedral(lccal) 

Q4 Q6 w4 w6 

0.191 0.575 -0.159 -0.013 
0.097 0.485 0.134 -0.012 
0.036 0.511 0.159 0.013 
0.764 0.354 0.159 0.013 
0 0.6632 0 -0.170 

these stationary points, extending the considerations that 
have been developed in previous work for Lennard-Jones,5’6 
potassium chloride,7’8 and water clusters,“” for example. 

II. ORDER PARAMETERS AND FREE ENERGY 

A. Order parameters 

One order parameter which we have used is the total 
configurational or potential energy of the cluster, E, . For the 
smaller clusters this proved to be as satisfactory as any other 
order parameter that we tried. We have also considered some 
orientational bond order parameters. We investigated the four 
parameters, Q4, Q6, W4, and W611-13 previously used for 
bulk systems. In order to construct these, “bonds” are drawn 
between all atoms nearer than a prescribed cutoff distance 
(we used 1.24 times the nearest-neighbor separation). The 
QL order parameters are made up of the square of sums of 
spherical harmonics for all N, bonds in the cluster, 

‘:=N;(2L+ 1) 4T z lzh yL,mCiij~lz, 

and are invariant under rotations, while the W, functions are 
the third-order invariants 

w,=c L L L 
ml .n12 i -ml -m2 m,fm2 

x QL,-m,PL,-m21ZL.m,+m2 9 (2) 

where 

z 
QL-=(Zn,p 

bndsYl,m(~ij) 

bondsYL,rn(~ij)12)“2 ’ 

Table I (taken from Ref. 11) shows how these order pa- 
rameters vary for different ideal space filling lattices (fee, 
bee, hcp, and simple cubic). The value given for an icosahe- 
dral arrangement is for the 12 bonds around the central atom 
in an icosahedral 13-atom cluster. 

B. Statistical mechanics of clusters 

Because clusters are small systems the distinction be- 
tween different statistical mechanical ensembles is impor- 
tant, and observations in the different ensembles can show 
markedly different properties. The cluster has momentum 
and position coordinates and associated with these has ki- 
netic energy, E, and potential energy E, . The statistical me- 
chanics of a classical system is completely determined if the 
phase space densities of states fl,(E,) and R,(E,) are 
known. R,(E,)dE, is the volume of configuration space 

with potential energy between E, and EC+ dE, while 
fi,(E,> is the corresponding volume of momentum space. 
We shall distinguish four different ensembles, the microca- 
nonical ensemble, the isopotential ensemble, the isokinetic 
ensemble, and the canonical ensemble. 

The microcanonical ensemble is one in which the total 
energy, E, of the cluster is fixed with 

E=E,+E, (4) 

so that the microcanonical density of states is given by 

E 

a(E) = I 0 
&(E-E,)fi,(E,)dEK, 
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where we have chosen the energy of the lowest minimum of 
the potential energy surface to be the energy zero. Energy 
may be exchanged between kinetic and potential forms and 
the probability distribution function for the kinetic energy in 
the microcanonical ensemble is given by 

K/2- I 
=dE)fUE-EdE, , (6) 

where c(E) is independent of E, . 
There are two additional points which must be consid- 

ered in the context of an ensemble of clusters. First if we are 
discussing the statistical mechanics of the cluster of N par- 
ticles we must exclude the parts of phase space in which 
particles have evaporated from the cluster when calculating 
R, . Previous workers have usually achieved this by enclos- 
ing the cluster in a container. We prefer to define the phase 
space of the bound cluster, C, , as the region of configuration 
space for which all N particles are connected either directly 
or indirectly in terms of a distance criterion. Second, it is 
convenient to separate the center-of-mass motion and the 
overall rotation to keep the internal energy of the cluster 
fixed. Thus the total number of degrees of freedom is 
K=~N-6 for clusters with no center-of-mass motion and 
zero angular momentum. The effects of nonzero angular mo- 
mentum are interesting in their own right,14-16 but lie beyond 
the scope of the present paper. 

In the microcanonical ensemble the connection between 
statistical mechanics and thermodynamics is given by 

S=k In Cl(E) 

and 

/?=(kT)-I=(’ ln;(E))N,v, (7) 

where V is the volume. In particular the caloric curve of a 
system which shows T as a function of E is informative. An 
example is shown in Fig. 1. The derivative of this curve is 
the specific heat. 

The canonical ensemble is one in which the system is in 
equilibrium with a heat bath. This ensemble has the advan- 
tage that the properties of configuration and momentum 
space are separable. The connection with thermodynamics is 
given by 

A=-RT In Z 
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E 

FIG. 1. Schematic microcanonical caloric curve exhibiting an S-bend, and 
definitions of the melting and freezing temperatures, T,,, and T, . 

and 

E= 03) 

where A and E are the Helmholtz free energy and the inter- 
nal energy, respectively, P=(kT)-‘, and the canonical parti- 
tion function, Z(p), is the Laplace transform of the density of 
states a(E) 

z= I exp[ - E( r, ,. ..,r,$, ,pl ,. ..,pN)/kT]d3Nrd3Np 
cN 

= I exp[ - EIkT]R(E)dE. 
cN 

This integral is taken over all parts of phase space CM which 
correspond to a bound cluster of N particles. In order to 
exclude the parts of phase space in which particles have 
evaporated from the cluster we define CN as the region of 
configuration space for which all N atoms are connected ei- 
ther directly or indirectly employing a distance criterion. 
This is similar to the concept of an “intact cluster” consid- 
ered by Stillinger and Stillinger.17 In fact, the restriction in 
the second integral is contained in the definition of R(E) 
which is understood to be the total energy density of states 
for the bound cluster. 

As the Laplace transform of a convolution integral such 
as Eq. (5) is a simple product we can separate the partition 
function into configuration and momentum terms 

Z(P) =UPP,(P), 
where 

ewt - PE,)WE,W,~ (10) 

and the Helmholtz free energy is also the sum of configura- 
tion and momentum terms 

A=A,+A,. (11) 
Again caloric curves can be constructed, but there is an im- 
portant difference between the caloric curves of a canonical 
and a microcanonical ensemble in the coexistence region 
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where the microcanonical ensemble can show an “S-bend” 
and the canonical ensemble cannot. An example of a caloric 
curve for a microcanonical ensemble is shown in Fig. 1. 

The central part of the S-bend has a negative slope cor- 
responding to a negative specific heat. Regions of negative 
specific heat are forbidden in canonical ensembles, but are 
allowed in microcanonical and isopotential ensembles of fi- 
nite systems.‘* What is meant by a negative specific heat? If 
two such systems are brought into contact then, as expected, 
heat flows from the hotter to the colder system. But, as the 
specific heat is negative, this decreases the temperature of the 
colder system and increases that of the hotter system. Thus 
systems with negative specific heat are inherently unstable. 
In a canonical ensemble, where the system is in contact with 
an infinite heat bath, it is never found in a region of negative 
specific heat. The caloric curves for clusters in this ensemble 
show a point of inflection rather than an S bend.” In a bulk 
system as N+m this becomes a horizontal line joining the 
left-hand and right-hand branches of the curve. We should 
emphasize that, even in a microcanonical ensemble, S-bends 
only occur in finite systems. A uniform bulk system with a 
negative specific heat is unstable in the thermodynamic limit 
of large N and at constant energy as it can increase its en- 
tropy by splitting into two parts, each of which has a positive 
specific heat. Consequently, in this thermodynamic limit, re- 
sults from canonical and microcanonical ensembles are the 
same. However, for finite systems, the interfacial region has 
a non-negligible entropy and free energy. As a result, the 
system may not be able to increase its entropy by splitting 
into two regions with positive specific heat. 

The most marked difference between the phase transition 
in clusters and in the bulk is that the free energy barrier in 
the canonical ensemble is low enough to be easily sur- 
mounted, while the size of the clusters is such that the whole 
cluster is involved in the transition. Another way to think of 
this is in terms of the equilibrium constant between the two 
forms. For the bulk this is a step function of temperature, but 
for a cluster the step is smoothed out. As the cluster is 
warmed, melting is a gradual process, and one can define the 
melting temperature, T, , as the highest temperature for 
which solidlike configurations are seen. This temperature is 
essentially the upper limit to the stability of the solid phase. 
Similarly a different (and lower) freezing temperature, Tf, 
can be defined below which the liquidlike configurations are 
no longer seen. ‘*2o-22 Thus phase coexistence in a cluster is 
revealed as the two phases coexisting at different times, 
rather than coexisting in contact. This finite size effect em- 
phasizes the difference between the canonical and microca- 
nonical ensembles. In the thermodynamic limit of an infinite 
bulk phase both ensembles give the same result, but in clus- 
ters the whole of the S-bend is accessible in a microcanoni- 
cal calculation as the system is not big enough to fall into 
two parts, one solid and one liquid. 

The isopotential and isokinetic ensembles are defined 
such that either the total potential energy or the total kinetic 
energy is fixed. Although neither are realizable in practice 
they can be achieved in simulations. The entropy and tem- 
perature of an isopotential ensemble (subscript c for configu- 
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rational) can be defined in a similar way to that of a micro- 
canonical ensemble 

SC= k In fiR,(E,), 

and 

Ft. M. Lynden-Bell and D. J. Wales: Melting in atomic clusters 1463 

where pQ( Q)dQ is the probability of finding the system with 
values of Q between Q and Q+dQ, i.e., pa(Q) is a (ca- 
nonical) probability distribution function such that 

In the coexistence region the isopotential caloric curves (T, 
as a function of E,) may show an S bend. We note that the 
necessary condition for the existence of an S bend in either 
the isopotential or the microcanonical caloric curve is 
equivalent to the condition that the corresponding entropy, 
S,=k Infin, or S=klnR(E) has two points of 
inflection,*” i.e., 

(12) 

pe(Qoj = I 
exp( - EJkT) S( Q - Qo)d3NrlZ,. (18) 

cN 

The most straightforward way of determining F(Q) is 
just to sample the canonical distribution function at the ap- 
propriate temperature and use the resulting probabilities, 
pe(Q), to construct F(Q). This is the method that we em- 
ployed for the 13 and 55 atom clusters. Molecular dynamics 
calculations were performed using a thermostat for suffi- 
ciently long times that both liquidlike and solidlike forms of 
the cluster were sampled. 

0 

or 

03) 

In this paper all our simulations are carried out in the 
canonical ensemble in which the temperature and number of 
particles are kept constant and the phase space is restricted to 
the bound cluster. 

C. Free energy 

There are two distinct free energies which we shall use 
in our discussion of clusters: the Helmholtz free energy, 
A ( r), and the Landau free energy F( Q, T). The Helmholtz 
free energy of a classical system has already been defined in 
Eqs. (8) and (9) f rom which we see that the probability of 
finding the system with potential energy between E, and 
E, + dE, in a canonical ensemble at temperature T is given 
by 

pJE,;T)dE,=exp(-E,lkT)OZ,(E,)dE,IZ,. 04) 

The Landau free energy, F( Q,T) is the free energy of the 
system for a particular value of the order parameter Q. The 
configurational part of the Helmholtz free energy, A,, and 
the Landau free energy, F, are related by 

exp( -A,lkT)= 
I 

exp[ - F(Q,Tj/kT]dQ (15) 
cN 

which follows from the definition of F(Q,T): 

exp[ - Ft QO , TVk 7’1 

= I exp[ - E,t rl ,...,rN)/kT]6(Q-Qo)d3Nr, (16) 
cN 

where the integral is over all configurational coordinates. 
Since F( Q,T) is generally calculated for particular tempera- 
tures we will henceforth drop the explicit T dependence. The 
previous equations show that 

D. Interpretation of Landau free energy curves 

Where the Landau free energy curve at a given tempera- 
ture shows a double minimum it is also true that pe(Q) is 
bimodal. In particular, if Q is the potential energy, E, , then 
a double minimum in F(E,) implies the existence of an S- 
bend in the isopotential caloric curve. Equations (17) and 
(14) give (in reduced units) 

F(Q)=&-kT ln pp(Qj, 

F(E,)=E,-T In CIJE,). (22) 

(17) Differentiating this twice with respect to E, we find 
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In the 147 atom cluster, where high free energy barriers 
exist, this method is no longer practical as the simulated 
system does not explore both the solid and the liquid wells 
on the time scale accessible to simulation. Instead we bias 
the system”“* using a Q-dependent potential in such a way 
as to lower the free energy barrier. The probability pw(Qo) 
of finding the biased system with the value of Q = Q. in the 
presence of the additional potential w(Q) is then 

PJQo) = I exp{ - [&trl v.--rrN)+w(Q)l/kT) 
cN 

where 

X @Q- Qo)d3Nr4tw), (19) 

Z,(w) = I exd - [E,trt ,...,rN)+w(Q)]/kT}d3Nr, 
CN 

1. 

(20) 

and hence 

p,(Q)=~e(Q)exp[-w(Q)IkTlIZ~(w). (21) 

Note that w can be taken out of the integral, whereas E, 
cannot, because it has a unique value for a given Q. Equation 
(21) allows the probability pQ( Q) and hence the Landau free 
energy F(Q) of the unbiased system’ to be determined. De- 
tails of the method are given elsewhere.““* Umbrella sam- 
pling, in which small ranges of the appropriate order param- 
eters are explored separately, was used with a Monte Carlo 
scheme for atomic displacements, An alternative approach 
has recently been investigated by Tsai and Jordan and Frantz 
et al. 10,24 
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(23) 
TABLE II. Details of the molecular dynamics runs. 

where T, is the isopotential temperature. Hence a double 
minimum in F(E,) implies that the second derivative, and 
hence the slope of the isopotential caloric curve, changes 
sign twice. 

We must now consider the physical meaning of the 
above result, and we focus upon the canonical ensemble. We 
identify the two minima with two distinct regions of phase 
space, corresponding to distinct phases. In these two regions 
the local minima of the potential energy surface correspond 
to solidlike and liquidlike conformations, respectively. The 
equilibrium constant in the canonical ensemble at tempera- 
ture T is the ratio of the probabilities of finding the system in 
each region, which is given in terms of the Landau free en- 
ergies as 

p(X;T) SX exd-F(Q)lkWQ -= K”4(T)=p(y;T) J- Y expC-F(QWWQ ' (24) 

where X and Y label the regions of order parameter space 
corresponding to the phases X and Y. We also associate the 
barrier in the Landau free energy with the actual barrier that 
must be overcome to move between the two phases or iso- 
mers. This assumes that an appropriate order parameter has 
been chosen. 

The distinctness of the two (or possibly more) regions of 
phase phases depends on the height of the free energy barrier 
between them. If this is many times kT, fluctuations between 
the states are rare in the canonical ensemble and there is little 
ambiguity in determining which phase the system is cur- 
rently in. This is the situation for bulk liquids and solids. As 
the free energy barrier becomes lower (as it is for the smaller 
clusters) the system fluctuates between phases and the pos- 
sibility of identifying which phase the system is in depends 
on the time scale of the observation.5’20*25,26 

There is a problem in choosing a suitable order param- 
eter. In the work on bulk phases cited earlier1”12 it was found 
that any of bond order parameters Q6, Q4, w6, W4 defined 
in Eqs. (1) and (3) were satisfactory. However, the lowest 
energy structures of the present clusters are all based upon 
icosahedra rather than fragments of a crystalline lattice, and 
we shall see in Sec. IV that the values of the bond-order 
parameters in liquid and solid phases of clusters are gener- 
ally less distinct than in the bulk phases. Although we 
present some free energy results based on bond-order param- 
eters, we found that the potential energy, E,, provided a 
clearer distinction between the two phases in the 13 and 55 
atom clusters, and most of the free energy curves shown 
employ the potential energy as the order parameter. The use 
of the potential energy also allowed us to construct entropy 
curves. For the 147 atom cluster we used a mixed order 
parameter Q=E,/100~+4W,. 

III. METHODS 

A. Potential 

The potential used was the Lennard-Jones two-body in- 
teraction where 

Cluster T* Run length/& 
Evaporation 

events Evaporationhs 

LJ55 0.27 
0.29 
0.30 
0.31 
0.33 

LJ13 0.23 
0.19 
0.33 

“After equilibration. 

15 0 0 
20 24 1.4 
40 133 3.3 
17.6 110 6.3 
6 56 9.3 

15 0 0 
15 28 1.9 
5.74 102 17.7 

2 =z [ (;)12-($“l. 

1464 

05) 

No cutoff was applied in the simulations of 13 and 55 atom 
clusters; a cutoff of 3.9~ was used for the 147 atom cluster. 
Hereafter we may employ the abbreviation LJ, for the 
Lennard-Jones cluster containing N atoms. 

B. Sampling the canonical distribution 

For clusters LJ,, and LJ,, simulations were carried out 
using molecular dynamics.27 The velocity Verlet algorithm 
was used with a time step of 0.0196 reduced units (or 0.01 ps 
with atomic mass=39.95 amu, (+=3.4 A, and Elk,= 100 K). 
The clusters were thermostated by constraining the total ki- 
netic energy to be constant. This generates an isokinetic en- 
semble, but as the kinetic degrees of freedom act as a heat 
bath for the configurational degrees of freedom, the distribu- 
tion of configurational energies is the same as in a canonical 
ensemble.28 The only unusual feature of the calculations was 
the restriction to geometries in which the clusters remained 
boundI [that is the restriction to the phase space C,,, in Eq. 
(8)]. Whenever the order parameters were calculated (nor- 
mally every 10 time steps) the configuration was tested to 
see whether any particles had evaporated. If so the trajectory 
was reversed for 100 steps, the velocities randomized, and 
the cluster equilibrated for a further 200 steps before con- 
tinuing the averaging process. A spherical container has gen- 
erally been used in previous work,2,29,30 and we expect that 
our use of a bound clusterI should be equivalent to an ap- 
propriate container size, as determined by Tsai and Jordan.” 
Table II shows details of the runs. 

C. Minima and transition state calculations 

The probability distribution functions presented in Sec. 
V were calculated for samples of 1153 minima and 3481 
transition states. The minima were found by systematic 
quenching from a high energy molecular dynamics 
trajectory.3i*32 Transition state searches and approximate 
steepest-descent rearrangement pathways were calculated by 
eigenvector-following as described elsewhere.33 The new 
quench results described in Sec. V A were obtained in the 
same manner to investigate a particular melting event in 
greater detail. A statistical analysis of these results and the 
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FIG. 2. Variation of the Landau free energy for LJs, as a function of poten- 
tial energy. 5, , at a number of temperatures. The values of the temperatures 
in reduced units are marked on the diagram. Note that the zero of free 
energy at each temperature is not determined and has been chosen arbi- 
Wilily. 

properties of the reaction pathways, and a comparison with 
WI, and Goo)ss clusters, is in preparation. Here we need 
only consider the probability distributions for the energies of 
the stationary points, and these were constructed by binning 
and smoothing. 

IV. RESULTS 

A. Free energy curves for clusters of 55 atoms 

Our most thorough study has been of the cluster Us,. 
Figure 2 shows the variation of the Landau free energy as a 
function of potential energy, E,, at a number of tempera- 
tures. Here, E, is reported relative to the Mackay 
icosahedror? (EC=-279.2484706). The two wells corre- 
sponding to solidlike and liquidlike forms are clearly seen. 
The solid well (with lower potential energy) is more favor- 
able at T*=0.27 and 0.29 while the liquid well is more fa- 
vorable above T*=0.30. The dotted curves correspond to 
temperatures at which no evidence of a second well was 
seen. The difference in the free energy of the wells varies 
rapidly with temperature, changing from +0.45~ to -0.52~ 
when the reduced temperature is changed by 0.02 between 
0.29 and 0.3 1. The range of temperature over which there are 
both stable and metastable states, i.e., two minima, is small. 
At T*=0.27 only the solid well is seen, while at T*=0.33 
only the liquid well is seen. This is in reasonable agreement 
with the isopotential ensemble calculations of Grimson 
which show an S bend between reduced temperatures of 0.29 
and 0.345 and with Stillinger and Stillinger.17 

The barrier at coexistence, when the two forms have the 
same free energy, can be estimated from the run at T*=O.30 
and is approximately 0.45~ We shall discuss later why this is 
probably a lower limit. 

We found that surprisingly long runs were needed to 
sample both solidlike and liquidlike regions of phase space. 
Figure 3 shows trajectories from a 40 ns run at T*=0.3. 
Even here it is not clear that the sampling is uniform. An- 
other check is provided by looking at the configurational 
density of states fi, which should be independent of tem- 
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FIG. 3. Trajectories from the 40 ns run at T*=0.3. (a) Potential energy; the 
horizontal lines correspond to maxima and minima of the free energy curve 
(see Fig. 5). (b) Top to bottom: number of bonds (defined by a distance 
criterion), 2Q,+O.O5 and W,. The right-hand scale is for the bond number 
and the left-hand scale is for the order parameters. 

perature. Plots of In .R, vs E, are steep, approximately linear, 
functions of E, . In order to emphasize the nonlinear varia- 
tions in the density of states we subtract a linear term to 
define a new function @, 

(P(E,)=ln Ckc(E,)-E,lTr,f+A,(T)IT, (26) 

which is constructed from the observed probabilities by [see 
Eq. 04)l 

@(E,)=ln p,(E,;T)+E,( l/T- l/T&. (27) 

The choice of the value of T,,, in the definition of Cp is 
arbitrary. The value 0.2982 was chosen to make the two 
maxima in the curve equal, and we shall show that this im- 
plies that the coexistence temperature in the canonical en- 
semble is equal to 0.2982. 

There is good agreement between the curves for Cp in 
Fig. 4 at the five different temperatures investigated, showing 
that the runs are long enough for the configurational space to 
have been reasonably accurately sampled. The offset of the 
curves for different temperatures is due to variations in the 
last term in Eq. (26). 

Once In R,(E,) or, equivalently @(EC), is known then 
all the thermodynamical properties of the cluster may be cal- 
culated. The double maximum in these curves, which agrees 
with previous calculations,2’29 emphasizes the presence of 
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FIG. 4. Plots of @  ,against E, for LJ,, at a number of temperatures 
as marked. @  is defined in the text, and is related to the configurational 
entropy, S, . 

points of inflection in the isopotential entropy [S, 
= k in fi(E,)] as a function of E, . We now show that the 
presence of such points of inflection implies both the exist- 
ence of S-bends in the isopotential caloric curves and bimo- 
dality in the canonical potential energy distribution func- 
tions. Then we shall show that the canonical coexistence 
temperature can be determined by constructing the common 
tangent to either @ (E,) or in a,( E,). 

The slope of the curves of Ca( E,) is related to the inverse 
temperature of the isopotential ensemble by 

d@ldE, = T, 1 - T;; . (28) 

Since d*@/dEz= -(dT,ldE,)lT~ the condition for an S- 
bend in the isopotential caloric curve, T,(E,), is that @ (EC) 
has two points of inflection. The first point of inflection cor- 
responds to a local maximum in TJE,) and the second to a 
local minimum, as expected from Fig. 1. The intermediate 
point of maximum curvature in @ (E,) corresponds to the 
inflection point of T,(E,) between the two turning points. 

In order to find the condition for bimodality we recall 
that the probability distribution function for the potential en- 
ergy, E, , in a canonical ensemble at temperature T is 

pc(E,;T)=~,(E,)e-Ec’T/Z,(T). (29) 
(Note that we are using units for T in which Boltzmann’s 
constant is equal to one). Taking logarithms and differentiat- 
ing we obtain 

~lnp,W,;T) alnn,(E,)_T-‘=T-,-T-, 
dE, = dE, c (30) 

and 

d* In iI, d* In pc(E, ;T) d*Qi(E,) 
c?E; = 2 

JEC = aE, ’ (31) 

From Eq. (30) we see that the maxima and minima in the 
canonical distribution function at a given temperature, T, are 
determined by T,( E,) = T. The value of TJE,) is deter- 
mined by the slope of Q(E,) using Eq. (28), and as, if the 
distribution is bimodal, In p,( E, ; 2’) has two maxima and an 
intervening minimum, there must be three values of the po- 
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tential energy, E, , where @  has the same slope for bimodal- 
ity to be possible. Points with the same slope cannot occur 
unless Cp has two points of inflection. The temperatures 
Tcmin and Tc,nm determined from the slope of Q at these 
two inflection points determine the range of temperatures 
over which the canonical distribution of potential energies is 
bimodal. 

As we have already concluded that the condition for the 
existence of an S-bend in the isopotential ensemble is that Q, 
(or equivalently In a,) has two points of inflection, we de- 
duce that the existence of bimodality in p,( E, ;T) for some 
finite range of T is a necessary and sufficient condition for 
the presence of an S-bend in the isopotential caloric curve. 
Similarly the presence of an S-bend in the isopotential ca- 
loric curve implies that there is a range of temperatures over 
which the canonical distribution function is bimodal. An 
analogous argument leads to the conclusion that bimodality 
in the canonical distribution of the total energy implies the 
existence of an S-bend in the microcanonical caloric curve 
and vice versa.23 

We now define the coexistence temperature in the ca- 
nonical ensemble using a common tangent construction. If it 
is possible to draw a straight line that is a tangent to @ (EC) 
at two energies, E,, and E,,, then, from the preceding argu- 
ment, these correspond to maxima in the canonical probabil- 
ity distribution function at a temperature determined by the 
slope of the common tangent m  = (T- ’ - T,<i). Because they 
lie on a common tangent, these maxima are equally probable 
as, from Eq. (27) 

=~(E,,)-~(E,,)-(E,,-E,a>(T-l-T,:), (32) 

which vanishes as the two points lie on the same straight 
line with gradient (T-’ - Tz:). We define the temperature, T, 
determined from the slope of the common tangent, as the 
coexistence temperature. 

We note that other definitions of the coexistence tem- 
perature are possible. In our definition the maxima in the 
probability distribution functions are equal, p,( E, , ; T) 
=pJE,,;T), but the total probabilities of finding the system 
in configurational energies corresponding to the two phases, 
X and Y, are not necessarily the same. For example, if we 
model the two peaks in p,(E, ;T) by Gaussians then the 
integrated probabilities of these peaks should provide some 
idea of the relative probability: 

PdPr= Jc,/c,, (33) 

where Cx 0~ [d* In p,(Ec;T)/~E~]E,=E,, is the heat capacity as- 
sociated with the X phase (the first derivative evaluated at 
E,, vanishes). In practice the temperature at which the total 
probabilities are equal is likely to be very close to our coex- 
istence temperature. 

The canonical temperature at which a common tangent 
might exist for the microcanonical entropy [Jln fi(~)la~] 
as a function of the total energy E need not be exactly the 
same as for the isopotential ensemble. However, we can ar- 
gue that the microcanonical and isopotential caloric curves 
will generally exhibit the same features. The probability dis- 
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tributions for the configurational, kinetic and total energy in 
the canonical ensemble are related by the convolution 

f-E 

PC&T)= P~(E-EK;T)~K(EK;T)~E~ 
J 0 

I E Id*-1 
EK e-PEK 

= 
P~(E-EK ; T) pK/2rt K,2j dE,, (34) 

0 

where r is the Gamma function. The probability distribution 
for the kinetic energy, pK(EK ;T), has a single maximum at 
E,= (~12 - I)kT which becomes broader as K increases. 
Differentiation with respect to E gives 

Unless the probability distribution function for the potential 
energy has two maxima, so that p: (E, ; T) has three zeros as 
a function of E, , p’(E;T) will have a single zero. In general 
the convolution of an objective function with a smooth func- 
tion that has a single peak, such as pK( E, ; T), smears out 
the structure in the objective function. Thus if pf(E, ;T) has 
three zeros [i.e., p,(E, ;T) has two maxima] then p’(E;T) 
will also have three zeros if the maximum in pK(E, ;T) is 
sharp enough, but will lose them if it is too broad. We there- 
fore deduce that the S-bend in the microcanonical caloric 
curve will be less pronounced than for the isopotential en- 
semble. Furthermore, the existence of the isopotential S-bend 
is a necessary, but not sufficient, condition for the presence 
of the microcanonical S-bend. 

As stated previously, the reference temperature of 0.2982 
used in the definition of Q, was chosen to make the common 
tangent to In a,( E,) horizontal (within the error of the nu- 
merical experiments) and gives the value of the coexistence 
temperature as T=0.2982-+0.002. Such bimodality has been 
previously observed around T* =0.3 in both simulations* and 
theory.29 

The presence of an S-bend in the caloric curve of the 
isopotential ensemble and of an inflection in that of the ca- 
nonical ensemble can be understood qualitatively from the 
curves in Fig. 4. As the potential energy is increased from 
zero the slope initially decreases corresponding to a steadily 
increasing temperature in the isopotential ensemble. At the 
first maximum in @ the temperature is equal to 0.298, and it 
continues to increase until the point of inflection is reached. 
Then between the first and second points of inflection on 
either side of the minimum the temperature decreases as the 
energy increases. This is the region of the S-bend where the 
isopotential specific heat is negative. After the second point 
of inflection the specific heat becomes positive again and the 
temperature continues to increase as the potential energy is 
increased. In the canonical ensemble the specific heat is nec- 
essarily positive as it is proportional to the square root of the 
mean square energy fluctuation. 

Because the clusters have rather few degrees of freedom, 
the free energy wells are fairly broad, so that the system can 
be found with a range of potential energy around the minima 
for each well. The values of the potential energies in the two 
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We 

FIG. 5. Free energy curves calculated for a number of different order pa- 
rameters at T*=0.3. Top: Q4; middle: We; bottom EC/a In each case the 
zero of free energy has been chosen at the bottom of the solid well. For Q4 
the solid well corresponds to low Q4. 

minima are approximately E,=30~ and E,=47~ for solidlike 
and liquidlike phases, respectively, at the coexistence tem- 
perature. 

How reliable are these results? Although the above argu- 
ment suggests that the runs are long enough to sample con- 
figurational space satisfactorily it is not clear that the free 
energy barriers are accurate. Figure 5 shows free energy 
curves calculated for a number of different order parameters 
at T*=0.3. The bond-order parameter Q6 (not illustrated) 
has a single well while Q4 and the triple bond invariant W6 
do not show a clear free energy maximum. The reason that 
the results for these other order parameters do not discrimi- 
nate between solid and liquid states of these clusters, al- 
though they do for bulk phases, is that the spread of values in 
the two states overlaps. We shall discuss this further in Sec. 
V. Given that the bond order parameters do not discriminate 
between the states we should ask whether the potential en- 
ergy, E,, performs better. The horizontal line in Fig. 3(a) 
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corresponds to the value of E, at the maximum in the free 
energy curve. There are some fluctuations in both solid and 
liquid phases which cross this line showing that it is not an 
ideal discriminator. We conclude that the size of the barrier 
estimated from the curves in figure 2 is a lower limit. If the 
number of crossings at this maximum is twice the number of 
true transitions we conclude that the free energy barrier is 
underestimated by 0.206. This follows because if the prob- 
ability pQ in Eq. (17) is doubled, the apparent value of F(Q) 
is decreased by about 0.26 at T”=0.3. 

The double minimum in the Landau free energy should 
be contrasted with the bimodality exhibited by the short time 
averaged temperature in the microcanonical ensemble. The 
temperature between the two peaks is rarely sampled and 
corresponds to an average between the two wells for a seg- 
ment of trajectory that passes between them.6 The interme- 
diate value of E, for the barrier region of the Landau free 
energy curve does not correspond to an average between the 
two minima because the curve is constructed from instanta- 
neous rather than short time averaged quantities. However, a 
time averaged quantity would present new problems as an 
order parameter because it is not a function of the instanta- 
neous position in phase space. 

V. ORDER PARAMETERS AND THE POTENTIAL 
ENERGY SURFACE 

A. Qualitative correlations and quench results 

Figure 6 shows the probability distribution functions 
found for the potential energy of minima and transition states 
of LJ,, which were obtained from a high energy molecular 
dynamics trajectory as described in Sec. III C. The solid lines 
show the distribution of minima on the potential energy sur- 
face. The global minimum at EC=0 corresponds to a struc- 
ture with icosahedral symmetry (Mackay icosahedron).34 As 
the energy increases there are first small numbers of minima 
which correspond to defective icosahedral structures, for ex- 
ample with single and double cap-defect pairs in the 
surface.‘7*35 Finally, at about EC= 15~ above the icosahedron 
there are large numbers of minima which generally have dis- 
ordered structures. 

The dashed lines in Fig. 6 show the probability distribu- 
tion of transition states. In Fig. 6(a) the two distributions are 
referred to a common energy zero. We note from Fig. 6(b) 
that when the transition state distribution is referred to an 
energy zero at the lowest transition state, rather than the 
global minimum, features at low energy in the two distribu- 
tions coincide. 

The difference between a solid and a liquid can be re- 
lated to the potential energy surface. The solid has a single 
low energy minimum and at low temperatures the system is 
confined to the region of phase space around this minimum. 
The entropy is low because the volume of accessible phase 
space is small. Atomic mobility is also low as the probability 
of reaching other regions of phase space is extremely small. 
In the liquid phase the system has enough potential energy to 
reach regions of phase space associated with the minima at 
higher energies. As there are many of these, the system has a 
greatly increased volume of accessible phase space and 

FIG. 6. Probability distribution functions for the potential energy of minima 
(solid lines) and transition states (dashed lines) of LJss. Because of the finite 
samples of data points these curves will be least reliable at higher potential 
energy. (a) A common energy zero is chosen for both distributions corre- 
sponding to the global minimum. (b) The energy zero for the transition state 
distribution is taken as the lowest energy transition state. 

hence greater entropy. The atomic mobility is also much 
higher as all the many potential minima are associated with 
different structures. 

This description of the liquid depends on the transition 
states between the various minima being low enough that the 
system can move over a large volume of phase space. If this 
were not true one would have a glass rather than a liquid. 

In order to relate the distribution of potential energy 
minima to the free energy one must remember that the po- 
tential energy of a system at finite temperature is almost 
always higher than that of the nearest minimum (see Fig. 7). 
In a harmonic system with K vibrational normal modes one 
expects an average potential energy roughly equal to KkTl2 
above the minimum potential energy, i.e., half the equiparti- 
tion energy for K vibrational modes. For 55 atoms at the 
coexistence temperature this is about 256 which would sug- 
gest an energy of roughly 25-306 for the solid well and 406 
for the liquid well, a little lower than we actually observe. 
These average energies are well in excess of the lowest re- 
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PIG. 7. (a) Potential energies relative to the global minimum of 1000 configurations (upper curve) and the minima that they quench to (lower curve) from a 
trajectory segment of length 4 ns at T*=0.3 that shows a melting and a freezing event. (b) Orders of the point groups of the quench minima. The logarithm 
is taken to provide a more convenient range. 

arrangement barriers.35 The probability distribution function than between minima based upon underlying icosahedral or- 
calculated for a sample of 3481 transition LJs5 states shows a der. This means that the transition states are readily acces- 
large increase at about EC= 126 which presumably contains sible from the liquid and solid at coexistence, justifying our 
the pathways between solidlike and liquidlike states, rather identification of the free energy maximum at an intermediate 
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value of E, as the “Landau transition state” for the solid to 
liquid transition. 

B. Bond-order parameters 

To gain further insight into the melting process we have 
employed systematic quenching along a particular trajectory 
near the coexistence temperature. This technique, introduced 
by Weber and Stillinger,3”32 associates any instantaneous 
configuration with a unique local minimum on the potential 
energy surface by steepest-descent energy minimization. In 
the present work eigenvector-following minimization was 
employed33 which will generally give the same results as 
true steepest-descent quenching, although we note that the 
boundaries between multidimensional basins of attraction 
may be very complicated.36 The resulting time-ordered series 
of minima represents the melting process as a series of tran- 
sitions between well-defined topological regions of the sur- 
face. Stillinger and Stillinger17 have previously applied the 
method to a model 55-atom inert gas cluster to good effect. 

Figures 9(a)-9(d) give scatter plots of order parameters 
defined by Eqs. (1) and (3) vs potential energy for local 
minima of LJ,,. It should be remembered that these order 
parameters are global in the sense that they are related to the 
sums of properties of all the bonds in a cluster. Figure 9(d) is 
the best one to start with. The global minimum has the most 
negative value of W6. The defective structures and the dis- 
ordered structures, particularly, have larger values of We. 

In the present case 1000 quenches were performed at 
intervals equivalent to 4 ps for the Lennard-Jones parameters 
given in Sec. III B. The segment of trajectory in question 
contains both a melting and a freezing transition. This is 
evident from Fig. 7(a) where the configurational energy at 
the start and finish of each quench is plotted against the 
quench number. In agreement with Stillinger and Stillingert7 
we find that the solidlike regions of the trajectory are asso- 
ciated almost entirely with a single structure, namely the 
global minimum icosahedron. The liquidlike regions are as- 
sociated with many different disordered structures that have 
potential energies drawn from the major peak of the prob- 
ability distribution shown in Fig. 6. These observations are 
further reinforced by Fig. 7(b), which shows the variation of 
the order of the point groups found for the quench minima in 
the same order. The logarithm has been plotted to show the 
lower symmetry minima more clearly. As expected, the high 
energy minima in the liquidlike region generally have Ci 
symmetry. 

Let us compare this to what we might see for bulk ma- 
terial. First one would expect to find a single low energy 
minimum corresponding to the crystalline phase which has a 
highly ordered structure. Then one would expect an energy 
gap followed by many minima which have a spread of ener- 
gies, but no long range order. For these minima w6 (or any 
other global bond-order parameter) would be equal to zero. 
One would also expect a few minima corresponding to de- 
fective solid structures with nonzero values of the order pa- 
rameters. 

Examination of about half a dozen individual crossings 
between solid and liquid phases of the 55 atom cluster at 
T*=0.3 showed no evidence that the system had to pass 
through a configuration with potential energy to the right of 
the liquid well in the free energy curve before making the 
transition. However, the potentiai energy was generally 
found to be higher in the liquid than in the transition region. 
This shows how the finite temperature and interconversion of 
kinetic and potential energy obscure the rearrangement 
mechanism on the potential energy surface. For example, at 
the transition between the solid and liquid phases in Fig. 7 
we find that consecutive quenches arrive at the I, global 
minimum and a structure with C5” symmetry. This sequence 
was also observed when the quench interval was reduced by 
a factor of 5. Hence we searched for a rearrangement be- 
tween the two structures in question. A direct interconversion 
was not found, (which does not necessarily mean that it does 
not exist) but we did find a two-step process which achieves 
the same effect. The intermediate minimum has C, symme- 
try as do both transition states-one of the C, axes is main- 
tained throughout (Fig. 8). Note that the potential energy of 
these transition states is lower than the average potential en- 
ergy of the liquid minima. 

Now returning to Fig. 9, we see that at least Fig. 9(d) 
shows the expected behavior. Because the cluster is small, 
and even in a bulk liquid there is a good deal of local order, 
it is not surprising that the minima do not have order param- 
eters which are exactly zero, although the values of w6 do 
get closer to zero for the higher energy minima. The other 
order parameters behave in a more unexpected way. The 
mean value of Q6 remains roughly constant as the energy 
increases, values of W4 scatter widely at all energies inves- 
tigated, while the mean value of Q4 actually increases with 
increasing energy. These unexpected results are due to the 
preference for icosahedral symmetry (for which Q4 and W, 
are equal to zero, see Table I) and to the small size of the 
clusters which allows order in the liquidlike phases. Further- 
more, the values calculated for the icosahedron can be ex- 
tremely sensitive to how well converged the structure is, 
showing that these order parameters can vary pathologically 
around this structure. 

These results can be used to interpret the values ob- 
served in the simulations (see Table III). In bulk phases the 
distinction between an ordered solid in which the order pa- 
rameters are nonzero and a liquid or glass in which they 
vanish is clear. Even in simulations of a few hundred atoms 
with periodic boundaries the liquid state parameters are close 
to zero. Clusters are a different matter. As shown in Table III, 
even in the high temperature states, which we have described 
as liquid Q4 and Q6, are not equal to zero. Indeed the value 
of Q4 increases with temperature in all three cluster sizes, 
while Q6 increases in the 13 atom cluster and only gradually 
approaches zero in the disordered states as N increases from 
13 through 55 to 147. 

The most interesting order parameter for these clusters is 
wg. In all three dUSkI this order parameter iS large and 
negative for the icosahedral global minimum with a value 
extremely close to that for 13 atoms. This value is typical of 
icosahedral symmetry. Other structures such as fee, hcp, and 
bee have magnitudes of this order parameter less than one- 
tenth of this value in the ideal lattices. As the temperature is 
raised in the 55 and 147 atom clusters the magnitude of w6 
decreases and in the liquid state it tends to zero. This is what 
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we would expect from the variation of w6 with potential 
energy in Fig. 9(d). The behavior in the 13 atom cluster is 
more unusual. The value of w6 seems to change sign. This 
may be due to the presence of low-lying energy minima with 
positive values of w6 in the 13 atom cluster configurations. 

From these calculations we can see that it is not surpris- 
ing that, of the bond-order parameters, W, was the best dis- 
criminator between solid and liquidlike phases in our free 
energy plots for the 55 atom cluster. 

C. Calculation of F(Q) from the potential energy 
surface 

In previous work29 one of us has shown how thermody- 
namic functions can be calculated, approximately, from the 
distribution of minima on the potential energy surface (and 
their normal mode frequencies). The method is based upon 
the harmonic approximation which gives the expression for 
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transition state (Cs) 

FIG. 8. Rearrangement of the LJss I, global minimum to a structure with 
CsO symmetry. Parts (a) and (b) show the two steps involved and the inter- 
mediate minimum with Cs symmetry. The graphics were produced with 
Mathematics (Ref. 50) using a cutoff of 1.4o to triangulate the structures. 
The transition vector multiplied by a suitable scaling factor is superimposed 
on each transition state. For each pathway nine frames are selected including 
the three stationary points and three configurations spaced equally along 
both sides of the path. (c) The calculated energy profile for the rearrange- 
ments in (a) and (b). 

the total energy density of states appropriate for the potential 
well associated with a minimum at energy E” as37 

(E-E”)K-l 
n(E)=r(K)~:=lVI ’ (36) 

We now make the superposition approximation29 that the to- 
tal density of states for a multiminima surface is obtained by 
summing over all the different minima that are low enough 
in energy to contribute 

WEI= 2 
T$(E-E;)~-’ 

Eo<E r(K)IIj”,,hv; ’ s 
(37) 

where n,* is the number of distinct permutational isomers of 
minimum s, i.e., n,* = 2n!lh,, and h, is the order of the 
point group of S, which was also calculated for all the 
minima and transition states. Note that Planck’s constant has 
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FIG. 9. Scatter plots of the order parameter vs potential energy for local minima of LJ,, 

been included in the above expression to convert it to the tion of minima,9’29 but we will not make use of it here. A 
classical limit of the quantum density of states. A further practical problem which may introduce a further error is that 
modification of the above formula employs a substitution in we actually have a representative rather than exhaustive 
terms of the relative quench probabilities to the different sample of minima. 
minima. This probably gives better results for larger systems The final expression for the Helmholtz free energy in the 
such as LJ55 because it provides a better idea of the distribu- harmonic superposition approximation is9 

TABLE III. Observed values of order parameters. 

System T* (Qz,) (Qs) W,) (Bonds) @J 

13 Ideal 0 0.0002 
Solid 0.23 0.046 

Liquid 0.33 0.10 

55 Ideal 0 O.COO6 
Solid 0.27 0.017 

Liquid 0.33 0.042 

147 Ideal 0 0.0002 
Solid 0.33 0.011 

Liquid 0.39 0.027 

Bulk fee 0 0.191 
Local icosahedral 0 0.0 

0.0415 -0.1698 6.46 0.0 
0.14 0.03 6.11 5.10 
0.237 0.011 5.28 10.58 

0.104 -0.1697 8.51 0.0 
0.120 -0.107 8.32 26.0 
0.116 -0.008 7.47 53.2 

0.136 
0.134 

-0.1697 
-0.150 
-0.0019 

9.47 0.0 

-0.013 
-0.1698 

12 0.0 
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A(T)=EE-b in C 
npw~-~~) 

s rI;~*phv; . (38) 

It may be helpful to compare this expression with the 
expected result for the more familiar case of equilibrium be- 
tween m distinct isomers in a canonical ensemble. Let the 
number of copies of the cluster in the ensemble be II, with n I 
clusters present as isomer (minimum) 1, na as isomer 2, etc. 
The total free energy for a nonlocalized system is 

m m 

A=-kTC ln(Z~‘/ni!)=-kTx ni ln(Zielni), (39) 
30 35 40 45 50 

WE 

i=l i=l 

where Z; is the partition function for a single cluster of type 
i referred to a common energy zero. Hence we have a sum of 
logs, rather than the log of a sum as in Eq. (38). However, 
minimizing A with respect to the ni subject to the constraint 
CT=, ni = n gives the familiar result 

(40) 

and hence 

(41) 

Therefore the superposition approximation, which leads to 
the log of a sum over minima, gives the same result for the 
free energy (and other thermodynamic properties) as we 
would obtain by considering the equilibrium distribution of 
isomers. The global view of the surface therefore coincides 
with the more usual view in terms of isomeric equilibrium. 

We can exploit the superposition approximation to esti- 
mate the Landau free energy, F(Q). If Q is a bond order 
parameter this can only be done very crudely because the 
dependence of E, on Q is complex. However, if we assume 
that the order parameters remain constant within the poten- 
tial well associated with a given minimum, s, and equal to 
the value at that stationary point, then we obtain F( Q,) from 

n*e-B(Ef-E:) 
F(Q,)=Ez-A In ’ 

P rI;=,phv; . (42) 

A continuous F(Q) could then be obtained by interpolation. 
However, this procedure involves major additional approxi- 
mations which are unnecessary if the order parameter is the 
potential energy, E, . Since E, actually performs better than 
the bond order parameters in practice we will describe this 
approach in more detail. 

An expression for F(E,) may be obtained if we delay 
integration over E, in the convolution integral for Q(E), 

E (E,-EO)K”2-1(E-E,)~/2-1 
(43) 

Taking the Laplace transform with respect to E gives 

FIG. 10. Variation of the Landau free energy for LJss as a function of 
potential energy, E, , (relative to the global minimum) calculated using a 
harmonic superposition approximation at T*=0.415 from a sample of 1191 
minima obtained in previous work (Ref. 29). 

z(p)= J;zo/;=Eo 

(E,-EO)K/2-1(E-Ec)K12-l 

c r( K/2)‘n[;= 1 Vj 

XCPEdE, dE. 04 
Interchanging the order and integrating with respect to E 
after modifying the limits appropriately we find 

Z(P)= m I 
(EC-EO)“‘z-1 

E,=,$’ I?( K/Z!)P”“Hj”,l l’j e 
-PEcdE,, (45) 

and hence, summing over minima and introducing Planck’s 
constant as above, 

m A(P)=-kT In c n,* 
(EC- E;)K’2-’ 

s I E,=ES) r( K/2)p”“n;= $4 

X evPEcdE,. 

The definition of F(Q) now gives 
(46) 

0 K/2-1 

F(4)=-kT ln c n,* r,~~~p;;‘,, h s eepEcs 

Es’4 J 1 ‘J 

(47) 
Although this particular formulation of the superposition 
model involves significant approximations, particularly the 
harmonic assumption, the resulting curves do appear to show 
qualitatively correct features. A double minimum in F( E,) is 
found for a narrow temperature range around T* =0.41, i.e., 
significantly higher than in the simulations, with a barrier 
height of order 0.1~ (Fig. 10). 

VI. RESULTS FOR 13 AND 147 ATOM CLUSTERS 

Figure 11 shows Landau free energy curves for a 13 
atom cluster using the potential energy as the order param- 
eter. Although there is a fairly sharp change in the energy of 
the minimum between T”=0.23 and 0.33, and we find a 
shoulder in the free energy at T*=0.29, we have not found a 
true double minimum. Hence there does not appear to be a 
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FIG. 11. Variation of the Landau free energy for LJ13 as a function of 
potential energy, E, , at temperatures (from top to bottom) T*=O.23, 0.29, 
and 0.33. The choice of the zero of free. energy at each temperature is 
arbitrary. 

free energy barrier between the two phases, although the 
short time averaged temperature in this system exhibits clear 
bimodality.5v25Y26 This is consistent with the fact that the mi- 
crocanonical caloric curves for LJ,, clusters show an inflec- 
tion rather than an S-bend.23 

Figure 12 shows the Landau free energy curves of a 
cluster of 147 atoms at T*=O.37 which was chosen as the 
temperature corresponding to the maximum in the specific 
heat anomaly found by Labastie and Whetten. The order 
parameter used was a combination of the potential energy 
and a triple bond-order parameter 

Q=V/lOOc+4W,, (4% 
which we found gave a smooth passage over the barrier for 
this cluster using the biased Monte Carlo method. The height 
of the barrier between the solid and the liquid phases of this 
cluster is approximately 1.2- 1.5~ while that observed in the 
55 atom cluster was approximately 0.4-0.56 This variation 
is consistent with a linear dependence on the number of par- 
ticles in the cluster. In large enough clusters one would ex- 
pect the transformation to proceed by the growth of one 
phase within the other. The barrier would then depend on the 

1.5 _ 

F/E I 

1 r 

147 particles - TI=O.37 
1 

FIG. 12. Variation of the Landau free energy for L.JIb7 with order parameter 
Q (defined in the text) at T*=0.37. The free energy zero has been chosen at 
the bottom of the solid well. 

total surface free energy of the interface between the phases 
when the system was half-solid and half-liquid, which would 
lead to an NZ3 dependence. In clusters of the size we are 
investigating the transformation process involves the whole 
of the cluster, which leads one to expect the barrier to be 
approximately proportional to N. 

VII. DISCUSSION 

The thermodynamics of finite systems has been studied 
for several decades,38’39 both by simulations, which really 
began in the early 197Os, and by analytic theories, which are 
still being developed. The most recent simulations extract the 
density of states and use this to calculate various thermody- 
namic properties.2”0@-42 This approach has produced the 
clearest picture of the solidlike/liquidlike coexistence phe- 
nomenon and provided support for previous theoretical con- 
jectnres. 

The first theory to suggest the existence of distinct sta- 
bility limits for the solidlike and liquidlike forms of a finite 
system was based upon a quantum density of states 
approach.43-45 However, since the phenomenon in question 
is found in classical simulations a classical explanation must 
also be possible, and capillarity theory does indeed predict 
the existence of a free energy barrier between local minima 
corresponding to solidlike and liquidlike clusters.46 The en- 
semble dependence of thermodynamic results for finite sys- 
tems was well known to Hi1138T39 and discussed by Honeycutt 
and Andersen in terms of caloric curves obtained in the ca- 
nonical and microcanonical ensembles for a range of cluster 
sizes.47 Other theoretical studies have focused upon the be- 
havior of model partition functions. Bixon and Jortner 
showed how simple models for the distribution of minima on 
the potential energy surface and their normal mode spectra 
could account for the trends seen in simulations.” Microca- 
nonical caloric curves have also been successfully fitted by a 
model partition function that allows for anharmonicity.48 
Calculations based upon the underlying potential energy 
surface9~29 have also been reported in the present work. Suf- 
ficient conditions for van der Waals loops or S-bends to arise 
in finite systems may also be deduced from models based 
upon a defective lattice.21’22 The necessary conditions have 
now been derived too.23 

Another approach to the cluster coexistence problem, 
which has been popularized by Berry and co-workers,“20 is 
the use of short time averages of the temperature, particularly 
in molecular dynamics studies.49 Bimodal probability distri- 
butions of such averages have been interpreted in terms of 
solidlike and liquidlike regions of the potential energy sur- 
face, for which characteristic values of the temperature are 
manifested over intervals as short as a few vibrational peri- 
ods. However, relating short time averages to thermody- 
namic properties is not trivial, and to emphasize this the 
presence of such bimodality has been termed “time-scale 
coexistence” in previous work,29 in contrast to the presence 
of S-bends in thermodynamic variables which was termed 
“thermodynamic coexistence.” However, it is not clear that 
these terms are actually helpful. For example, the thermody- 
namic averages conducted over molecular dynamics and 
Monte Carlo trajectories themselves also assume a time 
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scale, because in the infinite time limit an isolated cluster in 
IVCCNO would simply evaporate. Actually, this may be better 
thought of as a phase space restriction: both the conventional 
short time and long time averages really apply to a bound 
cluster, as we have emphasized in the present work. 

The first theory to predict separate melting and freezing 
points for a finite system was based upon a quantum density 
of states correlation from a rigid to nonrigid cluster.43-45 Pre- 
sumably one could construct a classical argument in much 
the same way, and hence we can identify the rigidity param- 
eter used in that work as a kind of order parameter. In fact, as 
we have seen, it is not easy to find a structural order param- 
eter for these Lennard-Jones clusters, but the potential en- 
ergy appears to serve us reasonably well because the solid- 
like and liquidlike parts of the surface happen to be well 
separated in terms of this quantity. Hence, the present order 
parameter calculations provide a realisation of the original 
theory in a very real sense. 

Coexistence may also be considered in terms of bimo- 
dality in short time averaged temperature distributions.‘T6’20 
The latter are generally expected to show up when the lowest 
potential energy minimum has no low energy rearrangement 
mechanisms to neighboring potential energy minima avail- 
able, and where the potential energy minima in question have 
fairly different energies.5V6 Hence, although we would cer- 
tainly expect bimodal short time averaged temperature dis- 
tributions to be associated with a Landau free energy double 
minimum for the canonical ensemble, this is not strictly 
necessary.*” It might actually be possible to use the short 
time averaged temperature itself as an order parameter, but 
we have not yet looked into this. Furthermore, short time 
averages in the microcanonical ensemble would presumably 
need to be associated with a double maximum in a Landau 
entropy. In view of the present work we envisage extending 
the concept of short time averages to order parameters other 
than the kinetic or potential energy. This would establish a 
general connection between equilibrium among different re- 
gions of phase space identified by an order parameter and 
thermodynamic properties such as S-bends. 

VIII. CONCLUSIONS 

We have shown that it is possible to classify the solid 
and liquid forms of magic number Lennard-Jones clusters 
using suitable order parameters. LJ,, and LJ,,, show double 
minima in the Landau free energy F(Q) over a range of 
temperatures which we identify as coexistence. The barrier 
height is approximately proportional to the number of par- 
ticles. The concept of the Landau free energy belongs to the 
canonical ensemble. Coexistence has also been associated 
with the presence of an S-bend in the microcanonical or 
isopotential caloric curves. We have shown that a double 
minimum in the Landau free energy expressed as a function 
of the configurational energy is equivalent to the presence of 
an S-bend in the isopotential caloric curve. Furthermore, the 
microcanonical caloric curve will generally exhibit the same 
features as the isopotential analogue. However, the convolu- 
tion with the kinetic energy distribution will result in less 
pronounced features for the former ensemble. 

The order parameter description associates free energies 
with distinct regions of phase space, with the proviso that we 
must be able to find a characteristic property by which we 
can distinguish them. If an appropriate order parameter can 
be found then we can actually determine, for example, the 
range of temperature for which the double minimum exists, 
and the barrier involved. The use of order parameters pro- 
vides additional insight into the thermodynamics of clusters. 
In fact this approach has already led to a better understanding 
of the relation between short time averaged properties and S- 
bends.23 

We have also shown how the thermodynamics and order 
parameters of the clusters can be related to the properties of 
the underlying potential surface and that approximate esti- 
mates of thermodynamic quantities can be obtained by ap- 
plying the harmonic superposition approximation. 
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