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Glossary

Ab initio calculations: attempt to calculate from first
principles, without use of empirical data, solutions to
Schrödinger’s equation
Deltahedron: a polyhedron with only triangular faces

Abbreviations

DFT = Density Functional Theory; DSD = Diamond-
Square-Diamond; HOMO = Highest Occupied Molecular
Orbital; IR = Irreducible Representation; LCAO = Linear
Combination of Atomic Orbitals; Ph = Phenyl; PSEPT =
Polyhedral Skeletal Electron Pair Theory; SCF =
Self-Consistent-Field; SDDS = Square-Diamond, Diamond-
Square; TSH = Tensor Surface Harmonic.

1 INTRODUCTION

The first problem encountered in writing an article of this
kind lies in deciding what a Cluster actually is, and which
sorts of cluster are relevant to the audience in question.
The former problem may be addressed in terms of size or
number of constituent atoms; for example, Sugano1 considers
a classification in terms of molecules, microclusters, and fine
particles. On the other hand, Berry has distinguished clusters
as ‘finite aggregates whose composition can be changed by
adding or taking away units of the species that comprise
them. . . they are finite bits of what, in composition but not
necessarily in structure, constitute a tiny sample of bulk

material, but more than a single molecule or even two
atoms or molecules’.2 Here, we must recognize that the
domain of cluster chemistry extends beyond systems such
as boranes, carboranes, and transition metal carbonyls, which
are generally considered to be the stuff of inorganic cluster
chemistry.1,3−5 These are certainly the molecules of primary
interest here, but it would be shortsighted to ignore the
connections between these species and clusters bound, for
example, by van der Waals forces. There is often much to
be learned from making such comparisons: for instance, we
may find analogous structures and rearrangement mechanisms
in clusters bound by quite different forces. The converse is
also true, and a better understanding of the dynamics of small
inert gas clusters has been achieved partly by the application
of ideas that originated in inorganic chemistry concerning
rearrangement mechanisms.6

To appreciate the ubiquity of clusters in chemistry and
physics, one need only consult the proceedings of one of
the biennial International Symposia on Small Particles and
Inorganic Clusters (ISSPIC).7 These volumes include species
ranging from hydrocarbon polyhedra, such as dodecahedrane8

(see also Dodecahedral), to large carbon clusters,9 and from
small inert gas clusters to colloidal metal particles containing
thousands of atoms. These systems are of interest for a variety
of reasons, such as the investigation of fundamental processes
including melting and freezing, and can sometimes provide
insight into the behavior of larger systems at a more tractable
level. Furthermore, small clusters may exhibit properties that
are unique to the intermediate size regime, which may be of
technological importance.10

The principal subject of this contribution is the electronic
structure of clusters, and so we shall mainly be concerned
with molecules in which the interatomic forces cannot
be well described by simple empirical potential energy
functions. Hence, the following section provides an overview
of the progress that has been made in performing quantum
mechanical calculations for clusters. Major difficulties remain
to be solved in this field, particularly with regard to systems
containing Transition Metals. However, although accurate
calculations are certainly important, there are various patterns
concerning the correlation between structure and electron
count, which require a more general explanation. The latter
are considered in Section 3, and the various models that have
been developed to explain them are reviewed in Section 4.
One of these, Stone’s Tensor Surface Harmonic (TSH) theory,
is then developed in Section 5, and some further applications
to cluster rearrangements are described in Section 6.

2 COMPUTATIONAL APPROACHES

It is certainly not the purpose of this section to describe
the mechanics of ab initio quantum chemical calculations
on clusters.11 However, some understanding of the problems
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and achievements in this field is necessary to appreciate the
simpler general models described in subsequent sections. Even
if extensive and accurate calculations were possible for all the
inorganic clusters of interest, the latter models would still
be needed to explain the structural patterns that have been
deciphered.

Most applications of ab initio quantum chemistry involve
expanding the wavefunction using a basis set of atomic
orbitals. As the many-body problem is not analytically
tractable in either classical or quantum mechanics, we can
never obtain the exact wavefunction. However, the variation
principle12 tells us that the more basis functions we use, the
more accurate our calculation should become. Unfortunately,
the computational cost of the most commonly employed self-
consistent-field12 (SCF) method increases roughly as N4,
where N is the number of basis orbitals. Hence, for clusters
containing Transition Metals, for which even a minimal basis
set of atomic orbitals requires many functions, the calculations
rapidly become impossible. There is another problem as
well: the usual Hartree–Fock SCF procedure neglects
the instantaneous electron–electron interaction, replacing it
instead with an average field12,13 (see Hartree–Fock Theory).
The error incurred by this treatment of the electron correlation
problem generally becomes more significant for systems
with low-lying electronic states, as are commonly found
in transition metal compounds. Density functional theory14

(DFT) can help deal with the correlation problem, but the
reliability of such calculations is often subject to debate. This
is particularly true for molecules containing heavy elements,
where relativistic effects are also important.15

Given this background, it is not surprising that many
different approaches, all introducing further approximations,16

have been applied to inorganic clusters. The two most
commonly encountered approaches in this area are the
Extended Hückel17 and Fenske–Hall18 methods (see also
Extended Hückel Molecular Orbital Theory). The former
is the simplest approach, making use of empirical data,
while the latter uses no experimental information, but instead
approximates the quantum mechanical Hamiltonian so as to
avoid many of the most time-consuming integrals. Despite
the sweeping assumptions used in these methods,19 they have
often been found to give valuable insights, although DFT is
now commonly used instead.

The early DFT studies of main group clusters by Jones
and coworkers should be mentioned here.20 However, as these
are primarily concerned with clusters that are describable in
terms of two-center, two-electron bonds, they will not be
considered further. For similar reasons, no attempt will be
made to survey the rapidly growing body of calculations on
carbon–fullerene systems9 (see Carbon: Fullerenes). The
σ -bonding framework of these molecules is again easily
understood from the point of view of electron counting.
Predicting for which geometries the delocalized π -system
is especially favorable is a more interesting problem, but
is beyond the scope of this review. Some other specific

calculations on boranes, carboranes, metal, and silicon clusters
will be considered in the following sections.

3 EMPIRICAL STRUCTURE–ELECTRON COUNT
CORRELATIONS

With the explosion in size of the database of known cluster
compounds, it is reassuring to note that a number of patterns
were soon recognized and exploited by inorganic chemists.
The most important relationships between geometry and the
number of electrons in a cluster (‘electron-counting rules’, see
Counting Electrons) are summarized in the Debor Principle21

(or Wade’s Rules), Polyhedral Skeletal Electron Pair Theory22

(PSEPT), and the Isolobal Principle.23 These ‘rules’ (to which
there are various exceptions) include three-connected clusters
(By convention, the connectivity’ of a vertex is the number of
nearest-neighbors in the cluster cage, not counting terminally
bound ligands.), like prismane, deltahedral clusters (which
have only triangular faces), such as closo-boranes; ‘naked’
clusters24 like Sn5

2− and Pb5
2−; clusters with interstitial

atoms, fused molecules, which can be decomposed into
deltahedra that share vertices, edges, or faces, and even
large multispherical transition metal clusters. Much of the
rest of this article is devoted to rationalizing these patterns,
whose importance can perhaps be appreciated by the example
of Au13Cl2(PMe2Ph)10

3+. This compound was successfully
synthesized several years after the stability of gold clusters
Au13(PR3)12

5+ was predicted on the basis of simple bonding
considerations.25

Some of the historical development of the electron-
counting rules is summarized in a review by Mingos
and Johnston;26 here, we will concentrate on the patterns
themselves, beginning with the simplest cases – more details
can be found elsewhere.27 The most straightforward clusters
commonly encountered in inorganic chemistry are those that
can be described by essentially localized two-center, two-
electron bonds, where all the atoms obey an effective atomic
number rule EAN Rule. For main group atoms, this means
that each one is associated with 8 valence electrons to give an
‘inert gas configuration’; for Transition Metals, 18 electrons
are usually required to do this. Hence, such clusters are
associated with

Ne = 8n − 2E main group or

Ne = 18n − 2E transition metal (1)

where Ne is the number of valence electrons, n is the number
of vertices in the cluster, and E is the number of two-
center, two-electron bonds, or edges. For ring compounds,
E = n and hence Ne = 6n/16n for main group/transition
metal clusters. Three-connected Polyhedral systems, such as
prismane, have E = 3n/2 so that Ne = 5n/15n. To cover



mixed compounds, we note that replacement of a main group
vertex atom by a transition metal should increase Ne by
10, while interstitial atoms are generally not associated with
an increase in the number of occupied molecular orbitals,27

and effectively act as electron donors. The relatively simple
consequences of interchanging main group and transition
metal atoms basically follow from the symmetries of the
orbitals that these fragments provide for skeletal cluster
bonding, as identified in the Isolobal Principle of Hoffmann
and collaborators.23

Most clusters, however, cannot be described adequately
in terms of two-center, two-electron bonds because the
connectivity of the vertices exceeds the number of valence
orbitals that are available for bonding. Early efforts to
rationalize such systems, such as Lipscomb’s styx approach28

and Kettle’s Topological Equivalent Orbital Method,29 are
described by Mingos and Johnston.26 In these more difficult
cases, the simple valence-bond picture is inappropriate;
examples are deltahedral clusters composed of B−H vertices
or conical M(CO)3 fragments, both of which usually have
only three orbitals available for skeletal bonding. Theoretical
models for describing these systems will be discussed in the
next section.

We find that four-connected clusters and closo-deltahedra
have Ne = 4n + 2/14n + 2 for main group/transition metal
clusters. Closo-deltahedra are clusters with entirely triangular
faces; however, some four-connected clusters have one
or more square faces.27 When successive vertices are
(notionally) removed from a closo-deltahedron, the resulting
molecules are called nido, arachno, hypho, and so on.
The Debor Principle21 (or Wade’s Rules) recognizes that
the total number of valence electrons in such systems
does not change, and in terms of the number of vertices
remaining, n, this gives Ne = 4n + 4/14n + 4, 4n +
6/14n + 6, . . . for main group/transition metal nido, arachno,
. . . clusters.

Most of the remaining patterns might be classified under
the heading of ‘condensation rules,’ many of which were
developed by Mingos and coworkers. The Capping Principle
states that the number of skeletal bonding orbitals is unchanged
when one face of a Polyhedral cluster is capped.22,30 Hence,
if the capping moiety is a conical M(CO)3 fragment, then
Ne increases by 12, this being the number of electrons in
the nonbonding and metal–ligand bonding orbitals.26 The
Principle of Polyhedral Fusion deals with clusters that can be
(notionally) decomposed into two polyhedra (A and B) that
share a vertex, edge, or face.31 In this case, Ne is usually
equal to the sum of Ne(A) and Ne(B), regarded as complete,
individual entities each containing copies of the fragments
that are shared between them, minus the number of valence
electrons expected for the shared unit.26 The final one of
these ‘principles’ is that of polyhedral inclusion, where high
nuclearity multispherical systems are considered in terms of
encapsulated polyhedra.32 However, as a number of subcases
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must be considered for such systems, the reader is referred
elsewhere for details.27,32

The remainder of this article is largely concerned with
describing how some of the above observations can be
rationalized using Stone’s Tensor Surface Harmonic theory,
and with the further implications of this model for dynamical
processes such as cluster rearrangements. The number of
example systems and electron count rationalizations will be
kept relatively small in favor of explaining the theoretical
foundations that underlie the method. Tables of examples and
more detailed analyses of the various cases may be found
elsewhere.26,27

4 MODELS OF CLUSTER BONDING

To achieve a general understanding of the patterns
described in the previous section requires some sort of
model for the energy of a cluster as a function of its
geometry and the number of valence electrons. In this
section, we focus upon the three most successful approaches,
namely, jellium models, topological methods based upon
graph theory, and Stone’s Tensor Surface Harmonic (TSH)
theory. In each case, the energetic problem is simplified by
asking how many bonding, nonbonding, and antibonding
orbitals are available for a given cluster geometry, and
these orbitals may be delocalized, localized, or a mixture
of both. In fact, TSH theory is more powerful than this,
as it really defines an orbital transformation, which may
be applied to the results of any calculation, as discussed
below.

In each of the three approaches, we effectively guess the
forms and energies of the solutions to the quantum mechanical
many-body problem. Jellium models achieve this by solving
a Schrödinger equation in which all the electron–electron
and electron–nucleus interactions are replaced by a simple
effective potential. The result is a set of spatially delocalized
functions of increasing energy into which electrons are
assigned by the usual Aufbau principle.12 Although jellium
methods are commonly found in the physics literature, they
are of rather limited application in the present context,
and are more appropriate for clusters of alkali or alkali
earth metals, for which very large systems have been
considered.

The topological or graph-theoretical approaches attempt
to define the bonding and antibonding orbitals available to
a cluster in terms of a sort of valence-bond description,12

where hybridized atomic orbitals are directed in space
to form either localized or multicenter functions. (See
also Hybridization.) The analysis of a complex structure
involving delocalized bonding may, however, require some
seemingly subjective decisions about how the atomic orbitals
overlap, where the multicenter bonds should be formed, and
so forth.
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How is it then, that organic chemists, armed only with
pencil, paper, and some knowledge of basic molecular
orbital theory and the Woodward–Hoffmann rules,33 can
often successfully predict the outcome of apparently complex
organic reactions? The simple answer is that the bonding in
such systems is generally rather easier to describe than in
clusters, and relatively accurate calculations may often be
used for guidance. However, with the advent of TSH theory,
the inorganic chemist now has tools that are similar in many
respects to those used in organic chemistry. The increased
difficulty of the analysis in inorganic clusters may then be
seen as a consequence of delocalization occurring in three
dimensions, and of the presence of d valence atomic orbitals
in Transition Metals.

TSH theory may be regarded as either a descent-in-
symmetry approach, or, equivalently, as a method that
exploits the existence of approximate quantum numbers
in roughly spherical clusters. The idealized high-symmetry
case in question is the free electron-on-a-sphere, for which
the wavefunctions are the spherical harmonics, YLM(θ, φ),
and the angular momentum operators L̂2 and L̂z have
corresponding good quantum numbers L and ML. In a finite
cluster, the Hamiltonian has lower symmetry appropriate
to the point group in question. TSH theory assumes that
approximately good quantum numbers still exist for the
angular momentum of an electron about the center of a
roughly spherical cluster, and exploits this assumption to
approximate the molecular orbitals. The resulting linear
combinations of atomic orbitals (LCAOs) would be the true
molecular orbitals of the cluster if it actually had spherical
symmetry; they are known as cluster orbitals. (See also LCAO
Approximation.) However, the usefulness of TSH theory goes
beyond this construction, in providing a transformation of
basis that may be applied to the results of any calculation in
which identifiable atomic orbitals are used. Despite the fact
that the ideal linear combinations of TSH theory actually
mix in real clusters, it is often true that they are still
recognizable. This is the essence of an approximate quantum
number.

Before developing the TSH approach in Section 5 to explain
some of the structure-electron count correlations described
above, we will first consider the connections between the
jellium, topological, and TSH methods in a little more detail.
It is noteworthy that none of these models in their usual form
includes any attempt to allow for electron correlation. Hence,
it is important to ask, for example, why TSH theory can
explain all the general structure-electron count correlations so
successfully. The answer is presumably that the correlation
energy is often not of primary importance in discriminating
between different geometries with the same number of
electrons. However, sometimes there exists more than one
low-energy structure associated with a given electron count;
in such cases, and in any case where the correlation energy
exhibits a large variation with geometry, we should anticipate
exceptions to the usual ‘rules’.

4.1 The Jellium Model

The jellium model was first developed by Knight et al.34

to explain the ‘magic numbers’ observed in mass spectra
of sodium and potassium clusters produced by supersonic
expansion in molecular beams.35 The method was adapted
from nuclear physics, where ‘magic number’ nuclear states
have been successfully explained.36 If the potential energy
vanishes inside a sphere and is infinite outside it, then the
energetic ordering of the solutions to the resulting Schrödinger
equation is

1s < 2p < 3d < 2s < 3f < 3p < 4g < 4d < 3s < 5h . . . , (2)

where 3d, for example, has no radial nodes and two angular
nodes and is fivefold degenerate. The notation is analogous
to that used for atomic orbitals, though different from that
used in some of the literature,34 and seems appropriate in
this context. The wavefunctions for any potential energy
function that depends only upon the distance from a fixed
origin may be written as a product of spherical harmonics12

and functions that depend only upon the distance. Hence, the
same degeneracies arise, because of the assumed spherical
symmetry, as for an atom. It is noteworthy that differences in
the order of these energy levels with a deep potential well only
occur for relatively high-lying solutions.37 Experimentally,
peaks in the mass spectra of sodium and potassium clusters
are indeed found for 8, 18, 20, 40, . . . atoms, corresponding
to completed electronic shells in the above scheme.38

Various refinements of the above model have been
proposed; for example, using alternative spherical potentials
or allowing for nonspherical perturbations,39−40 and these
can improve the agreement of the model with the abundance
peaks observed in different experimental spectra. For small
alkali metal clusters, the results are essentially equivalent to
those obtained by TSH theory, for the simple reason that
both approaches start from an assumption of zeroth-order
spherical symmetry. This connection has been emphasized
in two reviews,40,41 and also holds to some extent when
considerations of symmetry breaking are applied. This aspect
is discussed further below. The same shell structure is also
observed in simple Hückel calculations for alkali metals, again
basically due to the symmetry of the systems considered.42

However, the developments of TSH theory, below, and the
assumptions made in the jellium model itself, should make it
clear that the latter approach is only likely to be successful
for alkali and perhaps alkali earth metals. For example, recent
results for aluminium clusters have led to the suggestion
that symmetry-breaking effects are more important in these
systems.43

These conclusions are not unexpected. Firstly, the free-
electron approximation works best for the alkali metals,
with significant deviations for divalent and trivalent metals.44

Secondly, the LCAO-MO TSH treatment requires a more
complicated treatment of p and d orbitals, involving tensor



spherical harmonics. The jellium model makes no allowance
for these properties, and hence, the analogy to TSH theory
breaks down here. An alternative way to think about this
breakdown is in terms of the strength of the nonspherical
potential due to the nuclei,40,41 and its influence upon electrons
that occupy effective single-particle states. As the orbital
energy increases, so too does the de Broglie wavelength;12

and the effect of the nonuniform distribution of nuclei
becomes more significant. Splittings of the spherical symmetry
degeneracies should therefore increase with the orbital energy,
and will probably be greater for aluminium than, say, sodium,
because for a given cluster geometry there are more valence
electrons to accommodate. The former effect is apparent
around the Highest Occupied Molecular Orbital HOMO and
above in Hückel calculations on different cluster morphologies
containing up to 1000 atoms.45 One further viewpoint is
obtained by considering the magnitude of matrix elements of
the nuclear potential, expanded in terms of spherical harmonic
components.41

Before leaving the jellium model, it seems appropriate
to mention some results for sodium clusters of up to
22 000 atoms. The abundances observed can be explained
in terms of the extra stability associated with both completed
jellium shells (for less than about 3000 atoms) and with
completed icosahedral or cuboctahedral geometric shells for
larger sizes.46 The results are especially interesting because
of the observation of ‘supershells’ that occur because of
an interference effect, which has been explained using
semiclassical arguments.47

One further question that one might naturally ask of metal
clusters is how large they need to be for bulk properties to
manifest themselves.48 However, as the answer to this question
depends crucially upon the bulk property in question, and the
answer is still somewhat subjective, such issues will not be
pursued here.

4.2 Topological Approaches

In the most well-developed topological approach, the
mechanics of algebraic graph theory49 are applied to
enumerate the bonding and antibonding orbitals of a given
cluster. From the earliest work of King and Rouvray,50 the
method has been extended by King,51 leading to a self-
consistent framework for rationalizing the electron counts of
many of the systems mentioned in Section 3, among others.
Connections to TSH theory have been discussed in several
studies.27,52 Basically, the method analyzes structures in terms
of edge-localized, face-localized, and core-delocalized bonds
that arise in the middle of cluster polyhedra. Electron pairs
are then assigned to the resulting bonding orbitals, rather
like the construction of a valence-bond wavefunction12 when
multicenter orbitals are included as building blocks.

This approach is perhaps best illustrated by a simple
example. Consider a deltahedral cluster where the vertex
connectivity is greater than three, for example, B6H6

2−. One
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valence orbital per vertex is used to form a two-center, two-
electron bond to a terminal ligand (hydrogen in this case),
leaving three orbitals, which may be partitioned into two
functions that are tangential to the sphere on which the vertex
atoms lie, and one which points toward the center of the cluster.
Rationalization of the cluster electron count (Ne = 4n + 2)
proceeds as follows. We already have n bonding orbitals
corresponding to B−H bonds in this example. Pairwise overlap
of the 2n tangential orbitals then produces n bonding and n

antibonding sets, while overlap of the inward-pointing hybrids
gives rise to one particularly low-lying orbital,51 giving a total
of 2n + 1 bonding orbitals, which are completely filled by
4n + 2 electrons.

To describe edge-localized bonding, as in prismane, for
example, the three valence orbitals left after terminal bonding
are simply directed toward the three-neighboring vertices.
This is not unreasonable, but for more complex systems, it
may require some imagination to direct the various valence
orbitals along edges, into faces or into cavities to obtain the
required number of bonding orbitals. Furthermore, it can be a
significant approximation to neglect mixing between the radial
and tangential orbitals in some clusters.53 The corresponding
problem in TSH theory is the mixing of TSH σ - and π -
type cluster orbitals, which is readily quantified by simply
transforming the results of any MO calculation into a TSH
theory cluster orbital basis (see below).

Teo’s topological approach also deserves mention in this
section.54 It combines Euler’s theorem with the idea of an
effective atomic number rule for each cluster vertex, but
involves a rather arbitrary parameter whose purpose is to
correct for the formation of multicenter bonds.

4.3 Tensor Surface Harmonic (TSH) Theory

Stone’s TSH theory is framed within LCAO-MO theory,
whose power was first demonstrated in the field of cluster
chemistry by Longuet–Higgins and Roberts55 in providing the
first satisfactory analysis of icosahedral B12H12

2−. (See also
LCAO Approximation.) Here, it is perhaps worth mentioning
that the popular nomenclature for such species, that is,
‘electron deficient’, is a misnomer. Although there are
certainly not enough valence electrons in the cluster for all
the nearest-neighbor contacts to represent two-center, two-
electron bonds, it is not the case that there are unoccupied
bonding orbitals. On the contrary, all the bonding molecular
orbitals are precisely filled, as we shall see. (See also Electron
Deficient Compound).

The closest forerunner to TSH theory was due to Hoffmann,
Ruedenberg, and Verkade.56 These authors used spherical
harmonics at the center of the cluster to generate linear
combinations of orbitals with particular symmetry and nodal
characteristics. The energy of these orbitals could then be
estimated by the number of angular nodes in the parent
spherical harmonic. For alkali metal clusters, one could
actually produce the same answers for the symmetries of
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the bonding orbitals as for the spherical jellium model (above)
or TSH theory. However, once again the method cannot
work for systems, where p and d orbitals contribute to the
bonding, because then there are valence orbitals that have
intrinsic nodal planes containing the radius vector of the atom.
Stone’s principal contribution was to produce a remedy for
this problem.57

Let us first consider how the π molecular orbitals of
linear and cyclic conjugated polyenes may be obtained by
a descent-in-symmetry approach. If the electrons moved in
an average nuclear potential, the corresponding free-particle
wavefunctions would be the solutions of the Schrödinger
equation for a particle-in-a-box and a particle-on-a-ring,
respectively. These are, of course, just sine and cosine
functions,12,27 and there are ‘good’ quantum numbers
associated with the linear momentum and the angular
momentum about the center of the ring, respectively. The
corresponding linear combinations of pπ orbitals, which
have the same transformation properties as the free-electron
functions, are obtained by taking the coefficients to be the
values of the latter functions evaluated at the atom positions.27

In fact, if the boundary conditions are chosen appropriately,
this procedure gives precisely the molecular orbitals of simple
Hückel theory in both cases, as shown below. This result
should not be taken to mean that TSH theory has its basis in
Hückel theory. Rather, it is an illustration that the descent-
in-symmetry results from the free-electron problem may be a
very useful guide to the true LCAO-MO wavefunctions.

For a conjugated linear polyene with n atoms, it is not hard
to show27 that the normalized Hückel wavefunctions are given
by

ψm =
√

2

n + 1

∑
t

pπ (t) sin
πtm

n + 1
(3)

where 1 ≤ m ≤ n and pπ (t) is the π orbital at atom t . The
solutions of the Schrödinger equation for a free particle-in-a-
box of length L are

ψm =
√

2

L
sin

πxm

L
(4)

where m > 0. The (unnormalized) coefficients for each pπ

orbital in the expansion are now obtained from the values
of sin πxm/L at the atom positions if we identify x/L

with t/(n + 1). For a cyclic polyene, the normalized Hückel
wavefunctions are

ψms =
√

2

n

∑
t

pπ (t) sin
2πtm

n
or

ψmc =
√

2

n

∑
t

pπ (t) cos
2πtm

n
(5)

while for a free particle-on-a-ring the wavefunctions may be
written as

ψms =
√

1

π
sin mφ and ψmc =

√
1

π
cos mφ (6)

where φ is the angle that describes the particle’s position
on the ring. In this case, we may obtain the expansion
coefficient for pπ(t) from the above functions by setting
φ = 2πt/n.

Stone applied similar reasoning to the problem of
a three-dimensional cluster. Here, the solutions of the
corresponding free-particle problem for an electron-on-a-
sphere are spherical harmonics.12 These functions should be
familiar because they also describe the angular properties
of atomic orbitals.27 Two quantum numbers, L and M ,
are associated with the spherical harmonics, YLM(θ, φ), and
these define the eigenvalues for the operators L̂2 and L̂z,
which correspond to the square of the total orbital angular
momentum and its projection on the z-axis, respectively.
It is more convenient to use the real linear combinations
of YLM(θ, φ)and YL−M(θ, φ) (except when M = 0), and
these are written as YLMc(θ, φ) and YLMs(θ, φ) because
they are proportional to cos Mφ and sin Mφ, respectively.
Hence, the functions Y10, Y11c, and Y11s are proportional
to z, x, and y, respectively, as in pz, px , and py atomic
orbitals.

We now categorize the basis atomic orbitals in any, roughly
spherical, cluster according to the number of nodal planes they
possess that contain the radius vector. Hence, s atomic orbitals
are classified as σ -type cluster orbitals, and so are pz and
dz2 orbitals, where the local axes at each vertex are chosen
with the x and y directions tangential to the surface of the
sphere so that z points outwards along the radius vector.
Radially directed hybrids, such as spz are also σ -type under
this classification. Examples will be illustrated below. π -type
cluster orbitals have one intrinsic nodal plane containing the
radius vector, for example, px , py , dxz and dyz in the same
axis system. dxy and dx2−y2 functions contain two such nodal
planes, and are known as δ orbitals.27,57

A set of σ -type atomic orbitals transform amongst
themselves under point group operations like scalar quantities.
Hence, to construct descent-in-symmetry-type LCAO cluster
orbitals, we simply follow the same reasoning as for the linear
and cyclic polyenes, above, and define (unnormalized) σ -type
cluster orbitals as

Lσ
µ =

∑
t

YLµ(θt , φt )σ (t) (7)

where µ = Mc or Ms, σ(t) is a σ -type basis orbital at atom t

and θt and φt are the angular coordinates of atom t . We write
S, P , D, . . . when L = 0, 1, 2, . . . , by analogy with atomic
orbitals. This is as it should be, for our assumption that the
orbital angular momentum of an electron about the center



of the cluster provides approximate quantum numbers is not
unlike describing the cluster as a pseudoatom.

σ -cluster orbitals transform like the parent spherical
harmonics in any given point group, and these properties
are easily determined from standard descent-in-symmetry
tables.58 Sometimes it may be more convenient to omit the µ

subscripts from the cluster orbitals and give the transformation
properties instead. For example, the six 2s orbitals in Li6 form
a basis for a representation that spans12 A1g ⊕ T1u ⊕ Eg .
When transforming to a basis of cluster orbitals, we generally
start from functions with the smallest L and work up. In this
case, the cluster orbitals are Sσ (A1g), P σ (T1u), and Dσ

0,2c(Eg)

as illustrated in Figure 1, where the three P σ (T1u) functions
transform like x, y, and z and correspond to the Y11c, Y11s , and
Y10 spherical harmonics. Note that in this case, the energetic
ordering is simply expected to follow the number of nodes in
the cluster orbital.

π -type basis functions, however, transform like a set of unit
vectors because the intrinsic nodal plane in each one defines a
particular direction. Stone recognized that appropriate LCAO
combinations may be formed using vector surface harmonics,
which have both magnitude and direction at any given point in
space. Hence, instead of LCAO expansion coefficients, which
are just the values of spherical harmonics evaluated at the
atom sites, the coefficients for π -type basis functions define
not only an amplitude but also the direction in which the
π -functions point.27,57

x y

x y

z

z

Ds
z2

Ps
z

x y

z
Ss

Ps
x Ps

y

Ds
x2−y2

Figure 1 The (unnormalized) σ -cluster orbitals of an Octahedral
cluster, such as Li6 for which the basis functions are 2s orbitals.27

The light and dark shading indicates the phase; the atoms are
represented as small filled black circles. (This figure was produced
using Mathematica 2.0  Wolfram Research Inc., 1990.)
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In fact, two types of vector function can be derived from
the spherical harmonics, and these are defined by

VLM = ∇YLM and VLM = r × VLM = r × ∇YLM (8)

where × denotes the vector cross product and ∇ is the
gradient operator, which is (∂/∂x, ∂/∂y, ∂/∂z) in Cartesian
coordinates. These vector functions are clearly orthogonal;
VLM has the same parity as the parent YLM ; it is a polar
(or even) vector surface harmonic. VLM has the opposite
parity (i.e. it changes sign under inversion if L is even, and
is unchanged if L is odd) and is an axial (or odd) vector
surface harmonic. The first π -cluster orbitals are the P π and
P

π
sets because the derivatives of Y00(θ, φ) are zero. We

denote the even and odd sets generically by Lπ and L
π

respectively; the pπ cluster orbitals of an octahedron are given
in Figure 7.

Linear combinations of radial p orbitals, or sp hybrids,
may be used to construct σ -cluster orbitals as mentioned
above. If we consider an n-vertex cluster, then there are
2n π -type p orbitals, that is, two at each vertex, and these
correspond to the two independent directions at each site
tangential to the surface of the sphere upon which all the
atoms are assumed to lie. It is convenient to choose the two
directions corresponding to the spherical polar coordinates θ

and φ increasing, that is, along the unit vectors êθ and êφ .
Using the standard form for the gradient vector operator
in spherical polars, this gives the two orthogonal vector
functions

VLµ = ∂YLµ

∂θ
êθ + 1

sin θ

∂YLµ

∂φ
êφ and

VLµ = − 1

sin θ

∂YLµ

∂φ
êθ + ∂YLµ

∂θ
êφ (9)

The θ component of VLµ, written V
θ

Lµ, is the same as the

negative of V
φ

Lµ while V
φ

Lµ = V θ
Lµ. Hence, odd π cluster

orbitals may be obtained from their even partners by rotating
the p orbital components through 90◦ about the radius vector.
These cluster orbitals may be written as

Lπ
µ =

∑
t

(
V θ

Lµ(t)pθ (t) + V
φ

Lµ(t)pφ(t)
)

and

L
π

µ =
∑

t

(
V

θ

Lµ(t)pθ (t) + V
φ

Lµ(t)pφ(t)
)

(10)

where the functions are evaluated at the atom positions t as for
the σ cluster orbitals. We could therefore sketch the π cluster
orbitals from pθ and pφ orbitals at each vertex using the
appropriate expansion coefficients. However, an alternative
representation would take just one resultant p orbital, which
is the superposition of these two, taking into account their
relative weights in a given cluster orbital. This is just the
same as choosing one p orbital at each site with the direction
and magnitude of the tangential component of VLµ or VLµ
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at that point. This fact was used to produce Figure 7 in
Section 5.

As for σ cluster orbitals, the transformation of basis to
give π cluster orbitals from π -type basis atomic orbitals
is not unique. To define a transformation, we must first
form and reduce the representation, �π/π , spanned by the
2n π orbitals of a given n-vertex cluster.27 Conventionally,
we start from L = 1, M = 0 and take the corresponding
Lπ

µ and L
π

µ cluster orbitals until we have matched the
irreducible representations contained in �π/π in number
and type. Usually, this gives a linearly independent set
of cluster orbitals; if not, then functions of higher L

or M with the appropriate symmetry are substituted to
produce such a set. It is helpful to realize that Lπ

µ orbitals
transform in the same way as the parent YLµ(θ, φ) functions
under operations of the point group; the corresponding
odd functions L

π

µ transform in the same way under pure
rotations, but with a sign change under reflections, inversions,
and rotation–reflections.27 Detailed worked examples for
the equilateral triangle and the octahedron may be found
elsewhere.27

Transition metal clusters also have dxy and dx2−y2 atomic
orbitals, which are classified as δ-type in TSH theory. To
represent the transformation properties of these orbitals, we
use second derivatives of the spherical harmonics, that is,
tensor spherical harmonics – hence the name of the theory. As
for the vector surface harmonics, there are again both odd and
even δ cluster orbitals, denoted by L

δ
and Lδ, respectively.

Usually, both sets are completely filled in transition metal
clusters, and we will not consider their properties in any detail
in this review. However, the cases of partial occupation are
important and have been described in previous articles.27,59

Having provided an overview of the TSH theory cluster
orbital transformation, it may be as well to emphasize once
more the idea behind this approach, namely, to guess first
approximations to the true molecular orbitals of the system.
In this section, we have basically dealt with the mechanics of
this transformation; to see how it leads to a general theoretical
basis for structure-electron counting rules, we need to know
the energies of the cluster orbitals. This problem is considered
in the next section; for σ cluster orbitals, simple node-counting
arguments suffice, while for clusters where π cluster orbitals
are occupied, we must introduce the TSH theory ‘pairing
principle’.

There are, however, some other useful applications due to
Mingos and coworkers that are based upon or framed within
TSH theory, but will not be dealt with here. For example, the
TSH theory pairing theorem may be generalized and used to
analyze nonbonding orbitals in hydrocarbon polyenes, coor-
dination compounds, and clusters.60 The ligand and central
atom valence orbitals may be classified using TSH theory
to analyze the bonding and the stereochemistries of coor-
dination compounds.61 Finally, an alternative transformation
framework has been developed in terms of edge-localized and
face-centered equivalent orbitals.62

5 FURTHER DEVELOPMENT OF TSH THEORY

5.1 Clusters Involving Only σ orbitals

5.1.1 Characteristics of σ cluster Orbitals

In clusters where the contributions of p and d atomic
orbitals can be neglected, the bonding is especially simple.
In such cases, we need to only consider σ cluster orbitals,
whose energies are basically defined by node counting. For
such systems, the same qualitative energy-level pattern often
results as for jellium models, because the angular parts of the
jellium wavefunctions are also spherical harmonics. Hence,
the same ‘magic numbers’ for precisely filled electronic shells
are also found, as mentioned in Section 4.1 above. The σ

cluster orbitals for an octahedron were illustrated in Figure 1.
For a cluster with n vertices, the cluster orbital transfor-

mation involves n functions. For deltahedral geometries, it is
generally not necessary to use the cluster orbitals from the set
with L + 1 until all the 2L + 1 members of the set based upon
the spherical harmonics YLµ(θ, φ) have been used. However,
this is not possible for all systems, such as three-connected
structures and bipyramids.27 For example, if all the atoms
of a particular cluster happen to lie on nodal planes of one
of the spherical harmonics, then no σ cluster orbital can be
constructed from that function.

The energies of the Lσ
µ depend principally upon the value

of L, because this defines the number of angular nodes.
The nodeless Sσ orbital always lies lowest, followed by
P σ , Dσ , . . ., and so forth. Furthermore, for a given value of
L, the Lσ orbitals become more bonding as the number of
atoms in the cluster increases, so long as all these atoms lie
approximately on a single sphere.57 The P σ and Dσ orbitals
usually become bonding when n is greater than about 6 and
16, respectively. Hence, filled bonding sets of orbitals are
expected for 2 electrons, 8 electrons (n > 6), and 18 electrons
(n > 16), and these correspond to the same ‘magic numbers’
for sodium clusters as predicted by the jellium model, above.
However, in a finite cluster, the degeneracies associated with
spherical symmetry are usually split, so this is by no means
a complete explanation of why such magic number clusters
are especially stable. Furthermore, one should really be more
precise about whether it is kinetic or thermodynamic stability
(or both) that is in question.

5.1.2 Splitting of σ cluster Orbitals

In radially bonded clusters, the bonding cluster orbital
energy levels lie lower when the number of nearest neighbors
per atom is maximized, and this usually corresponds to
close-packed high-symmetry structures. However, in clusters
that do not correspond to completely filled Sσ , P σ and
so on, shells, it may be more favorable for the cluster to
distort and open up a significant HOMO-LUMO gap. The



splittings induced by symmetry-lowering distortions of an
Lσ shell follow an approximate center-of-gravity rule,63

and so stabilization of the occupied orbitals and a large
HOMO-LUMO gap are synonymous at this qualitative level
of theory. The sense of the splitting (i.e. which orbitals are
stabilized and which are destabilized) depends upon the way
in which the cluster is distorted and can be analyzed rather
like the splitting of atomic d orbitals in transition metal
complexes.64

Two different classes of distortion may be recognized,
namely oblate and prolate.63 A prolate molecule, like CH3F,
has two equal principal moments of inertia, which are greater
than the third, while an oblate molecule, like NH3, has two
equal moments of inertia, which are less than the third.
In each case, the unique axis corresponds to a rotational
axis of order 3 or more. The classification may be loosely
extended to less symmetrical species, where two of the
principal moments of inertia are similar and different from the
third.

If applied with due caution, these ideas may provide useful
insight. In any planar structure, the P σ

0 cluster orbital vanishes
if the z axis is taken perpendicular to the plane, and we
cannot apply the barycentre principle. In the triangle and
square, the P σ

1c,1s orbitals are antibonding and nonbonding,
respectively, and Na3, Na4, Li3, Li4 are all found to be planar,
albeit relatively unsymmetrical, structures.11 In nonplanar
clusters with more than around 6 atoms, the P σ

1c,1s pair are
expected to lie lower than P σ

0 , as shown in Figure 2. In
agreement with this observation, both Na6 and Li6 exhibit
a low-energy oblate geometry, that is, a capped pentagonal
structure, as well as a planar raft, and both are favorable
according to ab initio calculations.11 In contrast, both Na8

and Li8 are calculated11 to adopt tetracapped tetrahedral
geometries, where the P σ orbitals are all degenerate and
precisely filled.

Similar considerations apply to gold clusters of the form
Aum(PPh3)

x+
m , where the 5d orbitals may be treated as a closed

shell in the first approximation, and bonding occurs principally
through inwardly directed s/pz σ hybrids.65 For example,

Oblate Prolate

E
ne

rg
y

Ps
0

Ps
0

Ps

Ps
±1

Ps
±1

Figure 2 The idealized splitting of the P σ orbitals in nonplanar
oblate and prolate clusters
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(a) (b)

Figure 3 The gold skeletons of (a) Au6(PPh3)6
2+ and

(b) Au7(PPh3)7
+

Au6(PPh3)6
2+ has a D2h pseudoprolate gold skeleton, in which

the P σ
0 cluster orbital is preferentially stabilized. However,

Au7(PPh3)7
+ is an oblate pentagonal bipyramid, where the

two P σ
1c,1s orbitals are occupied27 (Figure 3).

5.2 The TSH Pairing Principle

In most clusters, the bonding is more complicated than
for the systems discussed in the previous section, because
π -cluster orbitals must be considered. One simplification
is obtained from an energy-pairing relation57 between even
cluster orbitals Lπ

µ and their odd partners L
π

µ.
The idea of a pairing rule may be more famil-

iar in the context of conjugated alternant hydrocarbons
(which are defined as those containing no odd-membered
rings). Coulson and Rushbrooke66 showed that the Hückel
molecular orbitals of such systems occur in pairs with
energy α ± λβ, where α and β are the usual ener-
getic parameters of Hückel Theory.12 The LCAO coeffi-
cients of either of the partner orbitals may be obtained
from the other by changing the signs of alternate
coefficients.

The TSH theory pairing principle plays a similar role
in cluster bonding. It can be shown that the energies of
partner Lπ

µ and L
π

µ cluster orbitals have the same magnitude
but opposite signs with respect to an origin at α. Several
approximations are made in the proof,27 for example, all the
atoms are assumed to lie on a sphere, and the β parameters for
π orbitals interacting in σ - and π -fashion are assumed to be
the same. Neglect of nonnearest neighbors is not necessary,
however.27 The usefulness of this result is probably best
illustrated by the detailed analysis of B6H6

2− in the following
section.

5.3 Bonding in Deltahedral Clusters

5.3.1 Analysis of B6H6
2−

As mentioned in Section 3, the deltahedral closo-boranes,
BnHn

2−, and carboranes, C2Bn−2Hn, have 4n + 2 valence
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electrons. In this section, the presence of 2n + 1 bonding
molecular orbitals, of which n + 1 may be identified with
skeletal bonding, is explained using TSH theory. The
structures of the closo-boranes from B5H5

2− to B12H12
2−

are illustrated in Figure 4 (see also Boron: Polyhedral
Carboranes).

2n of the valence electrons are associated with n two-
center, two-electron B−H bonds, and will not be considered
further. In deltahedra, we generally find that all the even π

cluster orbitals are bonding in character, and all their odd
partners are therefore antibonding, by the pairing principle.
The n + 1 skeletal bonding orbitals may be formally identified
as Sσ and the n even Lπ orbitals. However, the P σ set may
be bonding in character too, but these orbitals transform
in the same way as the corresponding P π orbitals, and
hence the two sets mix to give strongly bonding and
antibonding combinations. Because of this σ/π mixing, we are
generally guaranteed to have n + 1 skeletal bonding orbitals
in deltahedral clusters.

A detailed analysis of the bonding in B6H6
2− should

help illustrate exactly how the TSH approach is applied; the
labelling scheme for this cluster is illustrated in Figure 5.
The six σ cluster orbitals, Sσ (A1g), P σ (T1u), and Dσ(Eg),
generated by the s orbitals in Li6 or Na6 were shown in
Figure 1. For B6H6

2−, it is more appropriate to form radial
spz hybrids from the outset, and use these as the basis
for the B−H bonds and the Lσ cluster orbitals. The same
linear combinations are generated, and these are shown for
the inwardly directed sets in Figure 6. Explicitly, the linear
combinations are

Orbital LCAO form Energy

Sσ
0 (A1g)

√
1
6 (σ (1) + σ(2) + σ(3) α + 4β

+σ(4) + σ(5) + σ(6))

P σ
0,1c,1s(T1u)




√
1
2 (σ (1) − σ(6))√
1
2 (σ (2) − σ(4))√
1
2 (σ (3) − σ(5))




α

Dσ
0,2c(Eg)




1
2 (σ (2) + σ(4) − σ(3) − σ(5))√

1
12 (2σ(1) + 2σ(6) − σ(2)

−σ(3) − σ(4) − σ(5))


 α − 2β

To form P σ
1c ≡ P σ

z , for example, we need only use the
value of z at each vertex to obtain P σ

z ∝ (σ (1) − σ(6)). The
energies have been evaluated in the Hückel approximation
(see Hückel Theory), but this is simply to provide an idea of
the bonding/antibonding character, and some more accurate
calculations will be discussed below. (Note that the splitting
obeys another center-of-gravity rule.) The normalization is
simply 1/

√
2, as overlap between the two σ orbitals has been

neglected.27

B5H2− D3h5

B7H2− D5h7 B8H2− D2d8

B9H2− D3h9 B10H 2− D4d10

B11H 2− C2v11 B12H 2− Ih12

B6H2− Oh6

Figure 4 Structures of the closo-boranes from B5H5
2− to B12H12

2−;
these are the optimized geometries calculated with a minimal STO-3G
basis. (This figure was produced using Mathematica 2.0  Wolfram
Research Inc., 1990.)

To find the linear combinations required for the π

cluster orbitals, we must first form and reduce the
representation spanned by the 12 tangential pπ atomic orbitals,
�π/π . The result is27 �π/π = T1u ⊕ T1g ⊕ T2g ⊕ T2u, and
the corresponding cluster orbitals are P π(T1u), P

π
(T1g),

Dπ
1c,1s,2s(T2g), and D

π

1c,1s,2s(T2u). Owing to the particular



z

1
4

3
6

2

5

x y

Figure 5 Structure and labeling scheme for the B6H6
2− octahedron

Ds
z2

P s
z

Ss

P s
x P s

y

Ds
x2−y2

Figure 6 Unnormalized Lσ cluster orbitals for B6H6
2− formed

from inwardly pointing spz hybrids. Each arrow represents a hybrid
valence orbital contribution to the molecular orbital in both magnitude
and direction. (This figure was produced using Mathematica 2.0 
Wolfram Research Inc., 1990.)

symmetry of this cluster, it is quite convenient to express
everything in Cartesian coordinates rather than spherical
polars, that is, using px , py , and pz instead of pθ and pφ .
The only disadvantage is that the relationship between odd
and even partner orbitals is more obvious when the latter
basis functions are used, but this analysis may be found
elsewhere.27 In the following linear combinations, the x, y

and z directions correspond to the global axes, as defined
in Figure 5, not the local axes described previously. (Note
that ∇z has no tangential components at vertices 1 and 6,
and no radial components at the other atoms.) To form P π

0 ,
for example, we simply use the fact that ∇z = (0, 0, 1),
so that P π

0 = 1
2 (pz(2) + pz(3) + pz(4) + pz(5)), where the

normalization has been added as for the σ -cluster orbitals
above. Hence, the full set of π orbitals is
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Orbital LCAO form Energy

P π
0,1c,1s(T1u)




1
2 (pz(2) + pz(3) + pz(4) + pz(5))
1
2 (px(1) + px(6) + px(3) + px(5))
1
2 (py(1) + py(6) + py(2) + py(4))


 α + 2β

P
π

0,1c,1s(T1g)




1
2 (−py(2) + px(3) + py(4) − px(5))

1
2 (py(1) − py(6) − pz(3) + pz(5))

1
2 (−px(1) + px(6) + pz(2) − pz(4))


 α − 2β

Dπ
1c,1s,2s(T2g)




1
2 (px(1) − px(6) + pz(2) − pz(4))
1
2 (py(1) − py(6) − pz(5) + pz(3))
1
2 (py(2) − py(4) − px(5) + px(3))


 α + 2β

D
π

1c,1s,2s(T2u)




1
2 (py(1) + py(6) − py(2) − py(4))

1
2 (−px(1) − px(6) + px(5) + px(3))

1
2 (pz(2) + pz(4) − pz(5) − pz(3))


 α − 2β

Again, the Hückel energies are given simply as a guide to
the bonding character and do not imply that the Hückel
approximation must necessarily be used. (See also Hückel
Theory.) These functions are illustrated in Figure 7; note
that all of them contain nodes, but where these are
only intrinsic to the atomic orbitals, they do not lead
to antibonding interactions. The intrinsic nodes are not
explicitly illustrated; they would, of course, bisect each
arrow.

A qualitative energy-level diagram for the separate Lσ and
Lπ sets is shown in Figure 8. When the two sets are allowed to
mix, we expect to find seven strongly bonding orbitals that may
be written as Sσ (A1g), P σ/π(T1u) and Dπ(T2g). To verify this
result, one may perform any sort of standard MO calculation
and transform to the cluster orbital basis.27 For comparison,
the energy-level spectrum resulting from a minimal basis set
calculation is given in Figure 9. This analysis illustrates the
general result that n-vertex deltahedra have n + 1 skeletal
bonding orbitals, which may formally be identified with the
Sσ and Lπ cluster orbitals. Although the composition of the
occupied orbitals may change when σ/π mixing is admitted,
the symmetries of the occupied set do not.

5.3.2 Symmetry-Forced Electron Count Deviations

We may also use the TSH formalism to explain systematic
deviations from the usual deltahedral electron count. Such
cases arise when the two members of a pair of degenerate
Lπ orbitals are paired with one another, and must therefore
both be nonbonding.67 This will be the case in any cluster
where �π/π contains an odd number of E-type irreducible
representations (IR’s). Fowler67 proved that any cluster with
a rotation axis of order 3 or more, and a single vertex atom
lying on that axis, would be forced to deviate from the usual
skeletal electron count. These results were generalized by
Johnston and Mingos,68 who classified clusters as nonpolar,
polar, or bipolar according to the number of atoms on the
principal rotation axis, that is, 0, 1, or 2, respectively. For
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Pp(T1g)

Dp(T2u)

Pp(T1u)

Dp(T2g)

Figure 7 Lπ cluster orbitals for B6H6
2− formed from tangential

p orbitals. Each arrow represents a p orbital contribution to the
molecular orbital in both magnitude and direction, for example, all
the arrow heads may be taken as the positive lobes. (This figure was
produced using Mathematica 2.0  Wolfram Research Inc., 1990.)
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Figure 8 Qualitative energy-level diagram for the Lσ and Lπ

cluster orbitals of an octahedron, prior to mixing. The units are
arbitrary, and the relative scales for the σ (right) and π (left) sets
cannot be determined precisely without further calculation. P

π
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D
π

both lie at +2 units and P π and Dπ at −2 units

polar deltahedral clusters, the principal axis can only have
order 3, because all the faces must be triangular, and the
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Figure 9 Energy-level diagram for B6H6
2− calculated for the

optimized geometry using a minimal STO-3G basis. The cluster
orbitals have been picked out and labeled appropriately

axis passes through only one vertex, by definition. Hence,
we expect deviations only for clusters with 3p + 1 vertices.
In fact, axes of order 2 are possible for a polar deltahedron
if an edge is bisected, as in B11H11

2−, and in such systems
the HOMO-LUMO gap may be small, depending upon the
splitting of the idealized e pair of frontier orbitals. When
there is a threefold axis, the π orbitals of each set of three
equivalent atoms span precisely two E-type IR’s. However,
the pπ orbitals of the unique vertex atom also span an E

symmetry IR, giving 2p + 1 in total. Since all the even π

cluster orbitals of E symmetry must find odd partners in
this set, it follows that one pair must be paired with itself,
and is therefore nonbonding68 because of the energy-pairing
principle described in Section 5.2. As this result depends
critically upon the point group, it is hard to see how it could
be derived by any other approach that does not consider
symmetry explicitly.

Polar deltahedra with an approximately nonbonding e

pair of orbitals might have either 4n or 4n + 4 valence
electrons, depending upon whether these orbitals are vacant
or fully occupied. Here, as usual, we are assuming that
intermediate occupation numbers would be unfavorable, since
they would entail open shells and/or Jahn–Teller distortions.
Both cases are known for p = 1, that is, n = 4 vertices,
with B4Cl4 and P4 tetrahedra having 8 and 12 skeletal
valence electrons, respectively. The latter cluster can also be
described in terms of two-center, two-electron edge-localized
bonds, as discussed below. Examples for larger systems are
found amongst the hypothetical closo-boranes investigated
by Fowler;67some more complicated cases have also been
considered and various examples are known for Transition
Metals.69,68

In fact, it is also possible for nonpolar deltahedra to
exhibit deviations from the usual electron-counting rules.68

The D3h tricapped trigonal prism provides an interesting
example. In B9H9

2− (see Figure 4), which has the usual



n + 1 = 10 skeletal electron pairs, the HOMO is actually odd
in character (F

π

0 ) and the HOMO-LUMO gap is rather small.
Hence, it is perhaps not surprising that B9Cl9 and Bi95+ have
analogous structures, but 9 and 11 skeletal electron pairs,
respectively.

5.3.3 The closo, nido, arachno Debor Pattern

TSH theory also provides an explanation for the number of
bonding orbitals observed in related closo, nido, and arachno
clusters.21,57 Consider the notional formation of a nido cluster
by removing a B−H vertex from a closo system. Now assume
an idealized axial symmetry for the cluster such that the pπ

orbitals of the vertex removed span an E-type IR. If the
original closo cluster has a ‘normal’ electron count, that is,
n + 1 skeletal bonding orbitals, then it must have been bipolar,

that is, there were two vertices lying on the rotation axis on
different sides of the cluster. It follows that the nido cluster
is itself polar, and could exhibit n or n + 2 skeletal electron
pairs, where n is now the number of vertices remaining in
the nido cluster. Furthermore, the approximately nonbonding
e pair of orbitals must have significant amplitude around
the open face, because they would interact strongly with the
corresponding orbitals of the missing vertex. Usually, the
open face is protonated, thus stabilizing the frontier e pair and
leading to n + 2 occupied skeletal orbitals that is, the same as
in the parent closo cluster with n + 1 vertices. The loss of just
one inwardly directed σ hybrid does not generally destabilize
the Sσ orbital significantly.

An alternative explanation has been given within the
topological graph-theoretical framework50 using the ‘Principle
of Polyhedral Excision’. Here, it is argued that the atoms
bordering each ‘hole’ left by removing a vertex would interact
to give a core-type bonding orbital in addition to the usual
core orbital and the n bonding orbitals resulting from pairwise
overlap of the tangential orbitals at each vertex. However,
this does not explain the presence of a nonbonding pair of
e orbitals around the open face, which can be verified by
calculation.

Of course, as with all these general structure-electron count
correlation ‘rules,’ there is scope for deviation. For example,
if the nido cluster does not have a threefold or higher-order
axis (a higher-order axis is possible because the cluster is
no longer deltahedral), then the idealized e pair will be
split. The electron count will then depend upon the splitting,
specific stabilization by protonation, and so on. Of course, as
successive vertices are removed, the cluster may also deviate
significantly from the assumed roughly spherical arrangement
of atoms.

The TSH formalism may also be used to explain the
electron counts of arachno clusters, why the ‘missing’ vertex
in a nido cluster usually gives the largest possible open
face, and why it appears to be most favorable to ‘remove’
two adjacent vertices to give an arachno cluster. Since
the (possibly idealized) nonbonding e pair of orbitals has
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significant amplitude around the open face, each orbital must
have a single nodal plane passing through this face. The
consequent antibonding interactions are minimized if the open
face is as large as possible, as then their contribution relative
to the in-phase bonding interactions is minimized.57 This also
explains why neighboring vertices appear to be ‘lost’ to give
arachno clusters. To rationalize the electron count of such an
arachno cluster requires further idealizations.57 The essential
idea is that two e-type nonbonding pairs of orbitals are created;
the details are omitted here.

5.4 Transition Metal Clusters

The analysis of these molecules is complicated by the
presence of the d orbitals, which contribute one orbital of
σ symmetry (dz2 in local axes), two of π symmetry (dxz and
dyz), and two of δ symmetry (dxy and dx2−y2 ). There are
far more examples of deviations from the usual patterns in
transition metal clusters than in main group clusters, and
many of these must be treated specifically, although TSH
theory may again provide a useful framework in which to
perform the analysis. However, in this section the objective
will simply be to understand the most common patterns, as
set out in Section 3, which are typically found in clusters with
π -acceptor ligands such as CO.

It is easiest to derive the number of inaccessible orbitals
in this case, that is, the number of orbitals that are too high
in energy to contain electrons, and we divide the ns, np,
and (n − 1)d orbitals (n here represents a principal quantum
number, for example, 4s, 4p, 3d) into three sets. By suitable
Hybridization, we may construct in-pointing and out-pointing
σ and π orbitals, leaving one orbital of σ character and
the two δ orbitals. The latter consist approximately of dz2 ,
dxy , and dx2−y2 , and are conveniently referred to as the ‘t2g’
set by analogy to the way they transform in Octahedral
transition metal complexes. Similar divisions are made in the
graph-theoretical approach.51

The t2g set and the three out-pointing hybrids usually
correlate formally with accessible orbitals, with varying ligand
character, assuming that there are sufficient π -acceptor ligands
to stabilize them. This is usually the case in clusters composed
of so-called ‘conical’ M(CO)3 vertices. However, deviations
may occur for lower carbonyl to metal ratios. It follows
that the detailed geometrical arrangement of the ligands is
not of primary importance, so long as there are enough
of them. This result is in agreement with the fluxionality
commonly observed in transition metal carbonyls and with the
view that the carbonyl arrangement is determined principally
by packing considerations.70 The remaining in-pointing σ

and π orbitals then give rise to n + 1 bonding and 2n − 1
antibonding orbitals, as discussed for main group deltahedral
clusters in the preceding section. Indeed, this is actually the
basis of the Isolobal Principle.23 The antibonding orbitals are
not stabilized by ligand interactions because they are inwardly
directed, and hence they are termed ‘inaccessible’. The result
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is 7n + 1 accessible orbitals and 14n + 2 valence electrons,
in agreement with calculations by Lauher71 and Ciani and
Sironi.72

It is noteworthy that the δ orbitals are always considered
to be accessible in this analysis, and need not be considered
further. Of course, this assumption is not always true, but
clusters where the δ orbitals need to be analyzed in detail
will not be treated here.27,73 Furthermore, since the only
inaccessible orbitals arise from the inwardly directed σ and π

interactions, the same analysis for symmetry-forced electron
counts involving one additional occupied (or unoccupied)
orbital holds.68 Closo, nido, and arachno relationships follow
by analogy so long as no additional inaccessible orbitals
arise.

5.5 Bonding in Three-Connected Clusters

Here, we deal with clusters such as prismane, C6H6, and
cubane C8H8, which can simply be described in terms of
edge-localized two-center, two-electron bonds. Why, then,
is it necessary to devote any space to such molecules? The
answer is that it was not initially clear how TSH theory
can rationalize the electron counts of these molecules. Of
course, this is not entirely surprising, as the Hybridization
patterns used in the TSH model are not well adapted to cover
this situation. However, the correct answer can be obtained
without abandoning the framework developed in the preceding
sections.

The reason why the TSH analysis of deltahedral clusters,
with n + 1 skeletal bonding orbitals, is inapplicable is that
the Lπ and L

π
cluster orbitals are not necessarily bonding

and antibonding, respectively, in three-connected clusters.
This result is basically due to the low coordination number
and the relatively sparse manner in which the vertices in
three-connected structures cover a sphere.52

An n-vertex three-connected cluster has 3n/2 edge-
localized bonds, that is, 3n skeletal valence electrons rather
than the 2n + 2 found in deltahedra. Johnston and Mingos
considered the 3n/2 skeletal bonding orbitals in terms of linear
combinations of the localized bonds, identifying n/2 + 2
combinations that are ‘face-bonding’ and n − 2 that are
‘face-antibonding’.74 The face-bonding combinations have
all the localized bonds in phase around each face, the face-
antibonding (or nonbonding) combinations do not, and lie
somewhat higher in energy, though they are, of course,
bonding overall. A TSH analysis52,74 identifies the n/2 + 2
strongly bonding combinations as Sσ and n/2 + 1 members
of the Lπ set. The more weakly bonding skeletal orbitals
then consist of the remaining n/2 − 1 Lπ orbitals, and their
parity-related L

π
partners.

5.6 Additional Examples

There is space to provide only a very brief mention of how
TSH theory is able to rationalize some of the other bonding

patterns mentioned in Section 3. TSH analyses of the bonding
in cylindrical clusters75 and the hyper–closo versus iso–closo
discussion76 may also be found in the literature.

5.6.1 Interstitial Atoms

For larger clusters, the central cavity may be big enough
to accommodate additional atoms. For example, the distance
from the shell to the center of a cuboctahedral cluster is the
same as the nearest-neighbor distance within the shell, and
the cavity at the center of an Octahedral transition metal
cluster is typically large enough to accommodate first-row
main group atoms such as boron, carbon, or nitrogen. The
valence orbitals of such interstitial atoms will generally mix
with inwardly directed Lσ and Lπ orbitals of the shell that
have the same symmetry, leading to strongly bonding and
antibonding combinations.

For a main group atom in a radially bonded cluster
(see Section 5.1), the analysis is especially simple, as the s
and p orbitals of the interstitial transform in the same way
as the Sσ and P σ cluster orbitals. The net result is that
the original energy-level spectrum is reinforced, with more
strongly bonding s/Sσ and p/P σ in-phase combinations
and additional inaccessible antibonding combinations, as
shown in Figure 10. Hence, the interstitial atom effectively
acts as an electron donor, without producing any new
bonding orbitals, and therefore represents a possible remedy
for ‘electron deficiency’. (See also Electron Deficient
Compound.) However, this does not mean that a large charge
is necessarily associated with the interstitial atom. A simple
example is Na6Mg in which the magnesium atom occupies
the central position in a sodium octahedron. This cluster has
8 valence electrons, completely filling the bonding s/Sσ and
p/P σ orbitals.27

The same pattern emerges in simple transition metal
carbonyls27 such as Ru6C(CO)16

2−, which has 86 valence
electrons as does Ru6(CO)18

2−. Some more complicated

p

Fs

Ss

Ps

Ds

s

Figure 10 Schematic energy-level spectrum for a radially bonded
cluster with a main group interstitial atom



examples27 are provided by halide clusters with interstitial
main group atoms, a wide variety of which have been
characterized by Corbett and his coworkers.77

5.6.2 The Capping,22,30 Condensation,31and Inclusion78

Principles

Of these three ‘Principles’ mentioned in Section 3, the
Capping Principle is the easiest to understand.22,30 The others
will only be mentioned briefly here; more details may be
found elsewhere.27It should also be mentioned that King has
proposed alternative visualizations of the bonding in such
systems within his graph-theoretical approach.51

Consider a transition metal cluster that consists of an
n-vertex deltahedron with m additional caps that are well
separated so that they do not interact significantly with one
another. Because the inaccessible orbitals of the deltahedron
are all inwardly hybridized, they will only mix very weakly
with orbitals on the capping atoms, and we do not expect to
obtain any new bonding orbitals in this fashion. If the caps
are also transition metal atoms, then we may again describe
each one in terms of three inwardly directed orbitals (one σ

plus two π ), a ‘t2g’ set and three outward-pointing hybrids
(again one σ plus two π ). The six orbitals consisting of the t2g

set and the outward-pointing hybrids will be accessible, but
the inward-pointing hybrids mix with orbitals of the n-vertex
deltahedron, which have already been formally identified as
accessible. Hence, the addition of a single capping atom
generally increases the valence electron count by just 12.
However, additional accessible orbitals can occur if there are
inwardly pointing L

π
orbitals generated by a set of capping

atoms that are not matched in symmetry by any accessible
orbitals of the inner sphere. The tricapped trigonal prism may
be analyzed in this way.27

5.6.3 Silicon Clusters

A short discussion of the bonding in small silicon clusters
will demonstrate how the TSH framework may be useful in
considering the structures of less familiar molecules. These
species have received much attention in recent years, partly
because of the technological significance of silicon as a
semiconductor. Calculational strategies fall into two camps,
namely, ab initio quantum mechanical treatments of some
kind and analyses that employ analytic empirical atom–atom
potentials.79

Slee, Lin, and Mingos80 have analyzed the geometries
of small silicon clusters, exploiting a connection with the
deltahedral boranes and carboranes. A silicon atom with
an out-pointing lone pair and three in-pointing hybrids is
isolobal to a B−H vertex. However, Sin clusters have 4n

valence electrons, two fewer than the corresponding boranes,
BnHn

2−. Hence, we should not expect the two series of
clusters to be isostructural, but it may be helpful to start
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from the corresponding borane deltahedron and consider
how the structure might distort to destabilize one of the
skeletal bonding orbitals.80 Of course, Sin clusters could adopt
structures analogous to Cn, with two-center, two-electron
bonds and delocalized π systems. However, this is probably
not favorable because carbon is unusual in its ability to form
strong π bonds. Silicon clusters therefore tend to exhibit
delocalized bonding and higher coordination numbers.

The P
σ/π
z orbital, where the z-direction defines the principal

rotation axis of the cluster, may be destabilized by contraction
along this axis.80 The D3h minimum-energy structure found for
Si5 in ab initio calculations by Raghavachari81 may be viewed
in this way as a squashed trigonal bipyramid. Alternatively,
application of the Capping Principle discussed in the previous
section shows that 2n skeletal electron pairs can also result
through capping, and both Si6 (capped trigonal bipyramid)
and Si10 (tetracapped octahedron or trigonal prism82) appear
to exploit this fact.

The empirical interatomic potentials cannot really account
for the detailed geometries of clusters such as these, where
the structure depends critically upon the molecular orbital
spectrum. For example, a high binding energy has been
predicted83 for Si13 in a centered icosahedral geometry.
However, the 52 valence electrons in this cluster would
require 12 lone pair orbitals and 14 skeletal bonding orbitals
to accommodate them, whereas the centered icosahedron
has only 13 skeletal bonding orbitals. A distortion is
therefore predictable, although Si13

2+ might adopt a centered
icosahedral geometry.

6 CLUSTER REARRANGEMENTS

Lipscomb84 first proposed his diamond-square-diamond
(DSD) mechanism for skeletal rearrangements in clusters in
1966, but in 1975 he commented that ‘few reaction pathways
in rearrangements of boron compounds are well understood’.85

A general theory to rationalize the relative rearrangement rates
of boranes and carboranes did not, in fact, emerge until 1987,
when Wales and Stone86 used TSH theory to deduce some
orbital symmetry selection rules. An equivalent description
was provided by Mingos and Johnston,87 and subsequently
the theory was further developed and various predictions
made.88 Combining the new theoretical tools provided by
TSH theory with modern ab initio calculations now puts us in
a significantly more optimistic position than in 1975.

In the DSD process (Figure 11), an edge common
to two triangular faces breaks while a new edge is
formed perpendicular to it. Hence, the idealized transition
state geometry would have a square face. Degenerate
rearrangements, in which the rearrangement leads to the same
cluster skeleton, aside from possible permutations among
atoms of the same element, are particularly important in small
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Figure 11 Lipscomb’s DSD process

clusters where there may only be one stable minimum-energy
structure. The boranes, and associated carboranes, provide
a good example. King89 used topological considerations
to deduce which closo-boranes BnHn

2− have geometrically
possible single DSD processes available. If the connectivities
of the vertices are α, β, γ , and δ, then a general DSD process
may be written as αβ(γ δ), where the edge is broken between
the vertices of connectivity α and β and made between the
two with connectivities γ and δ.89 For a degenerate single
DSD process to be possible, there must therefore be vertices
satisfying α + β = γ + δ + 2, and of the closo-boranes this
condition is only satisfied for B5H5

2−, B8H8
2−, B9H9

2− and
B11H11

2− (see Figure 4). However, of these four molecules
only B8H8

2− and B11H11
2− appear to be readily fluxional;86 in

the other two clusters, the geometrically feasible single DSD
process turns out to be ‘forbidden’ by orbital symmetry.33(See
also Fluxional Molecule.)

Gimarc and Ott first noticed that the single DSD processes
in B5H5

2− and B9H9
2− would result in crossings of filled

and vacant molecular orbitals, and would therefore be
expected to have high activation energy barriers.90 (The
hypothetical single DSD process in B5H5

2− is, in fact, directly
analogous to the Berry Pseudorotation in PCl5.) Subsequent
computational studies have confirmed the result91 for B5H5

2−
(and the corresponding carborane) and suggest that the orbital
symmetry–‘allowed’ double DSD process may account92−93

for the experimental results obtained by Onak and coworkers
for B, B′−disubstituted 2, 4−C2B5H7 derivatives.94 Group
theoretical analysis framed within TSH theory leads to two
important theorems that enable orbital crossings to be easily
identified:86,88

(1) A crossing occurs if the proposed transition state has a
single atom lying on a principal rotation axis of order 3
or more.

(2) A crossing also occurs if a mirror plane, which must
pass through two atoms in the critical face, is retained
throughout a DSD process.

Theorem 1 immediately reveals that the single DSD processes
in B5H5

2− and B9H9
2− are forbidden. The result follows from

the same considerations of nonbonding orbitals and symmetry-
forced deviations in electron count that were discussed in
Section 5.3.2. The polar transition state in question must have
a nonbonding e pair of Frontier Orbitals, which are absent in

S A

A

E
ne

rg
y

S

S

A

S

A

Figure 12 Splitting of the frontier orbitals in the open face of a
DSD transition state. One function is symmetric (S) with respect to
the conserved mirror plane, the other is antisymmetric (A). Their
energies change in opposite senses and lead to an orbital crossing

the starting and finishing structures, and therefore correspond
to an orbital crossing.

Theorem 2 is a more subtle result of the TSH pairing
principle, and may be deduced88 by considering the number
of occupied orbitals with a given parity under reflection.
The frontier orbitals, which need not be strictly degenerate,
are sketched in Figure 12. They have different parities under
reflection through a mirror plane that includes either pair
of opposite vertices. Hence, one orbital rises in energy
and the other falls when the square face contracts along
a diagonal, but the splitting is in the opposite sense for
the other diagonal. If only a C2 rotation axis is preserved
throughout, then there is an avoided crossing, for the
two frontier orbitals are both antisymmetric under this
operation.88

Using the above results, and the premiss that double DSD
processes are less favorable than single DSD processes,
and so on, (on the grounds that a single DSD process
produces the smallest structural perturbation), Wales and
Stone were able to rationalize the available experimental
evidence for borane and carborane rearrangement rates.86

The archetypal single DSD mechanism in B8H8
2− has

since been studied by accurate ab initio calculations95

and is shown in Figure 13. Calculations for C2B4H6 have
also characterized a high-energy rearrangement mechanism
based upon ‘local bond rotation’.96 The case of icosahedral
B12H12

2− and the associated carboranes (of which there are
three isomers) is also interesting. There is no geometrically



D2d minimum
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Figure 13 Calculated reaction mechanism for B8H8
2−. The arrows

superimposed upon the transition state represent appropriately scaled
normal mode displacements for the mode with the unique imaginary
frequency. Structures were selected along the reaction path so as to
include all three stationary points plus three geometries at regular
intervals on either side of the transition state. The structures were
triangulated using distance cutoffs of 2.1 Å. (This figure was produced
using Mathematica 2.0  Wolfram Research Inc., 1990.)

feasible single DSD process for this cluster, and earlier
work86 has shown that concerted hextuple and pentuple
DSD processes are probably not responsible. Possible high-
symmetry intermediates were investigated by Gimarc et al.,97

but more recent results suggest that the interconversions
probably occur via a complex series of rearrangements
involving low-symmetry minima and transition states.98

These pathways confirm previous suggestions made on the
basis of orbital symmetry selection rules.88 The highest
barrier encountered on the pathway between the 1,2 and
1,7 carboranes involves a concerted double DSD process, as
shown in Figure 14.

Of the other predictions concerning cluster rearrangement
mechanisms using TSH theory, only one more will be
mentioned here. This is the square-diamond, diamond-square
(SDDS) mechanism that may occur in a cluster with a square
face, such as square-based pyramidal C5H5

+. The TSH theory
prediction is that a concerted mechanism should be orbital
symmetry allowed if the edges that are made and broken lie in
the same mirror plane. If one edge lies in a mirror plane and
the other lies across it, then two crossings are predicted.27,88

The mechanism is unlikely to occur in nido-boranes, because
of the additional bridging hydrogen atoms around the open
face; however, recent ab initio calculations95 have confirmed
that it does indeed occur in C5H5

+, as shown in Figure 15.

ELECTRONIC STRUCTURE OF CLUSTERS 17

1,2 Ih minimum

Cs transition state

Cs minimum

Figure 14 Concerted double DSD process (calculated at the SCF
level with an STO-3G minimal basis set) linking 1, 2−C2B10H12 with
C2v symmetry to a high-energy local minimum with Cs symmetry.
The diagram is arranged as for Figure 13 except that the terminal
hydrogen atoms are omitted for clarity and the distance cutoff for
triangulation is 2.8 Å. The calculated barriers are 311 and 13 kJ mol−1

for the forward and reverse processes, respectively. (This figure was
produced using Mathematica 2.0  Wolfram Research Inc., 1990.)

C4v minimum

C4v minimum

C2v transition state

Figure 15 The SDDS rearrangement of square-based pyramidal
C5H5

+, which proceeds through a C2v symmetry transition state.95

The diagram is arranged as for Figure 13 and the triangulation
cutoff is 2.1 Å. (This figure was produced using Mathematica 2.0 
Wolfram Research Inc., 1990.)
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