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A scheme to approximate the multidimensional potential energy landscape in terms of a minimal
number of degrees of freedom is proposed using a linear transformation of the original atomic
Cartesian coordinates. For one particular off-lattice model protein the inherent frustration can only
be reproduced satisfactorily when a relatively large number of coordinates are employed. However,
when this frustration is removed in a Gō-type model, the number of coordinates required is
significantly lower, especially around the global potential energy minimum. To aid our interpretation
of the results we consider modified disconnectivity graphs where a measure of the structural
diversity and a metric relation between the stationary points are incorporated. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1854123g

I. INTRODUCTION

The “energy landscape” perspective holds great promise
for resolving important contemporary issues in the dynamics
and thermodynamics of clusters, liquids, glasses, and
biomolecules.1–5 The observed structures, thermodynamics
and dynamics of clusters, and biomolecules are determined
by the underlying potential energy surfacesPESd, which is a
function of 3N atomic Cartesian coordinates for a system
composed ofN atoms. However, in providing fundamental
explanations for such properties in terms of the underlying
PES, there exist two major difficulties. First, the number of
stationary points grows exponentially with the number of
atoms.6–8 Second, it may be difficult to project the multidi-
mensional character of the PES onto a low-dimensional
space in a manner that faithfully and usefully captures the
essential aspects of the problem. For example, Doye9 has
recently reported that the network formed by the minima and
saddles on the PES of small clusters has both a small-world
and scale-free character.

The most powerful tool currently available for visualiz-
ing a high-dimensional PES is probably the disconnectivity
graph approach introduced by Becker and Karplus,10 which
has now been applied to a wide range of systems.4,11 Such
graphs are constructed from a database of local minima and
index one saddles to which they are connected by steepest-
descent paths. Here an index one saddle is defined as a sta-
tionary point with precisely one negative Hessian
eigenvalue.12 There are two unique downhill steepest-descent
paths that correspond to each index one saddle, and these

paths usually lead to local minimasalthough they can lead to
lower energy saddles of index one via branch pointsd.7 The
lowest energy paths between local minima are usually medi-
ated by index one saddles according to the Murrell–Laidler
theorem.13 This theorem applies throughout the present
work, since we consider only nonlinear geometries with
well-behaved Taylor expansions in Cartesian coordinates.14

Disconnectivity graphs provide a global view of the PES,
which retains topological information. Furthermore, the
qualitative appearance of the graph is often sufficient to pre-
dict qualitative aspects of the kinetics and thermodynamics,
such as multiple relaxation time scales and features in the
heat capacity for landscapes containing multiple potential en-
ergy funnels.4

The focus of the present contribution is the off-lattice
three-color, 46-bead BLN model protein of Honeycutt and
Thirumalai,15–18 which has been examined in a number of
subsequent studies.19–32 The original BLN model was de-
signed to exhibit frustration, and it does not fold
efficiently.17–19Two peaks are seen in the heat capacity, cor-
responding to collapse from extended to compact states at
higher temperature, and to folding into the global potential
energy minimum at lower temperature.17,19However, when a
Gō model33 is constructed by removing all the attractive in-
teractions that do not correspond to nonlocal closest contacts
in the native state, a much sharper single heat capacity peak
is observed.21 In the original model the folding rate also
starts to deviate from exponential behavior just below the
collapse temperature.19,21 These observations can all be ex-
plained from the corresponding disconnectivity graphs.23,29

The surface for the original BLN potential includes a number
of relatively deep potential energy funnels, reflecting the
frustration inherent in the model. However, for the Gō model
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the surface has an almost ideal single funnel topography,23 as
Nymeyer et al. inferred from their studies of folding
kinetics.21

The databases of stationary points used in the construc-
tion of disconnectivity graphs can be used in quantitative
calculations of thermodynamic and kinetic properties using
the superposition approach, and master equation or kinetic
Monte Carlo schemes.4 One of the aims of the present con-
tribution is to investigate whether further information can
usefully be encoded into the disconnectivity graph itself, for
example, by employing a physically motivated coordinate
for the horizontal axis, instead of simply arranging the graph
as clearly as possible. The results can be compared with free
energy disconnectivity graphs considered in previous
work,29,34 which include results for the BLN model.29

A further aim of this paper is to investigate how many
degrees of freedom are needed to provide a useful approxi-
mation to the PES, and to employ the corresponding results
to visualize the landscape. We present a simple scheme to
decompose the 3N atomic Cartesian coordinates into combi-
nations that are essential and nonessential in representing the
topography of the PES. We find that more degrees of free-
dom are needed to describe the frustrated landscape of the
original BLN model compared to the Gō potential. This in-
tuitive result is expected to have some generality. Disconnec-
tivity graphs are also considered in which the number of
local minima in each superbasin and dimensionality of the
configuration space belonging to the superbasin are repre-
sented, and the horizontal axis corresponds to a collective
coordinate that best represents the distribution of stationary
points.

II. METHOD

The stationary points of a PES, where the gradient van-
ishes, provide an insightful way to coarse-grain both kinetics
and thermodynamics.4 In particular, thermodynamic proper-
ties can be calculated from a suitable sample of local
minima, while global kinetics can be investigated using the
minimum-to-minimum rate constants associated with each
index one saddle.4 To capture the topographical features of a
multidimensional PES, it is natural to start by scrutinizing
the distribution of these stationary points and the connections
between them. All the present results were obtained for da-
tabases of minima and index one saddles located in previous
work.23 Let the total number of stationary points for a system
of N atoms beNSP. To eliminate uncertainties in the defini-
tion of the coordinate system, McLachlan’s “best fit”
prescription35 is employed to uniquely remove the total
translational and rotational degrees of freedom.

s1d Calculate a “reference configuration” defined by an en-
semble averagekql of a set of NSP configurations,
hqskdj, hqs1d ,qs2d ,… ,qsNSPdj, in a given coordinate
system whose center of mass is set to be the origin.
Here, qiskd denotes theith Cartesian coordinate of the
kth stationary point where i =1,2,… ,3N and k
=1,2,… ,NSP.

s2d Make a new set of configurationsq8: orient each con-
figuration to put it as close as possible to coincidence

with the sfixedd reference configurationkql by minimiz-
ing the sum of residues betweenq8 and kql, s,

s=
1

2o
i=1

3N

sqi8 − kqild2. s1d

s3d Calculate a new ensemble average configuration for
hq8skdj.

s4d Define the new ensemble average as the new reference
configuration and return to steps2d until the ensemble
average configuration is converged within some
threshold.

In the present work we have found that McLachlan’s
best fit procedure requires only five to seven cycles to con-
verge the average structure within 10−8s. Hereafter we de-
noteqskd as the translation-rotation-free configuration space.
Let D be a 3N3NSP matrix, whose elementsDik are defined
as the deviation of thesmass-weightedd ith Cartesian coordi-
nate qiskd in the kth sampled configuration from the en-
semble averagekqil, i.e.,

Dik = qiskd − kqil, s2d

where

kqil =
1

NSP
o
k=1

NSP

qiskd. s3d

Then, using a 3N33N variance-covariance matrixR,

R =
1

NSP
DDT s4d

swhereDT is the transpose matrix ofDd, whose second mo-
ment elementRij is

Rij =
1

NSP
o
k=1

NSP

fqiskd − kqilgfqjskd − kqjlg, s5d

we can define a set of principal componentssPC’sd Q using
the eigenvectorsU that diagonalizeR:

RU = Ur sUTU = I d. s6d

The eigenvaluer i, the ith element of the diagonal matrixr ,
represents the variance of theith collective coordinateQi,

Qi = o
j=1

3N

Ujiqj . s7d

The larger the value ofr i, the betterQi represents the distri-
bution of stationary points in configuration space. TheQ are
sorted in order of decreasing variance,r1ù r2,… , ù r3N. In
the translation-rotation-free system one can always find six
zero eigenvalues whose eigenvectors correspond to total
translational and rotational motions of the system. Other-
wise, the results would depend on the coordinates of the total
translational and/or rotational degrees of freedom of the sys-
tem. This linear transformation is referred to as a principal
component analysissPCAd,36,37 which determines a set of
linear, collective coordinates to best represent most fluctua-
tions or distributions of the system. PCA has often been
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used to analyze cooperative behavior in protein
dynamics.28,38–40The complementary approach41,42of princi-
pal coordinate analysis is obtained by replacingR in Eq. s4d
with an NSP3NSP matrix, R=DTD /3N. This scheme has
also been employed by Becker and Karplus,10 and Elmaci
and Berry26 to visualize the distribution of stationary points
in the multidimensional configuration space of proteins.

Here we use the PCA to derive an approximate descrip-
tion of the PES in lower dimensionality. The original Carte-
sian coordinates are reproduced by

q = U−1Q, s8d

whereUU−1=U−1U= I , so that

qi = o
j=1

3N

Uji
−1Qj = o

j=1

3N

UijQj < o
j=1

Nr

UijQj , s9d

where we approximateq in terms of the firstNr principal
components. We can model any PES that can be represented
in terms of Cartesian coordinatesq using an approximate
form based on theNr principal components without changing
the form of the potential energy function. For instance, if the
potential function is described in terms of internal degrees of
freedom, e.g., interparticle distancesr ij , bond anglesui jk, and
torsional anglesFi jkl , then the Cartesian coordinatesxi,yi,zi

of the ith particle define each internal coordinate as

r ij = Îsxi − xjd2 + syi − yjd2 + szi − zjd2, s10d

ui jk = cos−1S−
r jk · r i j

r jkr ij
D , s11d

and

Fi jkl = cos−1F sr jk 3 r i jd · sr kl 3 r jkd
r ij r jkrkl

2 sinui jk sinu jkl
G . s12d

III. MODEL PROTEIN

We have employed the three-color, 46-bead BLN model
of Honeycutt and Thirumalai15–18 to illustrate our proposed
reduction scheme for multidimensional energy landscapes.
This model is composed of hydrophilicsLd, hydrophobic
sBd, and neutralsNd beads, interacting according to the fol-
lowing potential:

V = Vr + Vu + VF + VR

= o
i

bonds

Krsr i − r0
i d2 + o

i

angles

Kusui − u0
i d2

+ o
i

torsional

fAs1 + cosFid + Bs1 + cos 3Fidg

+ o
i, j−3

nonbonding pairs

4eS1FS s

Rij
D12

− S2S s

Rij
D6G , s13d

where the van der WaalssvdWd interactions are used to
mimic the hydrophilic, hydrophobic, and neutral characters
of the beads:S1=S2=1 for BB sattractived interactions,S1

=2/3 andS2=−1for LL andLB srepulsived interactions, and

S1=1 andS2=0 for all the other pairs involvingN, express-
ing only excluded volume interactions. For the bond-
stretching and angle-bending force constants we useKr

=231.2es−2 and Ku=20e / rad2, with the equilibrium bond
lengthr0

i =s and the equilibrium bond angleu0
i =1.8326 rad.

The units of energy, temperature, the bead mass, time, and
frequency aree, e /kB, M, t* =sÎM /e, and 1/t* , unless oth-
erwise noted. The global potential energy minimum for the
sequence,B9N3sLBd4N3B9N3sLBd5L, folds into a b-barrel
structure with four strands. This structure is ensured by set-
ting up the torsional potential so that there are stifftrans
preferences in the four strands, while at the loop regions,
consisting of neutral beads, the torsional potential has a
small barrier with no preference for any of the three rota-
meric states. In particular,A=B=1.2e, except for torsional
angles involving two or more neutral residues whereA=0
andB=0.2e. The rigid bonds of the original model by Hon-
eycutt and Thirumalai16 are replaced with stiff but harmonic,
springlike bonds.20

This BLN model protein has been analyzed in terms of
structure,20,23,26,32 thermodynamics,19,29 kinetics,21 and
dynamics.28 The original potential exhibits a rather frustrated
PES.21,23 The effects of frustration may be eliminated by
constructing a Gō model where all attractive interactions be-
tween pairs of beads that are not in contact in the native state
sglobal minimumd are removed. This transformation is
equivalent to settingS2=0 in Eq.s13d for nonbonded pairs of
hydrophobic beads separated by more than 1.167s in the
global minimum.23 This change increases the heterogeneity
of the interactions, since it makes the attractive forces more
specific. In this paper, we examine both the original BLN
model and the less frustrated Gō model. We use 500 minima
and 636 saddles for the BLN model, and 520 minima and
844 saddles for the Gō model, which were sampled in a
previous study using an eigenvector-following search
algorithm.23 These are relatively small samples compared to
more recent studies,32 but we expect them to be sufficient for
the present purposes.

Some recent investigations of the BLN model include
construction of free energy disconnectivity graphs and com-
parison with parallel tempering simulations.29 Stoychevaet
al. have also studied the effect of introducing salt bridges
sion pairsd into the BLN potential on folding rates,31 and
Wales and Dewsbury have used disconnectivity graphs to
reveal how these bridges affect the underlying PES.32 Mat-
sunaga and co-workers28,40 have analyzed time series of po-
tential energy fluctuations and principal components based
on instantaneous geometries sampled over a range of tem-
peratures. They found that the stochastic nature of the prin-
cipal components with large variance tends to be suppressed
through a wide range of degrees of freedom at the collapse
temperature, although between 70% and 80% of the principal
components lose their memory in only a hundred simulation
steps.

IV. RESULTS AND DISCUSSIONS

How many PC’s are required to reproduce the total vari-
ance of the distribution of stationary points in the 138-
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dimensional coordinate space? Figure 1 shows the ratio of
the integrated variance to the total variance estimated in
terms of the firstk principal components,sINT

2 skd, defined by

sINT
2 skd =

oi

k
rk

oi

3N−6
rk

, s14d

whererk is thekth eigenvalue of variance-covariance matrix.
Roughly 99% of the total variance can be reproduced by the
first 40 PC’s for both the models, of which the first principal
componentQ1 contributes about 30% of the total. As the
number of the PC’s is increased the behavior of the Gō-like
BLN model is reproduced by a smaller number of PC’s than
the original frustrated model, although the difference be-
comes negligible above about 40 PC’s.

We now consider how the PES’s of the BLN and Gō
potentials can be approximated by a reduced set of PC’s
using Eq.s9d. Figure 2 shows the differenceDV between the

approximate potential energyVapprox evaluated withNr =92
stwo thirds of the total number of degrees of freedomd and
the exact energiesVexact for all the minima and index one
saddles of both potentials. Here we note that the density of
minima per unit energy is larger for the BLN model than for
the Gō model, so that the highest energy minima in the
sample are still compact for the BLN model, while for the
Gō potential they are significantly unfolded.

The energy range between the lowest and the highest
energies is 13.8e sfrom −53.3e to −39.5ed for the BLN model
and 21.3e sfrom −29.2e to −7.9ed for the Gō model. For both
potentials, as the energy of the stationary points increases,
the deviation of the approximate potential from the exact
value also increases. The minimum and maximum deviations
are 0.05e and 6.620e for the original BLN model, and 0.045e
and 4.185e for the Gō model. However, the deviations are
smaller in the Gō model than for the original potential, es-
pecially for stationary points closesin energyd to the global
minimum, which are relatively insensitive to the last 46 prin-
cipal componentssfrom Q93 to Q138d. Figure 3 shows the
maximum deviations in bonding and nonbonding interpar-
ticle separations,hDr ij and hDRijj, and bending angleshDuij
and torsional angleshDFij between the original configura-
tions and those approximated in terms of the first 92 princi-
pal components. Again, as for the energies, the structural
deviations are smaller for the Gō model, especially near the
global minimum.

The density distribution of stationary points as a function
of potential energyV, PSPsVd, and the integrale0

VPSPsV8ddV8
are plotted for both models in Fig. 4 using an energy bin of
width e. Both density distributions can be fitted reasonably
well by a Gaussian function, although the fit is better for the
original BLN potential and the density distribution of the Gō
model deviates from a simple Gaussian distribution in the

FIG. 1. The ratio of the integrated variance to the total variancesINT
2 skd: the

symbolssshadedd , and q, respectively, denote the BLN model and the
Gō-like BLN model hereafter unless noted otherwise.

FIG. 2. The energy differenceDV between the exactVexactand the approxi-
mateVapprox calculated from the first 92 principal componentsQ1–Q92. The
energy is in units ofe.

FIG. 3. The maximum deviations between the exact configurations and the
approximate configurations obtained from the first 92 principal components.
sad Bonding and nonbonding interparticle separations,hDr ij andhDRijj. The
symbols, andq, and3 and1 denotehDr ij andhDRijj of the BLN model
and the Gō-like BLN model, respectively.sbd Bending angleshDuij. scd
Torsional angleshDFij. The length, angle, and the energy are in units ofs,
degrees, ande, respectively.
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region of the global minimum where the energy landscape
was designed to have a strong energy bias. This result im-
plies that the relative contribution of the stationary points
employed in calculating the PC’s is small in the vicinity of
the global minimum. Moreover, the density of stationary
points in the vicinity of the global minimum is smaller for
the Gō model than the BLN model.

Figures 5 and 6 show the natural logarithm of the prod-
uct of positive Hessian eigenvalueshlij for each stationary
point as a function of the exact energyVexact and the energy
differenceDV s=Vexact−Vapproxd, respectively. The product

L = p
i

l.0

li s15d

is related to thestiffnessof the stationary point, i.e., how
much the energy changes for small displacements of the
structure. The units of eachli are e /ms2, and the results
considered here correspond toe=0.01, s=3.4, andm=1.
The values of lnL for the Gō model are generally smaller
than those for the original potentialssee Fig. 5d. However, as
shown in Fig. 6, no clear correlation exists between the stiff-

ness of the stationary points and the energy differenceDV.
For instance, there is a large variation inDV around lnL,
−320, which corresponds to the global minimum of the Gō
model.

Structural diversity.Here we introduce two quantities
that provide a measure of the structural diversity at energyV.
The first functionsssVd is defined in terms of the variance of
the distribution of stationary points:

sssVd ;
1

NSPsVd o
k

VkøV

o
i

3N

fqiskd − kqilg2, s16d

whereNSPsVd denotes the total number of stationary points
whose energy is less thanV. The second functionDssVd is
defined as the number of principal componentssfrom Q1 to
QDssVdd needed to reproduce 99% of the total variance of the
distribution of the stationary points whose energies are less
thanV. Here, we use the translation-rotation-free coordinate
system defined in terms ofall the stationary points, which is
consistent with the coordinate system used in approximating
the multidimensional potential energy landscape. It was
found that even when the translation-rotation-free coordinate
system is redefined at each energyV using stationary points

FIG. 4. sad The density distributionPSPsVd and sbd the integrated density
distributione0

VPSPsV8ddV8 for local minima and index one saddles as a func-
tion of energyV relative to that of the global minimum of each model. In
sad, the dashed and solid lines denote the best fit Gaussian functions, which
are PSPsVd.0.16 expf−sV−5.9d2/3.42g scorrelation coefficient 0.989d for
the BLN model, andPSPsVd.0.12 expf−sV−12.6d2/4.62g scorrelation coef-
ficient 0.951d for the Gō model. The energy is in units ofe.

FIG. 5. The natural log of the product of positive Hessian eigenvaluesL for
BLN and Gō models as a function of energy ine.

FIG. 6. The natural log of the product of positive Hessian eigenvaluesL for
BLN and Gō models as a function ofDVs=Vexact−Vapprox.d in e.
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whose energy is smaller thanV, both the figures are almost
unchanged. Figure 7 showssssVd andDssVd as a function of
V relative to the global minimum of each model. The two
measures of structural diversity are larger for the BLN model
than for the Gō model. AsV increases to 1e above the global
minimum, the first measuresssVd increases discontinuously
for the BLN model although the second measureDssVd in-
creases rather smoothly. In Fig. 7sbd, DssVd shows a signifi-
cant change in the dimensionality of configuration space for
the Gō model, compared with the BLN model. That is, while
DssVd increases monotonically from the global minimum en-
ergy to a certain converged dimension for the BLN model,
DssVd for the Gō model does not grow rapidly in the vicinity
of the global minimum up to an energy region ofDssVd
.10 findicated by an arrow in Fig. 7sbdg, below which both
the energies and structures of stationary points are relatively
unaffected by truncation of one third of the total number of
degrees of freedom in the principal component space. We
believe that this second measureDssVd, based on the “topo-
graphical” dimension of the multidimensional energy land-
scape, can more properly capture the structural diversity of
the system as a function ofV, which may also be reflected in

the energy density of the local minima. All these results sug-
gest that if the structural diversity grows more rapidly above
the native structure, compared to the density of stationary
points, then more degrees of freedom are needed to represent
the underlying PES.

Energy dependency on the dimensional reduction.So far
we have focused on the approximate PES and stationary
points in terms of the first 92 principal components. Figure 1
suggests that the energy landscape might be well approxi-
mated by around 40 principal components, because these can
reproduce 99% of the total variance of the stationary points
in the full 138-dimensional configuration space. The approxi-
mate energies calculated from the first 10, 46, and 92 prin-
cipal components are compared in Fig. 8. The energy devia-
tions from the exact energies using the first 10 and 46
principal components lie in the range 33.3e–148 675.1e, and
1.6e–488.4e for the BLN model, compared to
39.1e–59 210.9e, and 1.8e–109.0e for the Gō model. In gen-
eral, the dominant contributions in these energy changes
arise from the bond energy terms. The stiff, harmonic spring-
like bond energies are responsible for much of the energy
difference, even for small deviations in the interparticle sepa-
ration. For some compact configurations, the nonbonded
vdW interaction energy terms make the dominant contribu-
tion to the deviation of the approximate energy from the
exact value. The energy differences in the bending and the
torsional angle energy terms are relatively small compared to
these terms.

For the Gō model the approximate potential energies ob-
tained from the first ten principal components are relatively
accurate in the vicinity of the global minimum, compared
with the other regionssalthough theDV are larger than the
energy scale of the stationary points because of the contribu-
tion from the bond stretching termsd. This result suggests that
topographical features of this potential energy funnel can be
described reasonably well by only ten degrees of freedom in
this region, consistent with Fig. 7sbd.

Alternative disconnectivity graphs.Disconnectivity

FIG. 7. The structural diversity measures as a function of energyV relative
to that of the global minimum of each model:sad sssVd andsbd DssVd. sssVd
is in units ofs2. The arrow insbd indicates an energy below which both the
energies and structures of stationary points are relatively unaffected by one-
third of the total number of principal components. See text in detail.

FIG. 8. The energy differenceDV between the exactVexactand the approxi-
mateVapprox as a function ofVexact: the symbolsq, , and 3 denoteDV
calculated from the first 92, 46, and 10 principal components, respectively.
The energy is in units ofe.
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graphs are usually constructed as follows.10 At a given dis-
crete series of total energiesV1,V2,V3,¯, the minima
can be classified into disjoint sets, termed “superbasins”11

whose members are mutually accessible, connected by path-
ways where the energy never exceedsVi. For every value of
Vi each superbasin is represented by a node. Lines are drawn
between the nodes at energiesVi and Vi+1 if they are the
same superbasin or they are superbasins that merge at the
higher energyVi+1. Here we consider some extensions to this
construction, introducing representations of the number of
local minima and a topographical dimension for the configu-
ration space in each superbasin, along with physically moti-
vated coordinates for the horizontal axis. In this study the
coordinate chosen is the first principal componentQ1. The
nodes at energyVi are placed on the horizontal axis at the
average value of the principal coordinateQ1 for all the points
within the superbasin that the node represents. The thickness
of the line drawn between merging or identical superbasins is
dependent upon the “size” of the superbasin, with a thicker
line representing a larger superbasin.

We introduce two kinds of alternative disconnectivity
graphs: one indicates the size of superbasinm in terms of the
number of stationary pointsnSPsmd that belong to it. The
other employs the topographical dimension of the superbasin
dssmd defined by the number of principal componentssfrom
Q1 to Qdssmdd needed to reproduce 99% of the total variance
of the distribution of the stationary points belonging to it.
Here we have used the translation-rotation-free coordinate
system in calculating the PC’s for each superbasin using
McLachlan’s best fit algorithm. Figure 9 shows the first al-
ternative disconnectivity graph where the thickness of the
line reflects the number of stationary points within each su-
perbasin. In the figure, the exact scale of the thickness is
defined as follows: first, we normalize the number of station-
ary pointsnSPsmd within each superbasinm by the total num-
ber of stationary pointsNSP to give the thickness parameter
wm. Second, the width of a lineDLswmd in the graph is de-
termined by

DLswmd = Hawm if wm ø 0.15,

logsawmd + b if wm . 0.15,
s17d

with 1/NSPøwmø1, a=103 fmaxhQ1skdj−minhQ1skdjg
andb=13.83s the b value was defined so as to connect the
above two equations atwm=0.15d.

Figure 10 shows the second version of the alternative
disconnectivity graph, where the thickness of the line reflects
the structural diversitydssmd within each superbasin. In the
figure, we definewm=fdssmd+1g /Dmax, where Dmax is 3N
−6. The width of the line in the graph is then

DLswmd = awm, s18d

with 1/Dmaxøwm&1 anda=53 fmaxhQ1skdj−minhQ1skdjg.
Figures 9 and 10 both clearly show the difference be-

tween the single funnellike topography of the Gō-like model
and the frustrated topography of the BLN model, which con-
tains many deep superbasins. Thus, the Gō model exhibits a
single thick branch in the disconnectivity graphs, Figs. 9sbd
and 10sbd, corresponding to a single funnel landscape. For

the frustrated BLN model, Figs. 9sad and 10sad, the multiple
superbasin nature is manifested in the multiple thick
branches. The entanglement implies that similar regions of
configuration space are disconnected from each other by
high barriers.

The spread of points along the first principal component
Q1 near the global minimum is much reduced in the Gō
model. In particular, the distribution of the stationary points
narrows in terms ofQ1 below an energy of about −23e for
the Gō model. This corresponds exactly to a region where
both the energiessFig. 2d and structuressFig. 3d of the sta-
tionary points are unaffected by the last one-third of the total
number of principal components, and also where the struc-
tural diversity of the superbasins reduces rapidly asV de-
creasesssee Fig. 7d.

V. CONCLUSIONS

In this contribution we have investigated reduced dimen-
sionality representations of the multidimensional potential
energy landscape and presented a new quantity to measure

FIG. 9. Alternative disconnectivity graphs.sad BLN model and sbd Gō
model. The thickness of the lines is defined by the number of stationary
pointsnSPsmd within superbasinm. See text in detail. The horizontal axis is
the first principal component. The energy and length are in units ofe ands,
respectively.
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the structural diversity as a function of energy on the con-
figuration space. We have also considered disconnectivity
graphs that incorporate the structural diversity of the station-
ary points along with a metric relationship between them. We
found that the relatively unfrustrated “funnel” energy land-
scape for the Gō model is less affected by the removal of the
last one third of the principal components, compared with
the original potential, especially in the vicinity of the global
minimum. Our alternative disconnectivity graphs provide
useful measures of the number of local minima and their
structural diversity. The results suggest that landscapes con-
sisting of a single potential energy funnel are more faithfully
reproduced in a lower dimensional space around the global
minimum, than are frustrated systems. The latter property
may also make the global minimum more robust to pertur-
bations in the potential.

Although in the present paper we have mainly focused
on the distinctive characteristics between the simplified fun-
nel landscape and the unbiased more complex landscape, our
reduced dimensionality analysis should provide us with a
new means to determine to what extent the complexity and

dimensional reducibility of energy landscapes depend on the
nature and topology of interactions and the size of the sys-
tem, for a variety of problems, including Lennard–Jones and
Morse clusters, polymers, and proteins. Our modified discon-
nectivity graph can easily compare the size of each superba-
sin using the metric relationship, even for a set of superba-
sins from different systems. It is also straightforward to
extend these two-dimensional disconnectivity graphs to
three-dimensional ones with thex andy axes as the firsttwo
principal components, where the size of the superbasins are
represented as cylinders or tubes.

Our results are based on PCA. PCA is one of the most
versatile tools available to address the question of which co-
ordinates or projections best reproduce the properties of the
underlying multidimensional PES.28 As pointed out in previ-
ous work,40 the extent to which the PCA actually represents
the PES, and its dynamics, depends on the similarity of the
distribution of the original data set to a Gaussian form.

Figure 1 tells us that the first PC can only recover about
30% of the total variance of the distribution of stationary
points for both the models consideredsthe first two PC’s
recover about 43% and 46% for the BLN and the Gō models,
respectivelyd. This result implies that, even though a low-
dimensional PCA may semiquantitatively capture topo-
graphical features of the underlying PES, it cannot properly
represent the true complexity of themultidimensionalenergy
landscape, where the system may move from onessuperd
basin to another through curved or meandering paths. The
question of whether a given multidimensional data set can be
usefully represented in a lower dimensional space is also a
central issue in data mining and pattern recognition studies.43

It also has important implications for the construction of free
energy surfaces using global order parameters, and whether
one can usefully project multidimensional potential energy
landscapes onto such a subspace.

The principal curve and surface43 sand also nonmetric
multidimensional scaling44d are probably the most promising
techniques to go beyond the restriction of linear algebra in
reducing the multidimensionality of a data set corresponding
to a “nonGaussian” distribution. Although such techniques
would improve the fraction of the true variance recovered in
a lower-dimensional representation, they generally involve
nonlinear optimization to extractnonlinear components
mode by modeup to a desired dimension. Hence, although
such techniques might improve the “one-dimensional” hori-
zontal axis of a disconnectivity graph, PCA is probably still
the most versatile means to address the question ofmultidi-
mensionalityin the underlying energy landscape of proteins,
because the linear transformation has a unique solution.
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