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How many dimensions are required to approximate the potential energy
landscape of a model protein?
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A scheme to approximate the multidimensional potential energy landscape in terms of a minimal
number of degrees of freedom is proposed using a linear transformation of the original atomic
Cartesian coordinates. For one particular off-lattice model protein the inherent frustration can only
be reproduced satisfactorily when a relatively large number of coordinates are employed. However,
when this frustration is removed in ac@ype model, the number of coordinates required is
significantly lower, especially around the global potential energy minimum. To aid our interpretation
of the results we consider modified disconnectivity graphs where a measure of the structural
diversity and a metric relation between the stationary points are incorporat2@0® American
Institute of Physic§ DOI: 10.1063/1.1854123

I. INTRODUCTION paths usually lead to local minin{although they can lead to

The “energy landscape” perspective holds great promisiaower energy sadf]lei of |nde>; On? via branch p()Jﬁl;lléhe di
for resolving important contemporary issues in the dynamic owest energy paths between ocal minima are usuafly medi-
and thermodynamics of clusters, liquids, glasses, an ted by |£1dex one saddles according to the Murrell-Laidler
biomoleculed:® The observed structures, thermodynamicst eorem.” This theorem applies throughout the present

and dynamics of clusters, and biomolecules are determine§©'k. since we consider o_nly n_onlmear geometries 4W'th
by the underlying potential energy surfa@ES, which is a well-behaved Taylor expansions in Cartesian coordintes.

function of AN atomic Cartesian coordinates for a systemPiSconnectivity graphs provide a global view of the PES,

composed oN atoms. However, in providing fundamental which retains topological information. Furthermore, the
explanations for such properties in terms of the underlyinglu@litative appearance of the graph is often sufficient to pre-
PES, there exist two major difficulties. First, the number ofdict qualitative aspects of the kinetics and thermodynamics,

stationary points grows exponentially with the number ofsuch as mgltiple relaxation time s_cgles anq features _in the
atoms®® Second, it may be difficult to project the multidi- heat capacnz/ for landscapes containing multiple potential en-
mensional character of the PES onto a low-dimensionaf"@y funnels.

space in a manner that faithfully and usefully captures the ~ The focus of the present contribution is the off-lattice
essential aspects of the problem. For example, Dayes three-color, 46-bead BLN model protein of Honeycutt and
- ; - 5-18 1o od
recently reported that the network formed by the minima and! Nirumailai; Whlcgzhas been examined in a number of
saddles on the PES of small clusters has both a small-worl@Psequent stuc-ju%g. The original BLN model was de-
and scale-free character. signed to exhibit frustration, and it does not fold
' - 17-19 . .

The most powerful tool currently available for visualiz- €fficiently."~Two peaks are seen in the heat capacity, cor-
ing a high-dimensional PES is probably the disconnectivity®SPonding to collapse from extended to compact states at
graph approach introduced by Becker and Karpfushich higher temperature, and to folding mtlc; the global potential
has now been applied to a wide range of systéfsSuch ~ €nergy minimum at lower temperatdfe. However, when a
graphs are constructed from a database of local minima arfd® mgde? is constructed by removing all the attractive in-
index one saddles to which they are connected by steepedgractions that do not correspond to nonlocal closest contacts
descent paths. Here an index one saddle is defined as a sta-the nativelstate, a much sharper single heat capacity peak
tionary point with precisely one negative HessianiS observe&..ln the original quel the fplding rate also
eigenvalué? There are two unique downhill steepest-descen$tarts to deviate from exponential behavior just below the

. 21 :
paths that correspond to each index one saddle, and theggllapse temperaturé:* These observations can all be ex-
plained from the corresponding disconnectivity graptfs.

The surface for the original BLN potential includes a number

dElectronic mail: tamiki@kobe-u.ac.jp

YElectronic mail: 1.l johnston@bham.ac.uk of relatively deep potential energy funnels, reflecting the
“Electronic mail: dw34@cam.ac.uk frustration inherent in the model. However, for thé @odel
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the surface has an almost ideal single funnel topography, with the (fixed) reference configuratiotg) by minimiz-
Nymeyer et al. inferred from their studies of folding ing the sum of residues betwegn and(q), s,
kinetics? an

The databases of stationary points used in the construc- 5= }2 (@ - (q))? (1)
tion of disconnectivity graphs can be used in quantitative 25 v

calculations of thermodynamic and kinetic properties using

the superposition approach, and master equation or kineti® Calculate a new ensemble average configuration for
Monte Carlo schemesOne of the aims of the present con- {a'(k)}.

tribution is to investigate whether further information can(4) Define the new ensemble average as the new reference
usefully be encoded into the disconnectivity graph itself, for ~ configuration and return to stef@) until the ensemble
example, by employing a physically motivated coordinate ~ average configuration is converged within some
for the horizontal axis, instead of simply arranging the graph  threshold.

as clearly as possible. The results can be compared with free
energy disconnectivity graphs considered in previou

20,34 .
work, which include results for the BLN modf. verge the average structure within~86. Hereafter we de-

A further aim of this paper is to investigate how many : . : :
. noteq(k) as the translation-rotation-free configuration space.
degrees of freedom are needed to provide a useful approxi-

mation to the PES, and to employ the corresponding resultsSt D b€ @ VX Nsp matrix, whose element;, are defined
. . . s the deviation of thémass-weightedith Cartesian coordi-

to visualize the landscape. We present a simple scheme f5 . . .

. . ) . . nate gj(k) in the kth sampled configuration from the en-
decompose theMBatomic Cartesian coordinates into combi- mble averagéy), i.e
nations that are essential and nonessential in representing tRe 9%/, 1€,
topography of the PES. We find that more degrees of free- D, = q;(k) —(q), (2)
dom are needed to describe the frustrated landscape of the

original BLN model compared to thedpotential. This in- Where

In the present work we have found that McLachlan’s
sDest fit procedure requires only five to seven cycles to con-

tuitive result is expected to have some generality. Disconnec- 1 Nsp
tivity graphs are also considered in which the number of  (q)=—>, q(K). (3)
local minima in each superbasin and dimensionality of the SPk=1

configuration space _belonging. to the superbasin are reprean using a B x 3N variance-covariance matrik
sented, and the horizontal axis corresponds to a collective

coordinate that best represents the distribution of stationary R= iDDT @)
points. sp

T i .
Il METHOD (whereD" is the transpose matrix @), whose second mo

ment elemenR; is

The stationary points of a PES, where the gradient van- L Ve
ishes, provide an |pS|ghtfuI way to coarse-grain bpth kinetics Rj=—— S [qi(k) — (@K — ()], (5)
and thermodynamicsin particular, thermodynamic proper- Nsp =1
ties can be calculated from a suitable sample of local i o .
minima, while global kinetics can be investigated using the/V& can define a set of principal componefR€'s) Q using
minimum-to-minimum rate constants associated with eacfine eigenvectort) that diagonalizeR:
index one saddI&To capture the topographical features ofa Ry = ur (UTu=1). (6)
multidimensional PES, it is natural to start by scrutinizing
the distribution of these stationary points and the connectionghe eigenvalue;, theith element of the diagonal matrix
between them. All the present results were obtained for dalepresents the variance of tite collective coordinat€),

tabases of minima and index one saddles located in previous 3N
work 3 Let the total number of stationary points for a system Q=> U;ig;. (7)
of N atoms beNgp To eliminate uncertainties in the defini- j=1

tion of the coordinate system, McLachlan’s “best fit”
prescriptior?I5 is employed to uniquely remove the total
translational and rotational degrees of freedom.

The larger the value af;, the betterQ; represents the distri-

bution of stationary points in configuration space. Thare

sorted in order of decreasing variance=r,,...,=rgy. In

(1) Calculate a “reference configuration” defined by an en-the translation-rotation-free system one can always find six
semble averageq) of a set of Ngp configurations, zero eigenvalues whose eigenvectors correspond to total
{9k}, {9(1),q(2),...,q9(Nsp}, in a given coordinate translational and rotational motions of the system. Other-
system whose center of mass is set to be the originwise, the results would depend on the coordinates of the total
Here, gi(k) denotes theth Cartesian coordinate of the translational and/or rotational degrees of freedom of the sys-
kth stationary point wherei=1,2,...,3N and k tem. This linear transformation is referred to as a principal
=1,2,...,Ngp component analysi$PCA),36'37 which determines a set of

(2) Make a new set of configuratioreg: orient each con- linear, collective coordinates to best represent most fluctua-
figuration to put it as close as possible to coincidencedions or distributions of the system. PCA has often been
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used to analyze cooperative behavior in
dynamics?®38-**The complementary approd¢tt?of princi-
pal coordinate analysis is obtained by replad®én Eq. (4)

with an NgpX Ngp matrix, R=D'D/3N. This scheme has

also been employed by Becker and Karpitisind Elmaci

How many dimensions are required to approximate potential
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proteinS;=1 andS,=0 for all the other pairs involving\, express-

ing only excluded volume interactions. For the bond-
stretching and angle-bending force constants we Kse
=231.207? and K,=20e/racf, with the equilibrium bond
lengthry=0 and the equilibrium bond anglé=1.8326 rad.

and Berry® to visualize the distribution of stationary points The units of energy, temperature, the bead mass, time, and

in the multidimensional configuration space of proteins.

frequency aree, e/kg, M, t'=0VM/¢, and 1", unless oth-

Here we use the PCA to derive an approximate descriperwise noted. The global potential energy minimum for the
tion of the PES in lower dimensionality. The original Carte- sequence BgN3(LB)4N3BgN3(LB)sL, folds into a B-barrel

sian coordinates are reproduced by

q=U"Q, (8
whereUU™1=U"tU=I, so that
3N 3N N,
EDY Uj_ile => U;iQ = > U;iQ;, 9
=1 =1 =1

where we approximate in terms of the firstN, principal

components. We can model any PES that can be represent
in terms of Cartesian coordinates using an approximate
form based on thé\, principal components without changing
the form of the potential energy function. For instance, if the
potential function is described in terms of internal degrees o

freedom, e.g., interparticle distanags bond angleg,, and
torsional anglesb;;, then the Cartesian coordinatesy;,z;
of theith particle define each internal coordinate as

rj = V0 = x)2 + (v~ y)? + (z - 2)?, (10)
6ijk:COS -1 , (11
ik
and
Fie X Fii) - (N X T
@ijklzcogl{( 1 X 1) (g > ,k)]_ )
FijF Kl ki SIN G SIN Gy

Ill. MODEL PROTEIN

We have employed the three-color, 46-bead BLN model

structure with four strands. This structure is ensured by set-
ting up the torsional potential so that there are dtifins
preferences in the four strands, while at the loop regions,
consisting of neutral beads, the torsional potential has a
small barrier with no preference for any of the three rota-
meric states. In particulah=B=1.2¢, except for torsional
angles involving two or more neutral residues whé&r=e0
andB=0.2¢. The rigid bonds of the original model by Hon-
eycutt and Thirumaldf are replaced with stiff but harmonic,
Séringlike bonds$®
This BLN model protein has been analyzed in terms of

structure’®?4%632  thermodynamic$??® kinetics?* and

ynamics?® The original potential exhibits a rather frustrated

ES?"® The effects of frustration may be eliminated by
constructing a @ model where all attractive interactions be-
tween pairs of beads that are not in contact in the native state
(global minimum) are removed. This transformation is
equivalent to setting,=0 in Eqg.(13) for nonbonded pairs of
hydrophobic beads separated by more than Xl the
global minimum?® This change increases the heterogeneity
of the interactions, since it makes the attractive forces more
specific. In this paper, we examine both the original BLN
model and the less frustrated &odel. We use 500 minima
and 636 saddles for the BLN model, and 520 minima and
844 saddles for the & model, which were sampled in a
previous study using an eigenvector-following search
algorithm.23 These are relatively small samples compared to
more recent studie€,but we expect them to be sufficient for
the present purposes.
Some recent investigations of the BLN model include

of Honeycutt and Thirumal&i*8to illustrate our proposed construction of free energy disconnectivity graphs and com-
reduction scheme for multidimensional energy landscapegarison with parallel tempering simulatio??sStoychevaet

This model is composed of hydrophilid.), hydrophobic

(B), and neutralN) beads, interacting according to the fol-

lowing potential:
V=V, +Vy+ Vg + Vg
bonds angles

= E Ki(ri—ro)?+ 2 Ky(6; — 6)?

torsional

+ Z [A(1 + cos®;) + B(1 + cos 3p;)]

nonbogng pairs |:< o )12 ( o )6:|
4 — - — 1, 13
+ =, €S, R, S R, (13

al. have also studied the effect of introducing salt bridges
(ion pair9 into the BLN potential on folding rate, and
Wales and Dewsbury have used disconnectivity graphs to
reveal how these bridges affect the underlying PEBlat-
sunaga and co-workéfs'® have analyzed time series of po-
tential energy fluctuations and principal components based
on instantaneous geometries sampled over a range of tem-
peratures. They found that the stochastic nature of the prin-
cipal components with large variance tends to be suppressed
through a wide range of degrees of freedom at the collapse
temperature, although between 70% and 80% of the principal
components lose their memory in only a hundred simulation
steps.

where the van de_r_WaaIS/dW) ir_1teractions are used 10 |\, RESULTS AND DISCUSSIONS
mimic the hydrophilic, hydrophobic, and neutral characters

of the beadsS,=S,=1 for BB (attractive interactions,S;

How many PC'’s are required to reproduce the total vari-

=2/3 andS,=-1for LL andLB (repulsive interactions, and ance of the distribution of stationary points in the 138-
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FIG. 1. The ratio of the integrated variance to the total variarfge(k): the
symbols(shadedl V and O, respectively, denote the BLN model and the
Go-like BLN model hereafter unless noted otherwise.

Vezact

FIG. 3. The maximum deviations between the exact configurations and the
approximate configurations obtained from the first 92 principal components.

. . . . . (a Bonding and nonbonding interparticle separatiqas;} and{AR;;}. The
dlmgn3|onal coord!nate space? Figure 1.shows the ratio 'Qjmbow andO), andx and+ denote{Ar,} and{mj}(;f the BLN model
the integrated variance to the total variance estimated iand the G-like BLN model, respectively(b) Bending anglesAd}. (c)

terms of the firsk principal componentsﬁNT(k), defined by Torsional anglegA®;}. The length, angle, and the energy are in unitgrof
. degrees, and, respectively.
2Tk
I

E?N_(S rk,

oK) = (14)

approximate potential energy,,prox €valuated withN, =92
(two thirds of the total number of degrees of freedcend

wherer, is thekth eigenvalue of variance-covariance matrix. 1€ €xact energie¥e,.. for all the minima and index one
Roughly 99% of the total variance can be reproduced by th§2ddles of both potentials. Here we note that the density of
first 40 PC’s for both the models, of which the first principal Minima per unit energy is larger for the BLN model than for
componentQ; contributes about 30% of the total. As the the G model, so that the highest energy minima in the
number of the PC’s is increased the behavior of tiiclige  Sample are still compact for the BLN model, while for the

BLN model is reproduced by a smaller number of PC’s than®° Potential they are significantly unfolded. _
the original frustrated model, although the difference be-  1h€ energy range between the lowest and the highest
comes negligible above about 40 PC’s. energies is 13.8(from —53.% to —39.%) for the BLN model

We now consider how the PES’s of the BLN ang G and 21.2 (from —29.2% to —7.%) for the G> model. For both

potentials can be approximated by a reduced set of pcRotentials, as the energy of the stationary points increases,

using Eq.(9). Figure 2 shows the differenceV between the the deviatipn of the approx_imate potential _from the _ex_act
value also increases. The minimum and maximum deviations

are 0.0% and 6.62@ for the original BLN model, and 0.045
v and 4.18% for the G model. However, the deviations are
smaller in the & model than for the original potential, es-
BLN model pecially for stationary points closgn energy to the global
minimum, which are relatively insensitive to the last 46 prin-
Go model | cipal componentgfrom Qg to Qy39. Figure 3 shows the
maximum deviations in bonding and nonbonding interpar-
ticle separationsiAr;} and{AR;;}, and bending angleg\ 6}
and torsional angle§A®;} between the original configura-
tions and those approximated in terms of the first 92 princi-
pal components. Again, as for the energies, the structural
deviations are smaller for thedGnodel, especially near the
global minimum.

The density distribution of stationary points as a function
of potential energy, Ps(V), and the integrafy Psg(V')dV’
are plotted for both models in Fig. 4 using an energy bin of

Vezact width e. Both density distributions can be fitted reasonably

FIG. 2. The energy differenc&V between the exadfe,,cand the approxi- W(_e”_ by a GaUSSian_funCtion’ although the fit iS_ better fo_r the
MateVprox Calculated from the first 92 principal componeis-Qoy. The original BLN potential and the density distribution of thé G
energy is in units of. model deviates from a simple Gaussian distribution in the

Vewact — Vapproz
<
(@]

AV =
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(a) energy above the global minimum, V Veract
L FIG. 5. The natural log of the product of positive Hessian eigenvalufes
[ ] BLN and Go models as a function of energy &
1.0F vvvvv ooooooe-
| BLN model v v © ] ness of the stationary points and the energy differeh\de
> 08 o 7] For instance, there is a large variationAV around InA ~
E{% [ v o I —320, which corresponds to the global minimum of the G
7 086l 1 model.
£ - 0o 1 Structural diversity.Here we introduce two quantities
2 04 v © 1 that provide a measure of the structural diversity at engtgy
5 ° (6 model 1 The first functiono(V) is defined in terms of the variance of
0.2k v o ° - the distribution of stationary points:
L v @) E Vi =V 3N
i R E L . = oS S a0 - @F (16
: 5 10 15 20 s NeV) < <t RN
(b) energy above the global minimum, V

) ) ( whereNgdV) denotes the total number of stationary points
FIG. 4. (a) The density distributiorPgdV) and (b) the integrated density ; ; ;
distribution fYPsg(V')dV' for local minima and index one saddles as a func- whose energy is less than The second functioDy(V) is

tion of energyV relative to that of the global minimum of each model. In defined as the number of principal compone(rmter_n Q;to
(a), the dashed and solid lines denote the best fit Gaussian functions, whic@DS(V)) needed to reproduce 99% of the total variance of the

are PsdV)=0.16 exp—(V-5.9%/3.#] (correlation coefficient 0.989for  gistribution of the stationary points whose energies are less
the BLN model, andPe{V) =0.12 exp—(V~12.6%/4.6'] (correlation coef- thanV. Here, we use the translation-rotation-free coordinate
ficient 0.95) for the Go model. The energy is in units e&f : T . . T
system defined in terms @il the stationary points, which is
) o consistent with the coordinate system used in approximating
region of the global minimum where the energy landscapgne myltidimensional potential energy landscape. It was
was designed to have a strong energy bias. This result iny,ng that even when the translation-rotation-free coordinate

plies that the relative contribution of the stationary pointsSystem is redefined at each enekgyising stationary points
employed in calculating the PC’s is small in the vicinity of

the global minimum. Moreover, the density of stationary
points in the vicinity of the global minimum is smaller for
the G model than the BLN model.

Figures 5 and 6 show the natural logarithm of the prod-
uct of positive Hessian eigenvalu@s} for each stationary
point as a function of the exact energy,,and the energy
differenceAV (=Vexacr Vappro®: respectively. The product

\>0

A= H \i (15)

L e B B . L B L

¥ v ]
Vv \

v BLN model

InA

is related to thestiffnessof the stationary point, i.e., how
much the energy changes for small displacements of the
structure. The units of eack; are e/md?, and the results TS
considered here correspond ¢&0.01, 0=3.4, andm=1. 0 1 2 3 4 5 6 7
The values of IM\ for the G model are generally smaller av

than thgse _for the original pOtenti@ee F_ig. . However, as ~_FIG. 6. The natural log of the product of positive Hessian eigenvalufes
shown in Fig. 6, no clear correlation exists between the stiffBLN and G models as a function a&kV(=VeyacVapprox) N €.

o G6 model E
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(¢] Gd model i
o —
-1
L 0°© : ° BLN model ]
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(a) energy above the global minimum, V 50 40 Vosnet 30 » 10
o ' ' FIG. 8. The energy differenc&V between the exadf,,,and the approxi-
w0l gyvvVvYZT 000 005 g mate Vapprox @S @ function ofVey,e the symbolsO, V and X denoteAV
v o © o calculated from the first 92, 46, and 10 principal components, respectively.
S v o The energy is in units o&.
S wr o T
Z v BLN model the energy density of the local minima. All these results sug-
2 v ° gest that if the structural diversity grows more rapidly above
< . . .
= 0 9 T the native structure, compared to the density of stationary
B .
2 points, then more degrees of freedom are needed to represent
E ok o G5 model i the underlying PES. _ '
© Energy dependency on the dimensional reduct®mfar
o° we have focused on the approximate PES and stationary
0 S N R R points in terms of the first 92 principal components. Figure 1
5 10 15 20 suggests that the energy landscape might be well approxi-
(b) energy above the global minimum, V

mated by around 40 principal components, because these can
FIG. 7. The structural diversity measures as a function of endrgiative  'eproduce 99% of the total variance of the stationary points
to that of the global minimum of each modéh o(V) and(b) Dg(V). o(V) in the full 138-dimensional configuration space. The approxi-
is in u_nits ofgz.tTh::- arrovvfint(bt)_indicates_ Etm energly ?elcl)w whic?h ?o(;hbthe mate energies calculated from the first 10, 46, and 92 prin-
o e o v ot e Components e tvt g, °"Eipal components are compared in Fig. 8. The energy devia-
tions from the exact energies using the first 10 and 46
principal components lie in the range 38-348 675.%, and
whose energy is smaller tharn both the figures are almost 1.6e-488.4 for the BLN model, compared to
unchanged. Figure 7 showsg(V) andDg(V) as a function of  39.1¢-59 210.2, and 1.8&-109.G for the G model. In gen-
V relative to the global minimum of each model. The twoeral, the dominant contributions in these energy changes
measures of structural diversity are larger for the BLN modehrise from the bond energy terms. The stiff, harmonic spring-
than for the G model. AsV increases to dabove the global like bond energies are responsible for much of the energy
minimum, the first measure4(V) increases discontinuously difference, even for small deviations in the interparticle sepa-
for the BLN model although the second measDrgV) in- ration. For some compact configurations, the nonbonded
creases rather smoothly. In Figby, D4(V) shows a signifi- vdW interaction energy terms make the dominant contribu-
cant change in the dimensionality of configuration space fotion to the deviation of the approximate energy from the
the Go model, compared with the BLN model. That is, while exact value. The energy differences in the bending and the
D4(V) increases monotonically from the global minimum en-torsional angle energy terms are relatively small compared to
ergy to a certain converged dimension for the BLN modelthese terms.
D4(V) for the G model does not grow rapidly in the vicinity For the @ model the approximate potential energies ob-
of the global minimum up to an energy region Df(V)  tained from the first ten principal components are relatively
=10[indicated by an arrow in Fig.(B)], below which both  accurate in the vicinity of the global minimum, compared
the energies and structures of stationary points are relativelyith the other regiongalthough theAV are larger than the
unaffected by truncation of one third of the total number ofenergy scale of the stationary points because of the contribu-
degrees of freedom in the principal component space. Wé&on from the bond stretching termd his result suggests that
believe that this second measgV), based on the “topo- topographical features of this potential energy funnel can be
graphical” dimension of the multidimensional energy land-described reasonably well by only ten degrees of freedom in
scape, can more properly capture the structural diversity atis region, consistent with Fig.([).
the system as a function ®; which may also be reflected in Alternative disconnectivity graphs.Disconnectivity
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graphs are usually constructed as folloW#t a given dis- 35T
crete series of total energiaég <V,<V3<---, the minima
can be classified into disjoint sets, termed “superbadins” I
whose members are mutually accessible, connected by patt  _4
ways where the energy never exce&tlsFor every value of [
V; each superbasin is represented by a node. Lines are draw
between the nodes at energiésand V,,, if they are the
same superbasin or they are superbasins that merge at tf
higher energyi,,. Here we consider some extensions to this
construction, introducing representations of the number of
local minima and a topographical dimension for the configu- ~ -50 |
ration space in each superbasin, along with physically moti-
vated coordinates for the horizontal axis. In this study the
coordinate chosen is the first principal componént The e e
nodes at energy; are placed on the horizontal axis at the -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
average value of the principal coordin&efor all the points @) &
within the superbasin that the node represents. The thicknes -5
of the line drawn between merging or identical superbasins is [
dependent upon the “size” of the superbasin, with a thicker
line representing a larger superbasin. ~10

We introduce two kinds of alternative disconnectivity [ ! %
graphs: one indicates the size of superbasin terms of the
number of stationary pointagg(m) that belong to it. The :
other employs the topographical dimension of the superbasir> [T
dy(m) defined by the number of principal compone(ftem 2 F =
Q, to st(m)) needed to reproduce 99% of the total variance [
of the distribution of the stationary points belonging to it. [
Here we have used the translation-rotation-free coordinate —25 [
system in calculating the PC’s for each superbasin using
McLachlan’s best fit algorithm. Figure 9 shows the first al- - , | ‘ |
ternative disconnectivity graph where the thickness of the _3044 3 _3  _1 9 1 9 3 4
line reflects the number of stationary points within each su- (b} O
perbasin. In the figure, the exact scale of the thickness is
defined as follows: first, we normalize the number of station'C: 9. Alternative disconnectivity graph¢a) BLN model and (b) Go

. e . model. The thickness of the lines is defined by the number of stationary

ary pointsnsg(m) within each superbasim by the total num- pointsngg(m) within superbasirm. See text in detail. The horizontal axis is
ber of stationary pointdgp to give the thickness parameter the first principal component. The energy and length are in unitsanid o,
w,,. Second, the width of a linAL(w,,) in the graph is de- respectively.

—-45 -

-15

(1}

termined by
W i W <015 the frustrated BLN model, Figs(& and 1Qa), the multiple
AL(w,) = {a m Do (17)  Superbasin nature is manifested in the multiple thick
log(awy,) + B if wy,>0.15, branches. The entanglement implies that similar regions of

configuration space are disconnected from each other by
high barriers.
The spread of points along the first principal component

with  1/Ngp=w,<1, «a=10X[maxXxQ;(k)}-min{Q(k)}]
and 8=13.83( the B value was defined so as to connect the

abovg two equa::ons aﬁmzo.ls.d ) f the al . Qq near the global minimum is much reduced in thé G
Figure 10 shows the second version of the altemnaltivg,, 0| | particular, the distribution of the stationary points

disconnectivity graph, where Fhe_ thickness of the I_ine rEﬂECt?larrows in terms o), below an energy of about —2Jor
the structural diversityls(m) within each superbasin. In the the G5 model. This corresponds exactly to a region where
figure, We,dEf'neWm:[,dS(m)-"l]/Dma” yvhere Dinax IS 3N both the energiegFig. 2) and structuregFig. 3) of the sta-
~6. The width of the line in the graph is then tionary points are unaffected by the last one-third of the total
AL(W,) = aWi, (18) numbe_r of principal componen_ts, and also whc_are the struc-
tural diversity of the superbasins reduces rapidlyVade-
With 1/Dpas=Wm=1 anda=5%[maxQ;(k)}-min{Q,(k)}].  creasegsee Fig. 7.
Figures 9 and 10 both clearly show the difference be-
tween the single funnellike topography of thé-tkke model , ~~\cLusIONS
and the frustrated topography of the BLN model, which con-
tains many deep superbasins. Thus, tlen@®del exhibits a In this contribution we have investigated reduced dimen-
single thick branch in the disconnectivity graphs, Figd)9 sionality representations of the multidimensional potential
and 1Qb), corresponding to a single funnel landscape. Forenergy landscape and presented a new quantity to measure

Downloaded 24 Mar 2005 to 147.188.105.99. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



084714-8 Komatsuzaki et al. J. Chem. Phys. 122, 084714 (2005)

8T dimensional reducibility of energy landscapes depend on the
nature and topology of interactions and the size of the sys-
tem, for a variety of problems, including Lennard—Jones and
Morse clusters, polymers, and proteins. Our modified discon-
nectivity graph can easily compare the size of each superba-
sin using the metric relationship, even for a set of superba-
sins from different systems. It is also straightforward to
extend these two-dimensional disconnectivity graphs to
three-dimensional ones with tixeandy axes as the firgivo
principal components, where the size of the superbasins are
represented as cylinders or tubes.

Our results are based on PCA. PCA is one of the most
versatile tools available to address the question of which co-
S S T N S R S S T ordinates or projections best reproduce the properties of the
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 underlying multidimensional PES As pointed out in previ-

@ @ ous work?’ the extent to which the PCA actually represents

-5 the PES, and its dynamics, depends on the similarity of the
[ distribution of the original data set to a Gaussian form.

Figure 1 tells us that the first PC can only recover about
30% of the total variance of the distribution of stationary
points for both the models consideréthe first two PC’s
recover about 43% and 46% for the BLN and ther@odels,
respectively. This result implies that, even though a low-
dimensional PCA may semiquantitatively capture topo-
graphical features of the underlying PES, it cannot properly
represent the true complexity of tiheultidimensionaknergy
landscape, where the system may move from (nepej
basin to another through curved or meandering paths. The
guestion of whether a given multidimensional data set can be
[ usefully represented in a lower dimensional space is also a
-0 _'3 ‘ _'2 ' _'1 ' (‘) ' i ' ; ' ; ' ; T central issue in data mining and pattern recognition stutfies.
(b) o It also has important implications for the construction of free

energy surfaces using global order parameters, and whether

FIG. 10. Alternative disconnectivity graphéa) BLN model and(b) Go one can usefu”y project multidimensional poten“al energy
model. The thickness of the lines is defined by the structural divedgity) Iandscapes onto such a Subspace

within superbasimm. See text for details. The horizontal axis is the first T ‘8 i
principal component. The energy and length are in unitse adnd o, The principal curve and surface(and also nonmetric

respectively. multidimensional scalirftj) are probably the most promising
techniques to go beyond the restriction of linear algebra in

the structural diversity as a function of energy on the conteducing the multidimensionality of a data set corresponding

figuration space. We have also considered disconnectivit}® & ‘nonGaussian” distribution. Although such techniques
graphs that incorporate the structural diversity of the stationould improve the fraction of the true variance recovered in
ary points along with a metric relationship between them. we lower-dimensional representation, they generally involve
found that the relatively unfrustrated “funnel” energy land- "onlinear optimization to extracnonlinear components
scape for the Gmodel is less affected by the removal of the Mde by modeip to a desired dimension. Hence, although
last one third of the principal components, compared with>UCh techniques might improve the “one-dimensional” hori-
the original potential, especially in the vicinity of the global Z0Ntal axis of a disconnectivity graph, PCA is probably still
minimum. Our alternative disconnectivity graphs provideth® most versatile means to address the questionufidi-
useful measures of the number of local minima and theifensionalityin the underlying energy landscape of proteins,
structural diversity. The results suggest that landscapes coff€cause the linear transformation has a unique solution.
sisting of a single potential energy funnel are more faithfully
re_pr_oduced in a lower dimensional space around the 9'°ba}iCKNOWLEDGMENTS
minimum, than are frustrated systems. The latter property
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