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We report a Monte Carlo study of a 1 : 1 binary mixture of particles coated with DNA chains with

‘‘sticky’’ ends. The system was modeled using a coarse-grained representation. In order to map out the

phase diagram of this model system we combined biased Monte Carlo simulations with histogram

reweighting techniques. We find that, at low temperatures (strong hybridization) this system undergoes

a phase separation between a dilute vapor-like phase and a dense network-forming liquid-like phase. We

observe a surprising non-monotonic dependence of the coexistence pressure on the temperature, or more

precisely, on the reduced hybridization free energy (fhyb/kBT). This anomalous behavior can be

understood in terms of a cross-over between two distinct regimes for the driving force of the phase

transition: a hybridization-free-energy-driven regime and an entropy-driven regime. In the former regime,

we observe a ‘‘normal’’ vapor–liquid equilibrium where during condensation, the system gains

hybridization free energy but loses entropy. In the entropy-driven regime, the phase transition is driven by

the increase in entropy due to the re-arrangement of sticky-end bonds in the liquid phase. Finally, we

observe that the system can only undergo phase separation if the valence (i.e., the number of DNA-chains

per particle) is larger than two. The coexistence region widens markedly as the valence is increased.
Introduction

The interesting feature of colloidal systems coated with DNA

chains is that the specificity of Watson–Crick type interactions

can in principle be exploited to control the self-assembly of

complex colloidal structures.1–3 In one possible implementation,

the DNA molecules are chemically grafted to the colloidal

surface at one end, while having a single-stranded ‘‘sticky’’ end

on the other side of chain.4 Moreover, the single-stranded end

can be designed to hybridize specifically and reversibly with

a complementary single-stranded DNA (ssDNA) sequence that

presents the ‘‘correct’’ (i.e., complementary in the Watson–Crick

sense) nucleotide sequence (see, however, ref.5 for a description

of the relevance of non-Watson–Crick interactions). An alter-

native strategy is based on the use of dissolved, free DNA

‘‘linkers’’ with sticky ends that can bind simultaneously to the

(shorter) complementary ssDNA sequences that are bound to the

surface of two colloids.1 These general strategies have been used

successfully to drive the assembly of both FCC and BCC crystals

of gold nanoparticles.6–11 In addition, the lattice constants of the

crystals thus formed can be controlled through the design of the

DNA chains that bind the colloids together.12 While nano-

colloids coated with short DNA strands can form crystals with

relative ease, this is not the case for larger colloids coated with

long DNA. In that case, the system either forms finite clusters or

a disordered percolating network.4,13

Despite the substantial amount of progress that has been

made, the self-assembling capabilities of these DNA-guided

systems have yet to reach their full potential. The wide
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morphological diversity of crystals theoretically predicted by

Tkachenko14 is yet to be observed. And more importantly,

applications where the DNA-coated particles can be assembled

in a controlled manner, in nano-blocks of specific geometries,

remain a challenge.15–17

In order to effectively uncover the full potential of these

general class of DNA-driven systems it is mandatory to gain

a better understanding of their underlying phase behavior.

Although progress has been made in improving the under-

standing of the role of the DNA-chain configurational entropy in

the binding process,18,19 a complete understanding of the ther-

modynamics behind the self-assembly of these complex systems

is still lacking.

Molecular simulations provide a convenient way of exploring,

in a well-defined environment, the large parameter space of this

class of systems, while giving valuable insight about the under-

lying physics. Thus, not surprisingly, much simulation work has

been devoted to the study of DNA-coated particles.20–23 For

example Molecular Dynamics simulations of a single DNA-

coated gold nanoparticle have been carried out at the atomistic

level to study the interaction between the DNA-chains and salt.24

In addition, several studies have been made to develop suitable

models for DNA chains.25,26 However, a fully atomistic treat-

ment of the DNA interactions becomes computationally

prohibitive for the study of the phase behavior of many inter-

acting colloids. It is therefore mandatory to make use of coarse-

grained models. It is worth noting that coarse-grained models

have been successfully used in the study of wide variety of

polymeric and colloidal systems.27–32 In the particular case of

DNA-coated nanoparticles the Starr group21,22 has carried out

coarse-grained simulations in the regime where the DNA chains

behave like rigid sticks and are much larger than the nano-

particle. This work revealed a variety of intriguing network

phases.
This journal is ª The Royal Society of Chemistry 2010
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Bozorgui and Frenkel33 carried out Grand-Canonical (mVT)

simulations of coarse-grained models for a binary mixture of

colloids coated with long DNA strands, where the DNA of type-

A colloids can only bind (through their sticky end) to the DNA

of type-B colloids. The study of ref. 33 focused on the limit of

infinitely strong hybridization (i.e., there are no unbound

‘‘sticky’’ ends). Hence, in the very dilute limit this system is

necessarily composed of A–B dimers where all the DNA chains

are hybridized. As the chemical potential of the dimers was

increased, this system was found to undergo a sudden transition

to a dense, percolating phase. The transition showed marked

hysteresis indicative of a first order phase transition. As there was

no hybridization energy gain when forming the liquid phase

(because both phases have all the bonds satisfied) the authors of

ref. 33 concluded that the first order transition was entropy-

driven, analogous to the one predicted on the basis of mean field

theory by Zilmann et al.34,35 for microemulsions with telechelic

polymer linkers.

While the mVT Monte Carlo (MC) simulations used by

Bozorgui and Frenkel,33 were able to demonstrate the existence

of a phase transition in the limit of infinite binding strength, this

study could not determine the location of the thermodynamic

coexistence curve nor, for that matter, could this study reveal

how the transition varied with temperature (binding strength).

To achieve this, more sophisticated simulation techniques such

as Gibbs ensemble36 MC or histogram reweighting37 are

needed.38 Moreover, at high densities where the percolating-

liquid phase forms, the equilibrium density of free dimers

becomes vanishingly small. This makes dimer-deletion moves

virtually impossible and, as a result, the chemical-potential

equilibration in Gibbs-ensemble simulations becomes prohibi-

tively slow.

In the present paper we develop a general MC methodology to

study the condensation transition in systems of DNA-coated

particles. The methodology circumvents the ergodicity problems

associated with network formation thus allowing us to compute

the free energy of the system.

In the following, we first present the coarse-grained model for

DNA-coated particles. Then, we introduce the methodology for

the prediction of liquid–vapor coexistence in this type of perco-

lating system. We present results for the phase behavior of a 1 : 1

binary mixture of DNA coated particles as a function of the

binding free energy and the number of DNA chains per colloid.

In this study, the binding free energy plays a role analogous

to that of temperature in conventional liquid–vapor phase

diagrams. We also study in detail the causes of the anomalous

phase behavior observed, showing that the non-monotonic

dependence of the coexistence pressure on the binding free energy

arises as a consequence of the crossover between ‘‘entropy-driven’’

and ‘‘hybridization-free-energy-driven’’ regimes of the phase

transition. Finally, we show that coexistence region widens as

the number of DNA-chains per particle is increased, suggesting

that recent experiments with DNA-coated colloids13 were likely

performed inside the two-phase region.
Model

As in ref. 33 we use a minimalistic coarse-grained off-lattice

model where colloids are represented as hard-spheres with
This journal is ª The Royal Society of Chemistry 2010
a radius (Rc) equal to three times the DNA-chain radius of

gyration (Rg). Each DNA chain is described by its center-of-mass

position and interacts with other chains through an effective

‘‘soft blob’’ potential.39 The effective blob–blob potential (Vbb) is

bVbb ¼ 1:75exp

�
� 0:80

�
r=Rg

�2�
(1)

where r is the distance between the centers of blobs, and b ¼ 1/

kbT, with kb Boltzmann’s constant, and T the absolute temper-

ature. From the work of refs 40 and 41 it is known that eqn (1)

provides a good description of the interactions between polymer

chains in a good solvent in the dilute regime. Eqn (1) provides

a first order approximation of polymer-polymer interactions in

our coarse grained model. The non-bonded interaction between

a DNA chain and a hard colloid is approximated through:

bVcp ¼ Aexp

�
� B

�
r=Rg � C

��
(2)

with the values A ¼ 3.1995, B ¼ 4.1662, and C ¼ 0.4996; chosen

to reproduce the potential of mean-force between the center of

mass of a self-avoiding walk (SAW) chain and a flat hard wall

accurately up to 10kbT. Note, that for the colloid-polymer size

ratio studied here (i.e., Rc/Rg ¼ 3) the effective interaction

between the chain and the colloid is essentially the same as with

a flat wall.42

Each DNA blob interacts with its anchoring point through,

bVtether ¼
3

4

�
r� Rc

Rg

�2

(3)

where r is the distance between the center of the blob and the

center of the colloid. Thus, effectively, the anchoring points are

allowed to move relatively easily on the colloids’ surface as it is

the case on lipid vesicles coated with DNA43 or gold nano-

particles with thiol bonds.44 We expect that fixing the anchoring

positions will not affect the qualitative conclusions of this paper,

although the quantitative effects remain to be investigated.

It is essential to use a simple model for the DNA hybridization.

Since the blobs represent relatively long DNA chains it is

reasonable to assume that the length of the sticky end is much

shorter than the rest of the chain. Therefore, when sticky ends of

two different chains hybridize we should obtain a new single

chain but with twice the length. In our coarse grained model we

achieve this by simply taking the two original non-hybridized

blobs and connecting them through a harmonic potential of the

form:

bVhar ¼ 0.534(r/Rg � 0.730)2 (4)

where r is the inter-blob distance, while keeping all the other

interactions the same. Thus, effectively creating a new ‘‘longer’’

two-blob chain. Pierleoni et al.41 have shown that if a SAW chain

is divided in two blobs, each of them with a radius of gyration

equal to Rg, a potential of the form of (4) can accurately describe

the effective interactions between their centers of mass.

In the following all the distances will be measured in units of Rg,

the energies in units of kbT, and the pressures in units of kbT/Rg
3.

Computationally, the prediction of the liquid–vapor coexis-

tence curve of a system of colloids coated with long DNA is quite
Soft Matter, 2010, 6, 6136–6145 | 6137
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challenging, because most conventional techniques to locate the

coexistence density (e.g. using the Gibbs-ensemble method) fail.

In our study, we have used a combination of non-Boltzmann

sampling and histogram reweighting in both NPT-based and

mVT-based ensembles. The details of the computational

approach are described in the Appendix.

The very general nature of our model of DNA-coated particles

with ‘‘long’’ DNA chains allows us to study the phase behavior

a whole general class of systems. The specific details of each

individual system (e.g., salt concentration, etc.) could lead to

small quantitative changes to the behavior of the system that can

be added as further refinements to our model.
Results and discussion

Phase diagram

We studied a 1 : 1 binary mixture of our model system of

DNA-coated particles using the non-Boltzmann-sampling MC

methodology described in the Appendix. A complete set of simu-

lations for a given model system yields the Helmholtz free energy

(bA) of that system as a function of the total number of hybridize

bonds (l) and the logarithm of the volume (lnV). One such free

energy surface is presented in Fig. 1a for the case of a system with

a valence (i.e., number of DNA chains per particle) of k ¼ 6 and

with a total of n ¼ 25 colloids pairs (i.e., a total of 50 colloids).

From this free energy surface, coexistence can be determined at

any given value of the hybridization free energy per bond (bfhyb),
Fig. 1 Simulated system of a 1 : 1 mixture of 50 colloidal particles where

each one of them has been coated with k ¼ 6 DNA chains. (a) Helmholtz

free energy (bA) of the system as function of the macrovariables l (i.e.,

total number of bonds) and lnV. (b) Probability histogram of visiting

different values of lnV in the limit of G / N. At coexistence conditions

(i.e., P ¼ 3.13 � 10�6) the two peaks have equal area under the curve.

6138 | Soft Matter, 2010, 6, 6136–6145
by finding the pressure at which the probability histogram

presents two peaks of equal area (see section on Non-Boltzmann

Sampling in the Appendix). In Fig. 1b we present, for the same

system, the probability histogram of visiting different values of

lnV in the limit of bfhyb/�N at coexistence conditions (i.e., P¼
3.13 � 10�6). The figure shows the existence of a bimodal prob-

ability distribution typical of first-order phase transitions.

Moreover, since in the opposite limit [i.e., bfhyb/ + N or G ¼ 0,

with G^exp(�bfhyb)] the particles behave simply as purely

repulsive colloids with no first order phase transition, we can

expect that in between these two limits there exists a critical value

of bfhyb below which the system phase separates. Thus, bfhyb acts

as the equivalent of the temperature in conventional liquid–

vapor phase transitions.

In Fig. 2, we present the coexistence phase diagram in the

plane bfhyb vs. the volume fraction of bare colloids (h) for the

system with k ¼ 6. Below a certain value of bfhyb the system

undergoes macrophase separation into a dense liquid-like phase

and a dilute vapor-like phase. Snapshots of these two phases in

the strong hybridization limit (i.e., G / N) are shown in Fig. 3.

Good agreement was found for the phase diagrams obtained

with the mVT- and NPT-type methods. The discrepancy between

the two methods decreases with increasing system size. This is

evident in the liquid branch of Fig. 2 where the results for the two

‘‘smaller’’ (S) systems differ the most while the results for the

‘‘larger’’ (L) systems are almost indistinguishable on the scale of

figure. The NPT-L system had a total of n¼ 25 colloid pairs (i.e.,

50 colloids in total) while the NPT-S had n ¼ 15. The mVT-L

system had a simulation box edge size of Lbox ¼ 37.5 while the

mVT-S had Lbox ¼ 32.

The coexistence envelope (binodal) is expected to end in

a critical point. Indeed, for the case of k ¼ 6 we observe that the

two distinct peaks of the density probability distribution merge

into one at around bfhybz�5 thus setting an upper boundary for

the critical value of bfhyb. However, a more precise determination

of the critical point would require a systematic finite-size scaling

analysis.47 This we have not attempted, as the precise values of
Fig. 2 Phase diagram for the system with k ¼ 6. The vertical axis

represents the hybridization free energy (bfhyb), the horizontal axis indi-

cates the volume fraction of bare colloids (h). The parameter bfhyb acts as

the analog of temperature. Below a critical value (not shown) the system

separates in liquid and vapor phases. The black dashed line around the

critical region is just a guide for the eye. Results are shown for NPT-style

and mVT-style simulations.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 3 Snapshots of the system with six DNA chains per particles in the

in the limit of very negative bfhyb (strong hybridization). (a) The vapor

phase, mainly composed of A–B dimers. (b) The liquid phase. Different

type colloids are represented with different colors (i.e., red and green).

For the sake of clarity, the DNA chains are not shown.

Fig. 4 Anomalous phase behavior of the DNA-coated particles systems.

(a) It can be seen that the coexistence pressure (Pcoex) is not a monotonic

function of the equivalent temperature parameter bfhyb. The value of Pcoex

exhibits a minimum around bfhyb ¼ �9.8. (b) The density of the coexis-

tence vapor phase has a corresponding minimum at the same value of

bfhyb. The dashed line around the critical region is meant as guide for the

eye.
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the critical ‘‘temperatures’’ are of little relevance for the

remainder of our analysis.

It is important to note that as the value of bfhyb is decreased

below �20 the coexistence densities are essentially the same as in

the bfhyb/ �N limit for all the systems studied in this work.
Anomalous behavior

Fig. 4a shows the variation of the coexistence pressure (Pcoex)

with bfhyb for the system with k ¼ 6. Interestingly, Pcoex exhibits

a minimum around the value of bfhyb ¼ �9.8. This contrast

sharply with the monotonic temperature dependence of the

vapor–liquid coexistence pressure that is normally observed

along the boiling curve of atomic or molecular liquids. Similarly,

Fig. 4b shows that, in a bfhyb vs. h semi-log plot, the binodal also

exhibits a density-minimum of the dilute phase at bfhyb ¼ �9.8.

In order to understand this anomaly it is helpful to examine the

‘‘Clausius–Clapeyron’’ equation for the dependence of the

coexistence pressure on the hybridization free energy:

vPcoex

v
�
bfhyb

� ¼ � lv � ll

V v � V l
(5)

where the superscript v denotes the vapor (dilute) phase and the

superscript l denotes the liquid (dense) phase. Since the volume of
This journal is ª The Royal Society of Chemistry 2010
the vapor phase Vv is always larger than Vl eqn (5) indicates that

at the value of bfhyb ¼ �9.8 the difference in number of bonds

(i.e., lv-ll) between the two phases changes sign. More specifi-

cally, for values of bfhyb> �9.8 (i.e. at high temperatures), Pcoex

increases with bfhyb because the liquid phase has a greater

number of hybridized bonds than vapor phase, as one would

intuitively assume. However, for values of bfhyb< �9.8, this

scenario inverts and (counter intuitively) the dilute phase

becomes the one with the larger number of formed bonds.

It is instructive to plot the total hybridization free energy

difference between the two phases [Dbfhyb ¼ (ll � lv) � bfhyb],

normalized per colloid, as a function of bfhyb (Fig. 5). For

strongly negative values of bfhyb both phases have essentially all

the bonds satisfied and hence Dbfhyb is close to zero. Similarly, at

the critical point (i.e., bfhybz�5) both phases become identical

and also Dbfhyb ¼ 0. Between these two extremes, we have

a crossover in behavior where the system passes from a regime

where it gains hybridization free energy upon condensation (i.e.,

energy driven regime, bfhyb > �9.8) to a regime where it loses

hybridization free energy upon condensation (i.e., entropy driven

regime, bfhyb <�9.8). In the former regime the system behaves as

a classical liquid (i.e., Pcoex increases with ‘‘temperature’’) while in

the latter regime the system presents anomalous behavior.

Fig. 5 provides an indication of the physical origin of the

anomalous behavior. In this figure, a minimum of Dbfhyb is

observed around bfhyb ¼ �6.2. If the difference ll-lv were

constant, Dbfhyb would decrease linearly with bfhyb. However, the

presence of a minimum indicates that around bfhyb ¼ �6.2 the
Soft Matter, 2010, 6, 6136–6145 | 6139
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Fig. 5 Plot of the difference between the coexisting liquid and vapor

phases of the total hybridization free energy [Dbfhyb ¼ (ll � lv) � bfhyb]

per colloid, as a function of bfhyb. The dashed curve is meant as a guide

for the eye.

Fig. 6 Plots of the probability f to find a colloid belonging to a cluster of

a given size in the vapor phase. (a) The vapor phase at bfhyb¼�10 (i.e., to

the left of the minimum in Dbfhyb). All the clusters have an even number

of colloids. (b) f at bfhyb ¼ �5.8 (i.e., to the right of the minimum). Odd-

numbered ‘‘frustrated’’ clusters are also present in the system.
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difference ll-lv changes much faster than bfhyb, suggesting a

dramatic transformation in the structure of the vapor phase.

In Fig. 6. we present plots of the probability f to find a colloid

belonging to a cluster of a given size in the vapor phase. Fig. 6a

shows f for the vapor phase at bfhyb ¼ �10 (i.e., to the left of the

minimum in Dbfhyb), while Fig. 6b shows f at bfhyb¼�5.8 (i.e., to

the right of the minimum). At bfhyb ¼ �10 the vapor phase is

predominantly composed of dimers, with some tetramers, and

hexamers, but always in clusters composed of an even number

of particles. However, at bfhyb ¼ �5.8, the system does not only

contain even-numbered clusters, but also monomers and clusters

containing an odd number of colloids. Since both types of colloids

have the same valence (k ¼ 6), and each DNA chain can only

bind to chains of the complementary type, the odd-numbered

clusters will necessarily have ‘‘dangling bonds’’. Hence, in this

regime the number of dangling bonds per colloid is less in the

dense liquid phase where each colloid is surrounded by several

neighbors. However, when bfhyb<�6.2, the vapor phase contains

mainly A–B dimers, virtually no monomers and a small number

of other small even-numbered clusters. In this case, forming an

additional bond in the vapor phase becomes facilitated as

available complementary DNA chains can be found within

a short distance. As a consequence, the number of bonds in the

vapor phase increases faster than in the liquid phase as the

hybridization strength is increased (bfhyb made more negative). It

is this effect that causes the change of sign of ll-lv at bfhyb¼�9.8.

At this point, a new regime starts where the phase transition is

dominated by the entropy of network formation. This entropy

gain arises as the number of bond re-arrangements possible in

a percolating-network liquid phase greatly exceeds the possibil-

ities in a phase mainly formed by dimers.

In order to gain insight into the entropic nature of the phase

transition it is convenient to compare our original system with

a model system with exactly the same interactions but that can

form dimers only. That is, once an individual ‘‘free’’ colloid

makes a bond with another free colloid, it can form the rest of its

bonds with its ‘‘partner’’ colloid only. Fig. 7 shows the difference

(D) in the free energy bF, the configurational energy bU, the total

hybridization free energy l � bfhyb, and the negative of the

entropy (-S/k) between the original system and the system that

can form dimers only. These quantities are related through
6140 | Soft Matter, 2010, 6, 6136–6145
bF ¼ bU � S

k
þ l� bfhyb (6)

All the quantities shown have been normalized by the number

of colloid-pairs that are present in the system at any given point.

When the system has only one pair of colloids, it can only form

a dimer upon hybridization and DbF ¼ 0. However, as the

number of colloid pairs (and the density) is increased, the original

network-forming system becomes favored and DbF < 0. Hence,

explaining the transition to a percolated liquid at high densities.

In Fig. 7a we show the different components of the free energy

in the limit of bfhyb/�N, where all the bonds are satisfied. Since

in this limit both systems (i.e., network-forming and dimers) have

the same number of bonds, the difference in l � bfhyb is exactly

zero, and therefore cannot be the driving force for the phase

transition. On the other hand, both bU and �S/k favor the

network forming system. However, at liquid-like volume frac-

tions (i.e., h>0.1), �S/k clearly dominates over bU, illustrating

the entropic nature of the phase transition. Actually, the term bU

is not really energetic in nature as it derives from the coarse-

grained representation of the interaction between athermal SAW

chains. Therefore, bU is also entropic in nature: it represents the

entropy associated with the overlapping and stretching of a SAW

polymer. The value of DbU is negative because in a dimer the

DNA chains need to migrate close to each other on the surface of
This journal is ª The Royal Society of Chemistry 2010
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Fig. 7 Plot of the difference in free energy (bF) and its components [i.e.,

configurational energy (bU), total hybridization free energy (l � bfhyb),

and negative of the entropy (�S/k)] between the original network-

forming system and a reference system where only dimer formation is

allowed. In the figure, the same symbol D is used to denote the difference

in each of these four cases. The plots were obtained in mVT-type simu-

lations where the density of the system was varied by adding/removing

pairs (A–B) of colloids. (a) Limit of bfhyb/�N, the transition is driven

by entropy. (b) bfhyb¼�5.8, the transition is driven by hybridization free

energy.
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the colloid in order to be able to form all the bonds, thereby

increasing the repulsive interactions between blobs. Thus, while

in this regime the phase transition is mainly driven by the entropy

of bond-rearrangements, it is also favored by the gain in

configurational entropy of the DNA chains implicitly taken into

account via bU.

When bfhyb¼�5.8 (Fig. 7b) the free energy of the system still has

some contributions from the entropy of bonds re-arrangements.

However, its most important component now comes from the

total hybridization free energy. Thus, in this regime the phase

transition is hybridization-free-energy driven and therefore

resembles the behavior of conventional liquid–vapor equilibria.

Finally, it is interesting to note that related anomalies to the

ones observed in this work have been predicted for a fluid–fluid

phase coexistence of metastable water. 45,46 Similar to the present

case, the anomaly in the behavior of water has been related to an

entropy driven phase transition wherein the system actually gains

entropy upon reduction of its volume due to the breakage of

hydrogen bonds.45,46
Fig. 8 Phase diagram of DNA-coated particles with valence (k) between

3 and 7. Critical points are not shown. The dashed curves are meant as

a guide for the eye. The labeling of the axes is as in Fig. 2.
Effect of valence

Fig. 8 shows the phase diagram of DNA-coated particles with

valence (k) between 3 and 7. The phase diagram is shown in the

h�bfhyb plane. It is readily observed that the binodal widens as k

increases. This behavior is to be expected as high-valence colloids

gain more free energy upon condensation than low-valence
This journal is ª The Royal Society of Chemistry 2010
colloids. As a consequence, the higher valence colloids have the

lower coexistence pressure.

The phase behavior observed in our simulations can be

compared with the experimental findings of Geerts et al.13 who

studied a system of DNA-coated colloids in the strong binding

regime with a size ratio Rg/Rc¼ 0.4 (a size comparable to the one

used in the present work, Rg/Rc ¼ 0.333). In the experiments,

the formation of large percolating clusters was observed. For the

experimental system, the colloid volume fraction is known to be

h ¼ 0.004, but the number of DNA chains per colloid is only

known approximately (kz25). Since our calculated binodal is

expected to widen even more for k ¼ 25, our results suggest that

the system studied in ref. 13 lies inside the coexistence region: the

large percolating clusters observed in the experiments constitute

the initial stages of the formation of the bulk of a liquid phase.

However, as these clusters form, the bulk phase separation

undergoes dynamical arrest.

As k was lowered in our simulations, the difference between

the densities of coexisting liquid and vapor phases decreased.

Moreover, the minimum in the density probability distribution at

coexistence between the ‘‘liquid’’ peak and the ‘‘vapor’’ peak

becomes much less pronounced, which means that the free

energy of the liquid–vapor interface decreases strongly (in

particular, as the critical point is approached). Both factors make

it more difficult to distinguish between the liquid and the vapor

phase and this affects the reliability of the equal-area construc-

tion to determine coexistence. In addition, the coexistence

properties of small-k systems were found to have a pronounced

system size dependence. Therefore, an accurate estimate of the

binodal curve for k # 4 would probably require a full finite-size

scaling analysis,47 something that goes beyond the scope of the

present paper. In Fig. 8 we therefore only show that binodal up

to bfhyb values where our estimates are reliable. Beyond that,

the drawn curves are only meant as a guide to the eye. In fact, the

critical value of bfhyb is not much larger (less negative) than the

maximum value of bfhyb for which the binodal could be deter-

mined reliably. The reason is that we found that even a slight

increase in bfhyb makes the surface tension go to zero. In addi-

tion, simulations on small systems tend to overestimate the

temperature of the critical point. 47

Finally, for the case k¼ 2, we did not observe a bimodal density

distribution for any of the system sizes studied. This suggests that

the first-order liquid–vapor transition is suppressed. In fact, an
Soft Matter, 2010, 6, 6136–6145 | 6141
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Fig. 9 The isothermal compressibility c times the density r of the k ¼ 2

system in the infinitely-strong binding regime. The figure shows the

progressive appearance of a peak (around h�0.065) as the system size is

increased, possibly suggesting a continuous phase transition.
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analysis of a closely related lattice model48 suggests that, indeed

the k¼ 2 has no phase transition at any finite value of bfhyb – only

in the low-temperature limit of infinitely negative hybridization

free energies, the phase transition is expected to be an Ising-like

continuous transition.49 This qualitatively different behavior is not

surprising as the k ¼ 2 system can only form one-dimensional

clusters (e.g., dimers, chains, rings, etc.). Evidence, for a possible

continuous phase transition in the k ¼ 2 system, in the limit of

infinitely negative hybridization free energy comes from the

system-size dependence of the isothermal compressibility (c)

observed in Fig. 9. The figure shows the progressive appearance of

a peak (around h�0.065) as the system size is increased, suggesting

a possible divergence of the compressibility in the thermodynamic

limit.
Conclusions

In this paper we have used non-Boltzmann-sampling MC simu-

lations together with histogram reweighting to study the phase

behavior of a coarse grained representation of a binary system of

colloids coated with long DNA strands. The system was

observed to undergo phase separation into a dense liquid-like

phase and a dilute vapor-like phase when the hybridization free

energy (bfhyb) was lowered below a certain critical value.

Although in principle the value of bfhyb can be made arbitrarily

negative, we observed that for bfhyb < �20 the system exhibited

essentially the limiting bfhyb/�N phase behavior.

The DNA-coated particles system exhibits a very unusual non-

monotonic dependence of the coexistence pressure on bfhyb (i.e.,

the analog of the temperature), and displays a corresponding

minimum in the coexistence vapor phase density. This anomalous

behavior is understood in terms of a cross-over between entropy-

driven regimes and hybridization-free-energy-driven regimes of

the phase transition. We showed that the minimum in coexistence

pressure marks the beginning of a regime where the vapor phase

contains more hybridized bonds than the liquid phase, and that

under these conditions the driving force for condensation is the

increase in entropy due to bond re-arrangements in the dense

network phase. Interestingly, similar anomalous behavior has
6142 | Soft Matter, 2010, 6, 6136–6145
been predicted for fluid-fluid phase transitions in water, where also

an anticorrelation between entropy and volume is observed.45,46

We studied the effect of the number of DNA-chains per

particle (k) on the phase diagram. We found that the binodal

widens with increasing k, suggesting that the experiments of

Geerts et al.,13 with an estimated valence of k ¼ 25, were located

inside the two-phase coexistence region.

For the case k ¼ 2, we did not find evidence of a first order

phase transition at any value of bfhyb. However, the dependence

of the isothermal compressibility with system size in the infinite-

binding-strength limit, suggests that a continuous phase transi-

tion may be present.
Appendix

In this Appendix we describe the simulation methodology used

to locate the liquid–vapor coexistence curves of the model system

under consideration.
Hybridization moves

In addition to the conventional MC moves required to equili-

brate the system in a particular ensemble (e.g., translations in the

NVT ensemble, translations plus volume changes in the NPT

ensemble, etc.)50 the present system has the possibility of bond

formation/destruction (i.e., hybridization moves). The hybrid-

ization moves presented here are somewhat similar to those

previously used in studies of quasi-block copolymers by Daoulas

et al.51 and other related systems.52 However, in our particular

system type-A blobs are only allowed to react with type-B blobs,

and each blob can hybridize no more than once at a time. Then,

the reaction moves (in the Canonical ensemble) are executed by

first choosing with equal probability between bond formation

and bond destruction. If bond formation is chosen, one

randomly chooses one non-hybridized (free) A-blob and one free

B-blob, and creates a bond with acceptance probability equal to

Pacc ¼ min

�
1;

nA � nB

lþ 1
� exp

�
� bVhar � bfhyb

��
(7)

where nA(B) is the number of available A(B) reactive blobs, l is

the number of existing bonds, bVhar [cf. (4)] is the energy the new

bond would have, and bfhyb is the hybridization free energy per

bond formed. Note that bfhyb acts as an additive constant in

bVhar, and determines the equilibrium concentration of bonds.

Hence, bfhyb is an intensive variable conjugate to the total

number of bonds l, that together with the specification of the

variables NVT (for the case of the canonical ensemble)

completely specifies the state of the system. Conversely, if bond

destruction is chosen, one randomly chooses a bond and

attempts to destroy it with probability

Pacc ¼ min

�
1;

l

ðnA þ 1Þ � ðnB þ 1Þ � exp
�
bVhar þ bfhyb

��
(8)

In practice, however, direct application of eqn (7) and (8) can

be inefficient, as the probability of randomly choosing A and B

blobs that are close enough for accepting the bond formation

can be very low. Instead, it can be more convenient using a

Rosenbluth-type bias50 where bond creation is enacted by first

randomly choosing an A-blob, and then, choosing a B-blob
This journal is ª The Royal Society of Chemistry 2010
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among all the available B-blobs within a pre-specified cutoff

distance from the A-blob, with probability proportional to

e expð�bVharÞ
RW

(9)

where RW is the Rosenbluth weight defined as

RW ¼
P

exp(�bVhar) (10)

with the summation going over all the available B-blobs within

cutoff distance. Finally, one accepts the move with probability

Pacc ¼ min

�
1;

nA � RW

lþ 1
� G

�
(11)

where we have defined G ¼ exp(�bfhyb). Similarly, after

randomly choosing a bond, the bond-destruction moves are

accepted with probability

Pacc ¼ min

�
1;

l

ðnA þ 1Þ � RW � G

�
(12)

Here RW is the Rosenbluth weight associated with the inverse

(re-bonding) process. An important restriction in order to

maintain detailed balance is that the bond to be destroyed has to

have a length less than or equal to the cutoff distance, otherwise

the move must be rejected.

The hybridization moves presented above, in addition to being

valid for the canonical (GNVT) ensemble, are also valid for the

isobaric-isothermic (GNPT) ensemble as long as the volume and

the number of bonds are not changed simultaneously in the same

move.

For the GNPT ensemble, we follow the formulation of Corti,53

where the partition function is given by

QGNPT ¼
ðN

0

QGNVT � exp½ � bPV �dlnV (13)

where Qi denotes the partition function of ensemble i. Hence,

once a random change in lnV is proposed, one accepts with

probability

Pacc(o/n) ¼ min(1,exp[�bDU � bPDV + Npln(Vn/Vo)]) (14)

where o stands for ‘‘old’’, n for ‘‘new’’, the symbol DY¼Yn-Yo for

any variable Y, U is the configurational energy, Np is the number

of particles in the system whose coordinates has been re-scaled in

the volume change process. During this move, the total number

of bonds l remains unchanged.
Non-boltzmann sampling

In principle one could determine the coexistence properties of the

system during a GNPT simulation making use of the following

recipe: (1) Guess a coexistence pressure (Pcoex). (2) Make

a histogram of how many times the system visits each value of

lnV. (3) Check that there are two peaks with equal area under the

curve in the histogram. However, in practice, even if we knew the

exact value of Pcoex, the system would most likely remain trapped

in only one of the two phases, therefore making the determina-

tion of the coexistence properties extremely difficult. Moreover,

for large values of G, the probability of bond breakage will

become vanishingly small [cf. eqn (12)], causing the system to
This journal is ª The Royal Society of Chemistry 2010
become less ergodic as it can no longer easily explore the ‘‘bond-

connectivity’’ space. Finally, we do not a priori know the value of

Pcoex, as this is one of the quantities we are after.

In order to overcome all the above difficulties, it is convenient

to introduce arbitrary weights j(l,lnV) that will enhance

sampling (e.g., multi-canonical sampling54 or expanded

ensemble55) over the complete range of allowed values of l and

lnV. Since the volume is a continuous variable that can in

principle go from zero to infinity it is convenient to discretize

lnV (in this work we used DlnV ¼ 0.03) and assign maximum

and minimum values of lnV chosen so the system has a negli-

gible probability of visiting them at the range of pressures of

interest.

Thus, the acceptance rules designed for Boltzmann sampling

in the previous section on ‘‘Hybridization Moves’’ have to

be modified in order to incorporate the biasing weights j.

Therefore we enact our hybridization moves for the Non-

Boltzmann sampling (NBS) simulation56 with acceptance

probabilities

Pacc ¼ min

�
1;

nA � RW

lþ 1
� exp

�
jlþ1;lnV � jl;lnV

	�
(15)

for bond creation, and

Pacc ¼ min

�
1;

l

ðnA þ 1Þ � RW

� exp
�
jl�1;lnV � jl;lnV

	�
(16)

for bond destruction. Where the value of G (now irrelevant) has

been set to G ¼ 1 for convenience. Similarly, the volume moves

(now between pre-specified discrete values of lnV) are accepted

with probability,

Pacc(o/n) ¼ min(1,exp[�bDU + Npln(Vn/Vo)

+ jl,lnVn � jl,lnVo]) (17)

where again we set the (irrelevant) value of the pressure to P ¼ 0.

It is straightforward to see that if we make the choice jl,lnV ¼
�l � bfhyb�bPV we recover the Boltzmann-sampling rules.

However, it is convenient to choose the j’s in such way that the

whole 2D space of (l,lnV) allowed values is visited with equal

frequency, though other choices can also be envisioned.57–60

Since the marginal probability (P) of visiting a given ‘‘mac-

rostate’’ (i.e., a given point in the l–lnV space) is given by

PNBS(l,lnV) � PBoltz(l,lnV)exp[jl,lnV] (18)

To achieve uniform sampling we must choose

jl,lnV ¼ �ln[PBoltz(l,lnV)] ¼ �ln[Q(l,lnV)]

+ C ¼ bA(l,lnV) + C (19)

where Q is the canonical partition function of a system with l

bonds and volume V, A is its free energy, and C is just an additive

constant. Note that Q is not the partition function of a single

system with a single ‘‘fixed’’ connectivity of bonds, but rather, it

is a summation over all possible such systems, where the

connectivity of the bonds have been re-arranged while keeping

the total number of bonds equal to l. In addition, since we are

only concerned with differences in the weights j, the value of the

constant C is irrelevant.

Although the values of bA(l,lnV) are initially unknown, they

can be estimated iteratively (up to a trivial constant) through
Soft Matter, 2010, 6, 6136–6145 | 6143
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a variety of methods that include: using the histogram of visited

states,54,61 Wang–Landau sampling,62 and, acceptance ratio

methods63–66 like the one proposed by Bennett.67 In the present

work we used Bennett’s acceptance ratio method67 to calculate

free energy differences between neighboring macrostates, since it

has been shown to utilize the data in an efficient way.68 Bennett’s

acceptance ratio method has been used extensively in free energy

calculations and details about its implementation can be found

elsewhere.66–69

Since, the values of bA are independent of G and P, one can

directly apply the histogram reweighting techniques37,56 to obtain

the QGNPT (up to a multiplicative constant) at any value desired

value of G and P through

QGNPT ¼
XlnVmax

lnVmin

(
expð � bPVÞ

Xlmax

l¼0

exp

"
llnG� bAðl; lnVÞ

#)
(20)

At a given value of G, the unnormalized probability distribu-

tion of the system being at a particular value of lnV is given by

the quantity inside the curly brackets. Thus, in order to find Pcoex

one simply varies the value of the pressure until two equal area

peaks are obtained in the probability distribution.

The histogram reweighting techniques described above have

been widely used in the literature to study phase equilibria and

a more detailed explanation about the method can be found

elsewhere.37,56,63,70

Above, we have explained how to calculate phase coexistence

in an NPT-like expanded ensemble, where we keep the number of

particles constant and make changes in the volume. Equivalently,

one can calculate phase coexistence in a mVT-like manner; that is,

changing the number of particles while keeping the volume

fixed.70 Thus, one can envision an NBS scheme with the mac-

rovariables being now l, and the number of A–B colloid pairs n.

However, for DNA-coated particles there exists the additional

complication that once bonds are formed, removing particles

becomes highly impractical. For this reason, in the present work

we only add/remove particles when no bonds are hybridized (i.e.,

l ¼ 0). The hybridization moves are performed with acceptance

rules analogous to those in (15) and (16). Insertions and deletions

of colloid pairs are attempted with equal probabilities. The

insertion of an A–B pair is accepted with probability:

Pacc ¼ min

�
1;

V 2

ðNA þ 1Þ � ðNB þ 1Þ

� exp
�
� bDU þ jl¼0;nþ1 � jl¼0;n

	� (21)

while the deletion moves are accepted with

Pacc ¼ min

�
1;

NA �NB

V 2
� exp

�
� bDU þ jl¼0;n�1 � jl¼0;n

	�
(22)

where NA(B) is the number of type-A(B) colloids already in the

system and DU is the configurational energy change associated

with the insertion/deletion process. In practice we use configu-

rational bias to re-grow the DNA blobs.50

Again, we use Bennett’s acceptance ratio method67 to calculate

the free energies [i.e., bA(l,n)] of each one of the macrostates.
6144 | Soft Matter, 2010, 6, 6136–6145
Finally, histogram reweighting can be used to find the partition

function up to a multiplicative constant, QGmVT

QGmVT ¼
Xnmax

n¼0

(
expðnbm*Þ

XlmaxðnÞ

l¼0

Gl�lmaxðnÞexp

"
� bAðl; nÞ

#)
(23)

where lmax(n) ¼ k � n is the maximum number of bonds for

a given value of n, and we have introduced for convenience bm*¼
bm + klnG, the chemical potential (bm) of non-bonded colloid

pairs in a non-reactive ideal gas reservoir, shifted by the constant

klnG, with k the number of DNA chains per colloid (i.e., the

valence of the colloid). Similarly, m* can be varied until the equal

probability criterion is reached to find coexistence conditions,

and the pressure can be obtained from the grand-partition

function using the ideal gas state to determine the multiplicative

constant63,70 through,

bPV ¼ ln

�
QGmVT � expðbAl¼0;n¼0Þ

2

�
(24)
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