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Energy landscapes: some new horizons
David J Wales

Kinetic transition networks can now be calculated for small

proteins using geometry optimisation to characterise minima,

transition states and pathways, and unimolecular rate theory to

supply rate constants corresponding to each transition state.

The networks can be visualised by constructing disconnectivity

graphs, revealing striking differences between good structure-

seeking systems and a model glass former. The glassy

landscape contains competing low-lying minima separated by

high barriers, providing a more extreme example of the

frustration previously characterised for model proteins. Free

energy projections that preserve barriers and rates can be

obtained from the network representation, and global kinetics

can be addressed on the experimental time scale.

Address

University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW,

UK

Corresponding author: Wales, David J (dw34@cam.ac.uk)

Current Opinion in Structural Biology 2010, 20:3–10

This review comes from a themed issue on

Folding and binding

Edited by Laura Itzhaki and Peter Wolynes

Available online 22nd January 2010

0959-440X/$ – see front matter

# 2009 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.sbi.2009.12.011

Introduction
Representing a potential energy surface (PES) in terms of

local minima and the transition states that connect them

provides a convenient coarse-grained representation of

the corresponding landscape [1]. Such networks can be

constructed using geometry optimisation techniques, pro-

viding a complementary approach to molecular dynamics

and Monte Carlo simulations. Locating pathways corre-

sponding to high barriers is generally no harder than

characterising low-barrier processes, providing insight

into rearrangements that occur on long time scales.

The overall organisation of the landscape can then be

visualised using disconnectivity graphs [2], and when rate

constants are associated with the rearrangements

mediated by each transition state we can define a kinetic

transition network [3��,4�].

The disconnectivity graph approach was first applied to a

database of local minima and transition states for a

tetrapeptide, which had previously been employed in

a master equation analysis of the global dynamics [5].

Disconnectivity graphs constructed from existing data-

bases for atomic and molecular clusters immediately

identified several motifs associated with distinct classes

of generic kinetic and thermodynamic properties [6].

Over the last decade improvements in geometry optim-

isation algorithms and database analysis have made it

possible to treat networks containing more than a million

local minima [1,7]. Programmes to construct, analyse

and visualise the potential energy landscape can be

downloaded from URL http://www-wales.ch.cam.ac.

uk/software.html for use under the GNU General Public

License.

Contrasting landscapes
Some recent results are collected in Figure 1 to illustrate

the common features revealed for good ‘structure-seek-

ing’ systems, and to contrast these with a glassy poten-

tial energy landscape. The graphs in Figure 1(a)–(d)

correspond to T ¼ 1 and 3 icosahedral shells composed

of rigid pentagonal and hexagonal pyramids [8,9], the

16-residue GB1 peptide [10], which forms a b-hairpin in

the full B1 domain of protein G [11] and in solution [12–
14], and the 20-residue miniprotein beta3s [15�], which

was designed to adopt a three-stranded antiparallel

b-sheet conformation [16]. The vertical axis in each

graph represents potential or free energy, and the spa-

cing of branches on the horizontal axis is chosen to

reveal the structure as clearly as possible. The branches

terminate at the energies defined by individual poten-

tial energy minima, or groups of minima in the case of

the GB1 peptide, and are joined together at energy

thresholds where the barriers separating different sets

can be overcome [2].

The graphs in panels (a)–(d) have a ‘palm tree’ structure,

with a well-defined global potential energy minimum,

and low downhill barriers from higher lying minima. This

motif is also associated with efficient relaxation to ‘magic

number’ clusters in molecular beams [1,6,17], and with

crystallisation [17]. Such potential energy landscapes

have ‘funnelling’ properties, since there is generally a

well-defined free energy minimum that is kinetically

accessible over a wide range of temperature. To establish

this connection directly requires additional calculations,

since the entropy is determined by the potential energy

distribution of local minima and their vibrational

densities of states [17], as discussed below. The graphs

in Figure 1(a)–(d) could also be described in terms of a

‘folding funnel’ [18–20] defined in terms of a set of

convergent kinetic pathways [21]. In contrast, the graph

for a model glass former [Figure 1(e)] is qualitatively
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different [22]. Here the lowest lying amorphous minima

are separated by potential energy barriers that are very

large compared to kBT at the glass transition, leading to

ergodicity breaking on accessible experimental and simu-

lation time scales. The alternative low-lying minima

separated by high barriers correspond to a rugged, fru-

strated landscape, in contrast to the minimal frustration

[18,23] expected for a good structure-seeking system.

Visualising frustration
The effect of removing favourable interactions that are not

present in the global minimum to make a Gō model is

illustrated for a model 46-residue protein in Figure 2 [24].

The original off-lattice bead potential was designed to

exhibit frustration in the form of competing b-barrel

structures separated by high barriers [25–27]. In the Gō
model these alternative structures are no longer competi-

Energy landscapes Wales 5

(Figure 1 Legend) Disconnectivity graphs for good structure-seeking systems [panels (a)–(d)] contrast strongly with a glassy system [panel (e)]. The

graphs in (a) and (b) correspond to global minima with icosahedral symmetry and triangulation numbers (a) T ¼ 1 and (b) T ¼ 3 [9]. e is the pair well depth

for the interaction between two equatorial sites of different pyramids. (c) Free energy (kcal/mol) disconnectivity graph calculated at 298 K for the GB1

peptide using an implicit solvent and a barrier threshold of 5 kcal/mol for regrouping [10]. Structures corresponding to one member of the denatured set

and five members of the expanded group of folded states are superimposed on the graph. (d) Potential energy (kcal/mol) disconnectivity graph for beta3s

based on the stationary points that appear in the 250 fastest discrete paths [15�]. The branches are coloured according to whether the corresponding local

minima appear in the fastest or slowest of these paths, revealing that only minor differences in the folding pathway occur within this set. Green branches

lead to minima present in both the fastest and slowest paths in the set, red branches correspond to minima on the fastest path, but not the slowest, and

blue branches correspond to minima on the slowest path, but not the fastest [15�]. (e) Disconnectivity graph calculated for the minima sampled [22] over a

locally ergodic time interval in a binary Lennard-Jones system of 60 particles (12 of type B and 48 of type A) modelled with periodic boundary conditions at

a number density of 1.3 and kBT=eAA ¼ 0:96. Here, eAA is the pair well depth between atoms of type A.

Figure 2

The global minimum of the off-lattice bead model with sequence is a four-stranded b-barrel, where =hydrophobic;

=hydrophilic; and =neutral [25]. The original system exhibits frustration, as shown by the alternative b-barrel minima separated by high barriers in

the disconnectivity graph on the left. The frustration is eliminated in the graph for the corresponding Gō model [24] on the right, and is also reduced by

salt bridges [28,29]. e is the unit of energy, which has been assigned a value of around 1 kJ/mol in previous work.

www.sciencedirect.com Current Opinion in Structural Biology 2010, 20:3–10



Author's personal copy

tive, and the disconnectivity graph now corresponds to an

efficient structure-seeker [24]. Introducing salt bridges at

key sites produces landscapes with intermediate character,

which is reflected in both explicit dynamical simulations

[28] and in the mean first-encounter time for global optim-

isation [29]. This 46-bead model has provided a number of

useful insights into the interplay of frustration, dynamics

and thermodynamics [28,30–31,32�].

Visualising the potential energy landscape for systems

that locate a particular structure efficiently has helped to

unify our understanding of how non-random searches

guide self-assembly, folding, crystallisation and the

appearance of magic numbers for clusters in a molecular

beam [1,6,17]. The disconnectivity graph can be viewed

as a convenient summary of the underlying kinetic tran-

sition network [3��,4�], and quantitative results for global

thermodynamic and kinetic properties can be obtained

from the connectivity information and densities of states

corresponding to the underlying stationary points [1,17].

The graphs can also be analysed in terms of basic network

properties, such as the distribution of the number of

connections for each local minimum. Landscapes corre-

sponding to efficient structure-seekers may exhibit scale-

free properties, where a highly connected global mini-

mum acts as a hub to give a power law probability

distribution for the number of connections [33,34].

Extracting global thermodynamic and kinetic
properties
The disconnectivity graph approach can be extended to

represent free energy rather than potential energy [35,36],

and graphs can also be constructed using transition prob-

abilities obtained from explicit dynamics [37��]. These

representations avoid the problems that can sometimes

arise for free energy surfaces corresponding to low-dimen-

sional projections, which can misrepresent or even

remove barriers [3��,38–41]. Integrating over all but

one or two degrees of freedom can produce distributions

where the connectivity information that determines tran-

sition rates is lost. In particular, if we choose an inap-

propriate order parameter that averages over states on

different sides of a high barrier, then kinetically isolated

configurations can appear to be connected. Similar pro-

blems may arise in rare event calculations [42,43].

A kinetic transition network defined in terms of stationary

points of the PES retains all the connectivity information,

which can be faithfully represented using a free energy

disconnectivity graph [35,36]. It is also possible to define a

progress coordinate from the underlying network that

preserves the barriers [35,39]. Using harmonic or anhar-

monic densities of states for each local minimum, j, of the

PES enables us to calculate the corresponding partition

function, Z jðTÞ, or free energy at any given temperature,

T. Each minimum of the PES then corresponds to a local

free energy minimum, but projection onto a lower dimen-

sional space can produce surfaces with a much simpler

appearance [17]. Alternatively, the local free energy

minima, and the transition states that connect them,

can be grouped together if they are separated by barriers

below a given threshold [1,15,36,44,45]. We then define

the free energy of group J as

FJðTÞ ¼ �kBT ln
X
j 2 J

Z jðTÞ; (1)

and the free energy of the group of transition states (y)
that links group J to group L as

FyLJðTÞ ¼ �kBT ln
X
l j

Zyl jðTÞ� � kBT ln ZyLJðTÞ: (2)

The inter-group rate constant from J to L, kLJ , is then [45]:

kLJðTÞ ¼
X
l j

peq
j ðTÞ

peq
J ðTÞ

kl jðTÞ ¼
X
l j

Z jðT Þ
ZJðTÞ

kBT

h

Zyl jðTÞ
Z jðTÞ

¼ kBT

h

ZyLJðTÞ
ZJðT Þ

¼ kBT

h
e� Fy

LJ
ðT Þ�FJ ðT Þ½ �=kBT :

The effect of this regrouping scheme is illustrated for the

alanine dipeptide in Figure 3.

A formally exact expression for the global equilibrium

partition function can be obtained using the superposition

formula [1,46��], which is a sum over non-overlapping

contributions from all the local minima on the PES:

ZðTÞ ¼
X

j

Z jðTÞ: (3)

This result is usually combined with approximate

expressions for the local densities of states [1], and for

problems involving broken ergodicity it can provide

accurate thermodynamic properties many orders of mag-

nitude faster than techniques such as parallel tempering

[47]. The superposition approach can also be used to

project the free energy onto a chosen order parameter, a,

using partition functions that involve a Gaussian shape

function [46��]:

Z jða;TÞ ¼
kBT

hn̄ j

� �k
exp ð�V j=kBTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pkBTA j

p exp �ða� a jÞ2

2kBTA j

" #
;

(4)

where n̄ j is the geometric mean of the normal mode

vibrational frequencies, n j;g , of minimum j, with potential

energy V j and order parameter a j . k ¼ 3N � 6, where N is

the number of atoms, and

A j ¼
Xk

g¼1

@aðq jÞ
@q j;g

�����
q j¼0

1

2pn j;g

2
4

3
5

2

(5)
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for normal modes q j;g . Projections onto multiple order

parameters can also be derived [46��]. The resulting free

energy surface for alanine dipeptide at room temperature

in vacuum is compared with a replica exchange calcu-

lation in Figure 4 [46��]. This example illustrates a case

where there is a one-to-one correspondence between the

potential energy and free energy minima. However, the

surfaces obtained from replica exchange and from the

superposition sum are undefined in some of the barrier

regions. The third panel in Figure 4 was obtained using a

new reaction path Hamiltonian superposition approach

(RPHSA), which includes contributions from configur-

Energy landscapes Wales 7

Figure 3

Illustration of regrouping for an implicit solvent model of alanine dipeptide. The graph on the left contains branches corresponding to all the local

minima, while some structures merge together in the graph on the right [46��], which corresponds to a regrouping barrier threshold of 3 kcal/mol. The

structures of the C7ax, aR, PII and b configurations are illustrated below the corresponding branches. In fact, the C7ax=aL minimum has an intermediate

structure for the potential in question: the C7ax structure is shown for reference.

Figure 4

Free energy surfaces calculated for alanine dipeptide in vacuum as a function of the f and c backbone dihedral angles using (left to right) the

superposition, replica exchange, and reaction path Hamiltonian superposition techniques [46��]. The colour key free energy values are in kcal/mol. The

three minima, marked by white dots in the right panel, are C7eq, the b state and C7ax, and the four black stars mark the transition states. Additional

configurations along the paths between the minima and transition states were used in the reaction path Hamiltonian superposition calculation [46��].

www.sciencedirect.com Current Opinion in Structural Biology 2010, 20:3–10
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ations that correspond to displacements, dr , from tran-

sition states, y, along pathways between local minima

[46��]:

Zyr ða;TÞ ¼
kBT

h

� �k
dr exp ð�V yr =kBT Þ
ðn̄yrÞ

k�1
2pkBT

ffiffiffiffiffi
Ayr

p exp �ða� ayrÞ
2

2kBTAyr

" #
:

(6)

Complete RPHSA calculations for dialanine in implicit

solvent or vacuum require less than a minute of computer

time [46��]. This performance is probably similar to the

single-sweep method [48�], which involves an expansion

based on explicit sampling around chosen configurations.

Using geometry optimisation-based approaches to guide

efficient sampling schemes could form the basis for new

hybrid methodology in future work. The superposition

and RPHSA results shown in the figure include only the

enantiomers corresponding to the L-conformations of

each amino acid. The D-forms are located as well, but

are omitted from the calculations to facilitate comparison

with replica exchange, where these isomers are not

encountered because of incomplete sampling.

Mean first-passage times and rate constants can also be

extracted from kinetic transition networks [3��,4�,7,49],

complementing simulation methods for rare events based

on explicit dynamics [37��,43,50–54]. Rate constants and

representative pathways have been calculated from the

databases corresponding to the disconnectivity graphs in

Figure 1 for the GB1 peptide [10] and beta3s miniprotein

[15�]. For both systems the sequence of events involved

in folding and the calculated rate constants agree with

previous work [13,14,16,37��,44,55–58,59�,60]. Single

molecule experiments [61�] provide new targets for

future computational studies, which together will pro-

duce more detailed insight into how biomolecules attain

their native states [62,63].

Outlook
Advances in geometry optimisation techniques, global

optimisation algorithms, and Monte Carlo and molecular

dynamics sampling have provided complementary insight

into the energy landscapes of biomolecules [1]. Further

improvements in the underlying force fields and simulation

methodology can be anticipated in the future. However, an

important conceptual issue remains to be resolved, namely

how details of the interatomic and intermolecular potential

determine the characteristics of the underlying PES. Here

the tools of catastrophe theory can be employed, which

provide a general framework for understanding how

parameter changes affect the organisation of the landscape.

Initial work for atomic clusters has identified how short-

range potentials produce landscapes that are locally

rougher, in terms of the number of local minima, but

globally flatter [64]. Short-range potentials can therefore

hamper both the kinetic and thermodynamic factors that

are required for efficient relaxation. The extension of this

framework to anisotropic molecular and biomolecular force

fields is now in progress.
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