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This perspective focuses on conceptual and computational aspects of the potential energy landscape
framework. It has two objectives: first to summarise some key developments of the approach and sec-
ond to illustrate how such techniques can be applied using a specific example that exploits knowledge
of pathways. Recent developments in theory and simulation within the landscape framework are first
outlined, including methods for structure prediction, analysis of global thermodynamic properties,
and treatment of rare event dynamics. We then develop a connection between the kinetic transition
network treatment of dynamics and a potential of mean force defined by a reaction coordinate.
The effect of projection from the full configuration space to low dimensionality is illustrated for
an atomic cluster. In this example, where a relatively successful structural order parameter is
available, the principal change in cluster morphology is reproduced, but some details are not faithfully
represented. In contrast, a profile based on configurations that correspond to the discrete path defined
geometrically retains all the barriers and minima. This comparison provides insight into the physical
origins of “friction” effects in low-dimensionality descriptions of dynamics based upon a reaction
coordinate. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916307]

I. INTRODUCTION

The potential energy landscape perspective provides both
a conceptual and a computational framework for molecular
and condensed matter science.1 The key components of this
approach involve visualisation of the potential energy surface
(PES) and tools for exploration of structure, dynamics, and
thermodynamics. Many of these tools are based upon geom-
etry optimisation, which allows us to connect the emergence
of observable properties with the organisation of the under-
lying landscape. This approach is highly complementary to
more conventional Monte Carlo (MC) and molecular dynamics
(MD) techniques. In particular, it provides a framework to
circumvent many difficulties associated with sampling prob-
lems arising from high potential energy barriers, which often
lead to trapping, broken ergodicity, and rare event dynamics.
The principal distinction between these methods and the huge
variety of alternative approaches to enhanced sampling2–16 and
rare events17–20 is the use of stationary points of the potential
energy to provide an initial coarse-graining. Limits can be
defined that permit either high accuracy or systematic approx-
imations to be applied. It is not the purpose of this perspective
to provide a review or critical comparison of all the possible
approaches. However, efforts to benchmark different schemes
are being actively pursued.21

Computationally, the potential energy landscape method-
ology can be divided into three connected categories, namely,
structure prediction, thermodynamic sampling, and analysis
of dynamics. In the present contribution, a brief overview
of recent developments in each of these areas will first be
presented (Sec. II). The contrast between the potential en-
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ergy landscape formulation, which accounts for all degrees
of freedom, and methods that require or extract a reaction
coordinate to describe mechanism and dynamics is then devel-
oped. To connect these viewpoints, a new approach to sam-
ple a potential of mean force along geometrically determined
pathways is then described in Sec. IV. The results provide a
direct way to compare with calculations based on an order
parameter that defines a reaction coordinate. The manifestation
of the effects due to projection is then clear, and we see that in
a benchmark system, even a relatively successful geometrical
order parameter22 averages over some of the barriers on the
multidimensional path (Sec. V).

Sampling pathways defined by order parameters or reac-
tion coordinates is a common approach for systems rang-
ing from atomic clusters22 to biomolecules.23–26 Constrained
sampling in hyperplanes,27 or regions defined by Voronoi anal-
ysis,28 has previously been used in conjunction with evolving
pathways. In the present contribution, the reference path is
defined by geometry optimisation and fixed. Such pathways
form the basis of the computational potential energy landscape
approach to approximate treatments of dynamics, and the pres-
ent results suggest that they could be used to guide projection
directly, if a reaction coordinate description is required. The
methodology therefore provides a means to employ kinetic
transition networks sampled within the framework of geom-
etry optimisation for more accurate refinement of transition
rates and analysis of rare events. The contributions of indi-
vidual discrete paths, defined in terms of connected minimum-
transition state-minimum triples,17 to the overall rate can be
estimated as a function of temperature, and more paths become
significant as the temperature increases. This increase in en-
tropy due to the number of relevant paths can be compared
with the entropic contribution of the discrete paths themselves.

0021-9606/2015/142(13)/130901/12/$30.00 142, 130901-1 © 2015 AIP Publishing LLC
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The present approach may provide a way to account for anhar-
monic effects more accurately in this theoretical transition path
framework.17,29–33

II. OVERVIEW OF THE COMPUTATIONAL POTENTIAL
ENERGY LANDSCAPE FRAMEWORK AND RECENT
DEVELOPMENTS

A. Basin-hopping global optimisation

Basin-hopping global optimisation employs steps be-
tween local minima on the potential energy surface.34–36

Because a local minimisation is involved, large moves
in configuration space can be proposed that may pro-
duce unphysical geometries, which are then rescued by
geometry optimisation. A wide range of related schemes
has been considered, mostly based upon alternative step-
taking strategies and criteria for accepting and rejecting
the resulting moves. Efficient minimisation is essential, and
some of most popular methods have recently been compared
systematically.37 Physical insight into particular systems is
likely to speed up the searches significantly if more productive
moves in configuration space can be proposed,38 and this
approach is legitimate so long as it does not exclude any
potentially important parts of the landscape.

For benchmark atomic clusters, which exhibit frustra-
ted39,40 multi-funnel41 landscapes, efficiency gains of two to
three orders of magnitude have been obtained by exploiting
symmetrised moves.42 This approach was inspired by the
principle of maximum symmetry, which argues that struc-
tures with larger symmetry measures are more likely to have
particularly high or particularly low energies.1,43 The most
useful scheme is probably a “core orbits” approach, where
optimal arrangements of roughly symmetry equivalent atoms
are sought within incomplete orbits of a core point group.42

Global optimisation for multicomponent materials, such
as nanoalloys, must address the need to optimise with respect
to both structure and chemical ordering. Using methods devel-
oped to solve graph partitioning problems, we have devised
a deterministic method that outperforms conventional basin-
hopping by orders of magnitude.44 Focusing on biminima,
defined as local minima in both coordinate and permutation
space, facilitates even greater gains in efficiency.45

Less dramatic, but nevertheless useful, improvements
have been realised by replacing the Boltzmann weight in
the basin-hopping accept/reject step by a Tsallis weight.46

Optimising an additional parameter in this weight reduced the
mean first encounter time for the global minima by about a
factor of 2 in test cases.47 A theoretical basis for the value
of the optimal parameter was also provided and matched the
outcomes of numerical experiments very well.47

Significant efficiency gains for global optimisation in
biomolecules can be obtained if large moves in configuration
space can be proposed without causing groups of bonded atoms
to overlap. Here, a group rotation scheme has been success-
fully applied,48–50 and this approach can be combined with
local rigidification of arbitrary sets of atoms,51 using angle-
axis coordinates.52,53 For two peptides, where benchmarking
statistics can still be obtained for less efficient approaches, local

rigidification improved the mean first encounter times for the
global minima by up to a factor of 4. Much greater benefits
are expected for larger systems, since the effective number of
degrees of freedom is reduced, as well as the dimension of the
search space and the cost of calculating the energy and gradient.

B. Thermodynamic sampling

The superposition approach to thermodynamics provides
an exact formulation, which forms the basis for convenient
approximations that retain the key feature of explicit ergo-
dicity.1,11,54–57 The total density of states or partition function
is written as a sum over the basins of attraction1,58,59 of local
minima. This method underlies several recent developments
for enhanced sampling, as outlined below.

The superposition enhanced nested sampling (SENS)
procedure60 addresses a systematic failure of nested sampl-
ing,61 where simulations become locked out of certain regions
in configuration space that become disjoint below a particular
energy threshold. SENS retains the strengths of the original
nested sampling procedure, with the power of global optimi-
sation to locate low-lying local minima efficiently. A reference
set of minima is used in a Hamiltonian replica exchange
method (HREM) scheme,62,63 where moves are proposed be-
tween configurations sampled using different Hamiltonians.
Specifically, minima are selected from the database according
to their relative weights calculated using harmonic densities of
states, in accord with a harmonic superposition approximation
(HSA). Swaps are then considered between configurations
sampled uniformly within the harmonic basin of attraction and
a configuration sampled from the Hamiltonian in question un-
der a certain energy constraint.60 Convergence improvements
up to factor of about 20 were obtained for some benchmark
atomic clusters.

The new basin-sampling procedure64 provides much larger
acceleration of sampling via an approximate treatment of the
anharmonic vibrational density of states for the local minima.
Again, the methodology exploits the fact that global optimisa-
tion can generally find all the relevant low-lying minima very
quickly, even for frustrated landscapes39,40 with competing
morphologies. Basin-sampling combines knowledge of low-
lying local minima with parallel tempering2,65 to connect
densities of states that are relevant in the low and high tempera-
ture regimes. A two-dimensional histogram of probabilities is
constructed using the instantaneous potential energy and the
energy of local minima obtained by regular quenching. An
approximate anharmonic functional form is then fitted. This
construction has the additional benefit that it can be employed
to calculate the potential energy density of both local minimum
structures and permutation-inversion isomers.64

The superposition framework is also exploited in the fac-
torised superposition approach (FSA),50 which provides a the-
ory for the free energy change associated with non-covalent
association of two molecules. It exploits our intuition that local
molecular environments sufficiently distant from the interac-
tion site are relatively unaffected by binding. Hence, it should
not be necessary to sample the corresponding local configu-
rations extensively. Convergence tests for binding of phenyl
acetic acid to aldose reductase show that the free energy change
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converges for factorisation of groups with about 80% of the
protein rigidified.50

C. Rare event dynamics

In this part of the computational potential energy land-
scape approach, the focus is on transition states and the path-
ways they mediate between local minima. Here, the transition
states are defined geometrically as stationary points with a
single negative Hessian eigenvalue.66 Rate constants, mean
first passage times, and committor probabilities are extracted67

from the resulting kinetic transition network68–71 for indi-
vidual local minima or regrouped sets that define states with
associated free energies.72–75 Here, it is possible to exploit
particular features of the network formulation to produce a
graph transformation procedure that is much more robust than
linear algebra methods.76 The rate constants for individual
minimum-to-minimum transitions can be estimated by any
convenient unimolecular rate theory77 or explicit dynamics.
For the simplest harmonic normal mode approximations, the
required metric tensor has now been derived for angle-axis
coordinates,48 which enables rates to be obtained for systems
involving rigid body molecules and the general local rigidi-
fication scheme49,51 within the discrete path sampling (DPS)
framework.

Various methods to expand and refine a transition net-
work69–71 have been described within the general framework of
DPS.17,29,30 Details of all the geometry optimisation techniques
involved have been described extensively in previous reports.
For the comparison of free energy profiles discussed in Sec. IV,
it is the approximate steepest-descent paths employed to define
connections between local minima that are paramount.

Characterising an initial connected path between specified
end point minima usually represents the first step to building
the required network. Although this initial path is often kineti-
cally irrelevant once a full network has been refined, it may not
be straightforward to obtain the required connection. Partic-
ularly serious problems arise for some biomolecular systems
where a naïve linear interpolation leads to unphysical chain
crossings. The quasicontinuous interpolation scheme solves
this problem by constructing an auxiliary potential that pre-
serves the covalent bonding framework.78 The method has now
been applied successfully to proteins and nucleic acids. Our
experience suggests that alternative methods, such as steered
molecular dynamics, can produce pathways with barriers over
an order of magnitude too large and reordering of fast and slow
processes.

D. Visualisation: Disconnectivity graphs

Three-dimensional surfaces with many local minima are
often described as “rough” or “complex.” In fact, such pic-
tures cannot faithfully represent a multi-dimensional potential
energy surface. The number of local minima is expected to
scale exponentially with the number of atoms,54,79,80 and the
average number of transition states per minimum is likely to
scale linearly.80 This connectivity usually means that three-
dimensional surfaces correspond to a relatively small number
of degrees of freedom.

FIG. 1. Disconnectivity graph for the LJ38 cluster, highlighting the com-
peting morphologies that correspond to an incomplete Mackay icosahedron
and a truncated octahedron. Branches of the graph corresponding to minima
based on the octahedron (fcc packing) are coloured red. The vertical axis
corresponds to potential energy in units of ϵ.

For visualisation of landscapes in high-dimensional sys-
tems, the disconnectivity graph approach81,82 has proved very
insightful. In particular, universal principles have been recog-
nised that connect atomic and molecular clusters, biomol-
ecules, and soft and condensed matter with common self-
organising properties. The corresponding organisation con-
trasts dramatically with the highly frustrated landscapes of
glass-forming systems,52,71,83 which exhibit an exponentially
large number of low energy amorphous minima separated by
high barriers. In the present contribution, the benchmark sys-
tem for which free energy profiles are compared exhibits two
principal competing morphologies, which correspond to a dou-
ble funnel disconnectivity graph, illustrated in Figure 1. This
structure produces two distinct time scales for relaxation to the
global minimum, as well as a signature in the heat capacity cor-
responding to a low temperature solid-solid transformation.84

III. REACTION COORDINATES AND PROJECTION

Experimental observables such as rate constants must be
independent of the coordinates we may choose to describe the
system. If our calculations account for all degrees of freedom,
without introducing approximations, then coordinate indepen-
dence can be achieved using covariant derivatives.85,86 The
choice of coordinate transformations in this context is then a
matter of efficiency or convenience, for example, in changing
the convergence of geometry optimisations.87,88 It does not
affect any calculated observables.
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In contrast, the choice of a reaction coordinate, or any
other projection from the full configuration space to a reduced
space, is inherently approximate. Such projections can then
be optimised in terms of how faithful they are in preserv-
ing the observable properties of interest for calculations in
the reduced representation. Significant effort has been in-
vested in this framework, especially for protein folding dy-
namics, where descriptions of the kinetics in terms of diffusion
on a one-dimensional surface have often proved remarkably
successful.89–91 For example, a Bayesian approach has been
used to variationally optimize coordinates by maximizing the
conditional probability of being on a transition path for a
certain value of the coordinate: this quantity has a theoret-
ical upper bound for diffusive dynamics.92–94 Alternatively,
reproduction of committor probabilities,95 often referred to
as Pfold for proteins, along with hundreds of other structural
and energetic variables, may be achievable by importance
sampling combinations of many coordinates.96,97 Committor
probabilities and isocommittor surfaces feature in a vari-
ety of other studies,98–100 and reaction coordinates have also
been described for biochemical networks based on genetic
switches.101 Some schemes that aim to model rare events
require reaction coordinates,102,103 while other approaches
extract them from simulation results.104–113

Reproducing folding rates provides an objective criterion
for optimising the projection, although the resulting reaction
coordinate(s) might depend on the observable(s) in question.
In fact, different pathways in the same protein may correspond
to different optimal combinations of coordinates,97 and alterna-
tives may be needed if a single coordinate is insufficient.28,114

Focusing on a progress coordinate may also be helpful.115

Aside from possible physical insight, the search for a
reaction coordinate can be motivated by the possibility of
extracting dynamics using a low-dimensional projection. This
approach is particularly popular in studies of protein folding,
initiated by ideas from the theory of glasses.116 The description
of dynamics in terms of a one-dimensional diffusion equation
has often proved useful,89,90,117,118 although the caveats of the
original authors are worth quoting:116 “we should point out,
however, that our assumed dynamics in this model may well be
quite unrealistic for actual proteins (although not necessarily
for a large class of simulations of proteins).”

Most applications actually consider a Smoluchowski equa-
tion, which includes additional parameters and a general posi-
tion dependence for the diffusion coefficient and the average
velocity. The resulting drift-diffusion equation is usually writ-
ten with a friction term corresponding to viscous drag and
corresponds to the Fokker-Planck equation for the time evolu-
tion of a probability density function associated with particle
positions. The drag terms or random forces could arise from
variation in solvent viscosity119–122 but will also subsume
the effect of projecting the dynamics onto a low-dimensional
space. Even if the projection does not provide a faithful descrip-
tion of some barriers, it may still be possible to apply correc-
tions based on local analysis of the dynamics in the full space,
although they may be coordinate dependent.90 The phenom-
enological “friction” then includes dimensionality reduction
effects inherent in the projection, which generally slow the
dynamics when the reaction coordinate does not account for

barriers in the potential energy landscape corresponding to
full dimensionality. This effect is sometimes associated with
“roughness,” manifested as a position-dependent effective
diffusion coefficient, which affects the physical interpretation
of this phenomenological parameter. The original barriers on
the potential energy surface are therefore reflected in two
different ways in a low-dimensional projection. The barriers
along the reaction coordinate are still explicit, but barriers
in orthogonal degrees of freedom correspond to position-
dependent diffusion coefficients. Some groups describe both
the explicit and implicit barriers as “roughness.”

The capability of single-molecule fluorescence experi-
ments to probe both folding rates and the time associated with
actually making a conformational transition provides detailed
tests of dynamics.123 In simulations, the barriers associated
with conformational transitions of a biomolecule change with
both implicit and explicit solvent representations. Since these
barriers depend on the solvent representation, they are actu-
ally correlated directly with the solvent, and we should not
necessarily expect that the solute degrees of freedom can be
decoupled. The convolution of effects seems likely to be sys-
tem specific, depending upon whether the time scale for the
rate-determining step is well separated from other relaxation
processes. It is not obvious whether interpretation of “internal
friction” as a less than a first power dependence on the solvent
viscosity for the mean first passage and transition path times is
equivalent to changes in these conformational barriers.

Computer simulations are likely to play a key role in
future work here.124,125 For example, the interplay of explicit
solvent viscosity and conformational transitions over effective
torsional barriers has been examined in detail for a small helical
protein.126 The rate-determining pathways between protein
configurations in this case are in line with previous results,
where the corresponding transition states were calculated us-
ing geometry optimisation including all the protein degrees of
freedom.127,128

A friction constant is explicitly introduced into simula-
tions based upon the Langevin equation, which aim to account
for omitted explicit solvent degrees of freedom, which are
assumed to equilibrate quickly.129 Here, the frictional drag is
proportional to the velocity on each particle (Stoke’s law),
and the resulting model is equivalent to a Fokker-Planck
equation.130 In the simplest formulation, a memoryless noise
term, where the noise contributions at different times are
uncorrelated, is added to the frictional drag. Expressions for
the rate constant that depend upon a position-independent
friction coefficient were derived for one degree of freedom
by Kramers,131,132 and various extensions to multidimensional
problems133,134 and generalised friction kernels135–139 have
been described. Here, we also note Kramer’s comment: “we
expect the transition state method gives results which are
correct, say, within 10% in a rather wide range of η-values,”131

where η is a viscosity parameter. However, this conclusion may
be optimistic, given the assumptions in Kramers’ derivation of
separation between fast and slow degrees of freedom, projec-
tion of the dynamics onto low dimensionality, and uncorrelated
noise.

In the present work, we avoid complications of interpreta-
tion due to solvent effects and possible issues associated with
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describing dihedral angle rotations139 by considering a gas
phase atomic cluster. Hence, we can focus directly upon the
projection of the dynamics onto a single degree of freedom.
We therefore disentangle the effect of the projection, from any
additional interpretation of friction that arises from stochastic
treatments of missing explicit solvent degrees of freedom. The
potential energy landscape perspective, based upon construc-
tion of kinetic transition networks, does not require or use
such reaction coordinates. All degrees of freedom are usu-
ally retained, although it is certainly possible to reduce the
dimensionality using arbitrary sets of atoms that define local
rigid bodies.48,50,51 Overall rate constants can be extracted
based upon unimolecular rate theory involving all degrees
of freedom, exploiting either transition state theory formu-
lations17,29,30,67 or generalised Kramers approaches.134 The
underlying master equation formulation is also the foundation
of methods that define states from explicit molecular dynamics
simulations. This framework has been used in a number of
studies for biomolecules, where it is usually referred to as
Markov state modelling.140–144

IV. SAMPLING A GEOMETRICALLY
DEFINED PATHWAY

The basic idea introduced here is to use geometrical path-
ways to construct potentials of mean force. A Monte Carlo
sampling procedure is employed subject to the restriction that
configurations must remain within a constraint distance d of at
least one structure saved on a reference pathway.

In the creation of a kinetic transition network69–71 within
the DPS framework, approximate steepest-descent pathways
are calculated for every transition state. In the present work,
these energy minimisations were performed using a modified
version of the limited memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) algorithm,145,146 which is implemented in
the GMIN147 and OPTIM148 programs. For a composite pathway
involving multiple transition states, the individual paths are
aligned and joined. Aside from the initial and final states,
local minima at the end points of the individual paths will
appear twice and are aligned and tested to make sure that
any residual distance between the configurations lies below
a specified tolerance. Minimising the Euclidean distance be-
tween configurations in 3N dimensions for an N-atom mole-
cule with respect to overall translation and rotation employs a
straightforward quaternion algorithm.149 However, alignment
with respect to permutation-inversion isomers may also be
necessary, and then an iterative procedure is required. Here, we
alternate alignment with respect to overall rotation and trans-
lation with permutational optimisation based upon a shortest
augmenting path algorithm,150 as coded in OPTIM.78 Enan-
tiomers are also considered in each cycle. The sequence of
alignment steps can produce a different local minimum in the
distance for different initial orientations, and here, we em-
ployed up to 1000 initial conditions to ensure that the best
solution was almost certainly obtained. A smaller value could
safely be used, but the overhead involved is negligible, since
the full alignment procedure need only be performed once.

This potential of mean force approach can be used with
any suitable selection of configurations from the individual

pathways. The key requirement is that adjacent configurations
are not so far apart that they are mutually inaccessible for the
given constraint distance d, which would break ergodicity in
the sampling. This condition was checked on initialisation,
when the successive configurations for a particular discrete
path were read and aligned in sequence, using the iterative
procedure described above. After this initial pass, the permuta-
tional isomers were fixed, so that subsequent distance checks
in the MC procedure needed only to deal with overall trans-
lation/rotation. Standard canonical MC runs were then con-
ducted, with the restriction that any proposed steps leading
to configurations outside the distance constraint were simply
rejected, with the previous configuration recounted to avoid
boundary effects.151

To improve the efficiency, two further measures were
considered. Since the distance check has identified the closest
reference configuration, n, for the proposed configuration X,
we can use the corresponding potential energy of this reference
to construct a bias potential as W (X) = −Vn(X), in the spirit
of umbrella sampling.152 Here, Vn(X) is the potential energy
of reference configuration n. The biased MC sampling then
employs Metropolis accept/reject steps based on the potential
V (X) +W (X). The expectation value for an observable, O(T),
at temperature T is recovered from the average value in the
biased ensemble using the standard result153

⟨O(T)⟩ = 
O(T)eW (X)/kBT


W
/

eW (X)/kBT


W
, (1)

where the subscript W indicates an average calculated in the
biased ensemble. Subtracting the potential energy of a nearby
reference configuration should increase the acceptance proba-
bility by effectively flattening the potential energy profile of the
path. The accuracy of this approach in the example discussed
below was assessed by comparing the results from biased and
unbiased sampling, which were in quantitative agreement at
convergence. Faster convergence was achieved using biased
sampling, as expected.

The objective in the present contribution is to compare
potentials of mean force projected onto a geometrical order
parameter, Q6 (see Sec. V), and as a function of the inte-
grated path length, s. Here, s is approximated from the step
lengths in 3N-dimensional space between the configurations
along the reference pathway, where N is the number of atoms.
The bins can have different widths, and the selected reference
configurations were checked to ensure all adjacent frames were
separated by less than the distance constraint value, so that
|Xi − Xi+1| < d. In practice, this condition was achieved by
setting a relatively small maximum step size in the LBFGS
procedure used to calculate the reference pathway (an order
of magnitude less than the smallest d value considered) and
aligning frames from different initial orientations until the
separation was less than twice the maximum step size. The
configurations obtained by energy minimisation are very close
together near the stationary points, so only representatives
corresponding to a minimum change in potential energy (or
separation) were included.

The potentials of mean force that we aim to compare are
Landau free energies obtained from the occupation probabil-
ities of the bins for the integrated path length and the Q6 order
parameter: F(s) = −kBT ln P(s) and F(Q6) = −kBT ln P(Q6).
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These probabilities can be obtained simply by accumulating
statistics in the MC runs, using Eq. (1) for biased sampling with
observables corresponding to the number of visits to either s
or Q6 bins. Instead of simply counting visits, we accumulate
an average value for exp [W (X)/kBT] for each bin.

To accelerate the sampling, separate MC runs were con-
ducted for overlapping segments of the reference pathway.
These segments were chosen in terms of blocks of b sequen-
tial reference configurations, with c overlapping configura-
tions in common between neighbouring blocks. The simula-

tions for each block are independent and were run on sepa-
rate processors, so the efficiency gain scales linearly with the
number of processors available. The sampling within each
block generates the correct relative probabilities for each s
bin, since all the configurations that contribute to each bin are
accessible. The overlap condition enables us to combine the
statistics from the different blocks in a weighted histogram
analysis method (WHAM154–158). Here, we optimised the one-
dimensional probability distribution for P(s) by minimising
the statistic157

χ2
1D =


r


s

Nr s[ln P(s) − ln Pr sZr]2, where Nr s =

j ∈s

1, (2)

and Pr s =
Nr s

Nr
(unbiased) or Pr s =


j ∈s

exp
�
W (X j)/kBT

�


j

exp
�
W (X j)/kBT

� (biased).

The sums over j are for the configurations in the Markov chain
obtained for block r , and the variables are P(s) and Zr , with
Nr is the total number of MC steps for sampling of block r .
Direct minimisation using the modified LBFGS approach was
employed with analytical first derivatives for χ2

1D
145,146 in

terms of ln P(s) and ln Zr .
The situation is different for order parameters like Q6,

where some regions of configuration space that contribute to
a particular order parameter bin, q, may lie outside the block
that is sampled in a given run. In this case, the statistics for each
run provide the relative probabilities for the order parameter
bins within each block, Prq, which depend upon r . In this case,
we could optimise a joint probability distribution, P(s,q), and
obtain P(q) by summing over s. However, there is a faster
alternative that proved to be sufficient for the present purposes.
Averages were accumulated for the order parameter within
each s bin as

⟨q⟩sr =


j ∈s q(X j)
Nr s

(unbiased) or

⟨q⟩sr =


j ∈s

q(X j)eW (X j)/kBT


j

eW (X j)/kBT
(biased).

Having solved the one-dimensional optimisation problem
for P(s), we can then approximate P(q) = 

s P(s)P(q|s)
∼ 

s P(s)δ(⟨q⟩sr − q). Here, the conditional probability P(q|s)
is estimated using the average value for the s bin in question.
For s bins contained in overlap regions, there is a choice of
two blocks, r , for the mean value ⟨q⟩sr , and the results were
insensitive to this choice. The average corresponding to the
bin with the most visits (larger Nr s) was used throughout in
the present work, although the mean values ⟨q⟩sr generally
gave the same bin for the order parameter, as specified by
the delta function. Moments of the order parameter in this
approximation can also be calculated. For example, the overall
mean value is a sum over the q values with each one weighted

by the sum of P(s) probabilities for s bins with q averages that
lie in the q bin in question.

Approximate free energy surfaces F(s,q)were obtained as
−kBT ln P(s)P(q|s), with the conditional probability approx-
imated as above. The resulting surface was visualised by
convoluting with a product of Gaussians centred at the two-
dimensional grid position corresponding to (s, δ(⟨q⟩sr − q))
for each s. This representation provides a clear picture of
how different configurations along the geometrical pathway
can contribute to the same value for a more coarse-grained
order parameter. Barriers between these configurations would
then not be accounted for explicitly in the order parameter
projection. Such terms would have to be corrected empirically
via position-dependent diffusion constants if dynamics are
calculated for this projection.

Results were also compared for averages calculated using
the order parameter values for the static reference configura-
tions, instead of the average value for the instantaneous config-
urations sampled in each s bin. The resulting probability distri-
butions for the bond order parameter Q6 exhibited systematic
shifts. For example, larger Q6 values are obtained for structures
closer to local minima with fcc character. An illustration is
presented in Sec. V for a connection between two adjacent
minima that produces a bimodal distribution for Q6. Further
details of such self-consistency checks are omitted for brevity.

If the blocks are large enough to contain all the possible
contributions to each q bin, which is certainly the case for a
single block corresponding to the whole path, then the P(q)
probabilities are recovered directly. This limit was checked for
several runs, and quantitative agreement was obtained when
the distributions from sufficiently large blocks were properly
converged.

V. RESULTS FOR AN ATOMIC CLUSTER

The benchmark system considered here for illustration is
the 38-atom cluster bound by the pairwise additive, isotropic
Lennard-Jones (LJ) potential,160 where the energy is
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V = 4ϵ

i< j



(
σ

ri j

)12

−
(
σ

ri j

)6
. (3)

ϵ and 21/6σ are the pair equilibrium well depth and separation,
respectively, and we employ reduced units of energy and dis-
tance defined by ϵ and σ.

This LJ38 cluster is an archetypal double-funnel sys-
tem,41,82 in terms of competition between competing morphol-
ogies based upon Mackay icosahedral packing and struc-
tures involving the truncated octahedron, which is based on
fcc structure. The organisation of the potential energy land-
scape is probably best understood in terms of the disconnec-
tivity graph81,82 shown in Figure 1. The multifunnel struc-
ture has made this system a benchmark for global optimisa-
tion,42 enhanced thermodynamic sampling,10,11,63,64,159,161–163

and rare event dynamics.17,29,164 The overall rate constants
for interconversion of morphologies have been reported for
transitions between the lowest energy local minima in the
two funnels.41 This lumping scheme avoids complications
due to internal structure in the funnels. For example, some
of the low-lying minima based on icosahedral packing are
themselves separated from the lowest-lying C5v minimum by
relatively high barriers. It has been noted that slow dynamics
would also be associated with such structure.165 Hence, this
usual grouping scheme provides a simplification, which should
be appropriate for experiments that simply distinguish states
based upon the underlying packing.

In previous work on atomic clusters, bond-order
packing descriptors166,167 have proved to be very useful in
deducing which structural families local configurations belong
to.22,159,168–170 Here, we define

Ql = *
,

4π
2l + 1

l
m=−l

|Qlm|2+
-

1/2

, with

Qlm =
1

Nb


ri j<r0

Ylm(θi j, φi j), (4)

where the sum for Qlm is over all the Nb pairs of atoms with
separation, ri j, less than a nearest-neighbour cutoff condition
r0 = 1.391σ. Ylm(θ,φ) is a spherical harmonic and θi j and φi j

are the polar and azimuthal angles of the interatomic vector
with respect to an arbitrary coordinate frame. The most use-
ful member of this family for LJ38 is Q6, which takes larger
values for the truncated octahedral global minimum than for
structures based upon icosahedral packing (Figure 6).

The block size used throughout was 10 frames of the refer-
ence pathway, with overlaps of five frames. Very similar results
were obtained for alternative choices, and there is clearly scope
for optimising these values in future applications. Smooth
probability distributions are presented by convolution with
normalised Gaussian functions centred on the s and Q6 bin
values with variances of 0.025 and 0.000 025, respectively.
The energetic profile for the selected discrete path is shown
in Figure 2. It consists of nine transition states connecting ten
minima, as summarised in Table I. The committor probabil-
ities corresponding to the ten minima in this reduced kinetic
transition network are plotted as a function of temperature
in Figure 3. The fundamental problem with using Q6 as a
reaction coordinate is immediately clear: while the committor
probabilities and integrated path length change monotonically
from product to reactant, Q6 does not.

The first step on the overall path involves two low-lying
members of the icosahedral region of configuration space,
which are separated by a relatively high barrier. The two
structures exhibit alternative Mackay and anti-Mackay surface
packings.171,172 They are lumped together in previous analyses
of rates for interconversion of morphologies,17,29,41 but the
corresponding structure can easily be resolved in the under-
lying network.165 A well-defined minimum appears in P(s)
around s = 2.8 for constraint distances of d = 0.4, 0.7, and
1.0, over the temperature range 0.12–0.3, as shown in Figure 4.
However, the Q6 order parameter fails to identify this feature;
although it discriminates the fcc and icosahedral morphologies

FIG. 2. Relative potential energy V as a function of the
integrated path length s for an interconversion pathway
of the LJ38 cluster between the lowest energy incomplete
Mackay icosahedral structure and the global minimum
truncated octahedron. The ten minima corresponding to
this nine-step pathway are also illustrated with the atoms
coloured according to their contribution to the total en-
ergy. The most tightly bound atoms are blue, the least
tightly bound are red, with intermediate binding energies
in green. TS5 indicates the position of transition state
number 5, for reference to Figure 7.
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TABLE I. Properties of the minima and transition states on the nine-step
pathway analysed for LJ38. “Frame” refers to the position of this structure in
the discretised set of configurations representing the overall pathway. V is the
potential energy, Q6 is the bond order parameter, and s is the integrated path
length at which the structure appears.

Frame Structure V /ϵ Q6 s

887 MIN −173.252 378 4 0.13 0.0
827 TS −171.024 873 0 0.14 1.4
767 MIN −172.958 633 4 0.13 2.8
711 TS −170.167 437 6 0.14 4.1
645 MIN −170.834 772 1 0.15 5.3
580 TS −169.708 233 8 0.13 6.7
516 MIN −170.284 399 8 0.15 8.1
465 TS −170.076 795 9 0.20 9.0
429 MIN −170.290 420 6 0.20 9.6
371 TS −169.709 157 3 0.16 10.9
314 MIN −170.361 742 3 0.12 12.1
287 TS −170.196 911 4 0.13 12.6
270 MIN −170.262 952 9 0.14 12.6
246 TS −170.172 307 6 0.14 13.4
229 MIN −170.215 482 6 0.13 13.7
189 TS −170.007 066 7 0.20 14.6
157 MIN −170.327 349 2 0.25 15.2
123 TS −169.655 932 0 0.30 15.9
1 MIN −173.928 426 6 0.57 18.8

quite well, it is not sensitive enough to details of the structure
to provide a faithful reflection of the energy profile. Hence, any
attempt to analyse dynamics based on the F(Q6) potential of
mean force will suffer from the projection effects discussed in
Sec. III. In contrast, the profiles obtained for F(s) retain such
details of the underlying landscape. The effect of projection
can be clearly defined because this system is not subject to the

FIG. 3. Committor probabilities for the ten local minima on the intercon-
version pathway of LJ38 corresponding to Figure 2. CA

b
is the probability

that the system will visit the product, A (minimum 1), before returning to
the starting minimum b, calculated using graph transformation and a sparse
linear algebra solver based upon Lower Upper (LU) factorisation.67,76 The
lines joining the points are simply intended to guide the eye. Results are
presented for reduced temperatures of kBT /ϵ = 0.1, 0.15, 0.2, 0.25, and 0.3,
as marked. It is noteworthy that the variation with temperature is largest in
the proximity of the product minimum.

FIG. 4. Free energy F as a function of the integrated path length s for a
common interconversion pathway of LJ38. Results for constraining distances
d = 0.4, 0.7, and 1.0 are shown separately, each including temperatures of
kBT /ϵ = 0.12, 0.2, and 0.3, with three different starting points for each
d, T combination to check convergence. For d = 0.4, the nine curves are
practically coincident.

“frictional” effects associated with missing degrees of freedom
from an environment.

The result of projection is also clear from the
F(s,Q6) = −kBT ln P(s)P(Q6|s) surfaces illustrated in Fig-
ure 5. Gaussian functions with the same variances employed
for the one-dimensional visualisations were used to produce
smooth surfaces. The double minimum for the two alternative

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

199.127.134.18 On: Sat, 27 Jun 2015 16:40:07



130901-9 D. J. Wales J. Chem. Phys. 142, 130901 (2015)

FIG. 5. Two views of the free energy surface obtained from −kBT lnP(s)
P(Q6|s) for constraint distance 0.4 and kBT /ϵ = 0.12. The positions of three
low-lying minima are marked.159

surface packings is apparent for the s coordinate. However,
when a one-dimensional projection onto Q6 is employed, the
two minima (and the barrier region) are simply averaged over.

The results for F(s) in Figure 4 exhibit some systematic
trends. For d = 0.4, the shortest constraint distance, there is
little temperature dependence. In contrast, for d = 1.0, F(s)
shifts systematically to a narrower range as the temperature
increases, but the positions of local maxima and minima are
preserved. The effects of changing constraint distance and
temperature on F(Q6) are similar (Figure 6), but the plots are
dominated by two deep free energy minima corresponding
to Q6 values around 0.14 and 0.55 for icosahedral and fcc
structure, respectively. These minima are consistent with the
profiles obtained in previous work using parallel tempering
and adaptively biased Monte Carlo.159 Precise agreement is
not expected, since the full configuration space is accessible
in the latter calculations. For example, a shallower minimum
corresponding to decahedral packing is then observed around
Q6 = 2.8.159 For the single pathway examined here, such struc-
ture does not arise. One further check was performed to verify
that F(s) approaches V (s), the potential energy defined by the
reference configurations, at low temperature.

Results for one of the path segments connecting two
adjacent minima are shown in Figure 7. This section of the
path, corresponding to the fifth transition state in Table I,

FIG. 6. Top: Q6 as a function of the configurations characterising an inter-
conversion pathway of LJ38. Middle: free energy F as a function of Q6 for
the same path. The results correspond to constraining distances d = 0.4, 0.7,
and 1.0 and temperatures kBT /ϵ = 0.12, 0.2, and 0.3, as marked on the plots.
Bottom: as for the middle plot but illustrating F(Q6)/kBT for comparison
with previous work.

is interesting because it exhibits a bimodal distribution for
Q6 (Figure 7). The minima have Q6 values of 0.20 and 0.12
and are sufficiently similar in energy to have comparable
occupation probabilities for the temperature range considered
here. This example is selected to illustrate the agreement be-
tween Q6 distributions calculated in different ways. Results are
compared for direct visit statistics for the Q6 bins using a single
block containing all the reference configurations, average
values of Q6 for instantaneous and reference configurations
for the s bins weighted by P(s), and a harmonic superposition
calculation,1,54–56 which only uses the Q6 values for the two
minima. The distributions agree very well, particularly at
this relatively low temperature, where anharmonic effects are
small.
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FIG. 7. Analysis of the pathway segment connecting the fifth and sixth
minima (see Table I and Figure 2) in LJ38 for d = 0.4, kBT /ϵ = 0.12. Top:
the potential energy as a function of the integrated path length; the structures
of the three stationary points are illustrated with the same colouring scheme
as defined for Figure 2. Bottom: probability distributions calculated in four
different ways. “Direct” refers to the distribution based on direct visits for
a single block including all the frames. The plots labelled ⟨Q6⟩s and Q0

6(s)
were obtained using the mean value of Q6 in bin s and the value for the
reference configuration corresponding to bin s, respectively, to approximate
P(Q6) from P(s) contributions (see Sec. IV). The plot labelled HSA was
obtained using the Q6 values for the two minima, weighted by their relative
occupation probabilities in the harmonic superposition approximation.1,54–56

A smoothed distribution was obtained by convolution with Gaussian func-
tions centred at the two Q6 values with a variance of 0.0005.

VI. CONCLUSIONS

Fitting an effective diffusion constant to reproduce dynam-
ical observables from a low-dimensional representation is a
popular approach in molecular science. The variation of this
parameter along the corresponding pathway then subsumes
projection effects that arise from barriers that are not repro-
duced by the chosen order parameter. These barriers appear in
orthogonal degrees of freedom and are averaged over by the
projection. Hence, a smaller value for the effective diffusion
constant will be needed to fit the dynamics in such regions.

A clear example is provided for one particular pathway
corresponding to the change in morphology of an atomic clus-
ter. In this case, a bond order parameter is relatively successful
in reproducing the overall transformation but misses a sur-
face reorganisation associated with a relatively high barrier.
In contrast, a profile based on the union of steepest-descent
paths between local minima on the potential energy landscape

faithfully reflects the underlying barriers. This result essen-
tially follows from geometry: the steepest-descent paths should
correspond to minimum potential energy in the orthogonal
degrees of freedom.

Approximate steepest-descent paths are used to define
the adjacency of local minima from the transition states that
connect them in the construction of kinetic transition net-
works.69–71,173 Within this computational potential energy land-
scape approach, overall rates are usually extracted using uni-
molecular rate theory based upon all degrees of freedom, which
is essentially a master equation formulation.17,174 This is the
basis of the discrete path sampling17,29,30,67 framework for
analysis of rare event dynamics. Since the discrete paths can
all be identified and analysed from the static network, there
is an opportunity to use them to guide the construction of
simplified lower-dimensional representations of the dynamics
more systematically in future work.

Coarse-graining global thermodynamics and kinetics us-
ing local minima, transition states, and the steepest-descent
paths that connect them provides a purely geometrical basis
for the prediction of emergent observable phenomena from
the potential energy landscape. For example, we can associate
distinct well and landscape contributions to the entropy from
the basins defining individual local minima and the distribution
of local minima on the landscape. Similarly, entropic contribu-
tions to the overall kinetics can be analysed in terms of indi-
vidual discrete paths connecting local minima via transition
states and the distribution of discrete paths. For example, the
number of kinetically relevant discrete paths will generally
increase with temperature, and this effect has been examined in
previous work.17,29 Combining this insight with more accurate
treatment of dynamics would provide an attractive way to
analyse rare events.

The application presented here explicitly avoids any
complications due to solvent effects, to focus directly on the
consequences of dimensionality reduction. In future work, this
approach could be applied to biomolecules with both implicit
and explicit solvents. For explicit solvent, such analysis is
likely to be complicated by the complexity associated with
the additional degrees of freedom. Nevertheless, there may
be opportunities to gain fresh insight from the potential en-
ergy landscape approach. For example, one interpretation of
secondary structure kinetics when solvent viscosity is modified
explicitly in experiments requires a correlation between barrier
height and curvature.175 This correlation is indeed expected
from catastrophe theory if the path length is roughly con-
stant,1,176 a result that has been investigated quantitatively for
atomic and molecular clusters in previous work.
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